
Parallel ProgrammingITC: Jens Hollmann Folie 5

Introduction
Computer Architectures, Parallelization at a Glance



Parallel ProgrammingITC: Jens Hollmann Folie 6

 Computer Architectures
 Basic Computer Architectures

 Shared-Memory Parallel Systems

 Distributed-Memory Parallel Systems

 Parallelization at a Glance
 Basic Concepts

 Parallelization Strategies

 Prominent Issues

Introduction - Contents



Parallel ProgrammingITC: Jens Hollmann Folie 7

 Processor
 Fetch program from memory

 Execute program instructions

 Load data from memory

 Process data

 Write results back to memory

 Main Memory
 Store program

 Store data

 Input / Output is not covered here!

Single Processor Systems (1 / 2)

core

memory



Parallel ProgrammingITC: Jens Hollmann Folie 8

 CPU 
 Fast (order of 3.0 GHz)

 Main Memory
 Slow (order of 0.3 GHz)

 Large (order of GB)

 Caches
 Fast, but expensive

 Small (order of MB)

 Usage of Cache is mandatory for good performance on parallel 
applications.

Single Processor Systems (1 / 2)

core

off-chip cache

on-chip cache L1

L2

memory



Parallel ProgrammingITC: Jens Hollmann Folie 9

 The CPU would get too hot!

Why aren’t CPUs getting faster anymore?

Fast clock cycles make 
processor chips more 

expensive, hotter and more 
power consuming.



Parallel ProgrammingITC: Jens Hollmann Folie 10

 Since 2005/2006 dual-core processors
are produced for the home user.

 Number of cores per chip increases 
since then
 Today: up to 8 cores per chip for a

standard CPU

 Any recently bought PC or Laptop
is a multi-core system already.

Multi-Core Processor Systems

Core

off-chip cache

memory

Core

on-chip cache



Parallel ProgrammingITC: Jens Hollmann Folie 11

 Computer Architectures
 Basic Computer Architectures

 Shared-Memory Parallel Systems

 Distributed-Memory Parallel Systems

 Parallelization at a Glance
 Basic Concepts

 Parallelization Strategies

 Prominent Issues

Introduction - Contents



Parallel ProgrammingITC: Jens Hollmann Folie 12

 Implicit data distribution

 Implicit communication

 Different types of shared-memory architectures

 Programming via …
 OpenMP

 Java-Threads

Shared-Memory Parallel Systems

Process Process Process

interconnect

Memory



Parallel ProgrammingITC: Jens Hollmann Folie 13

 Abbr. for Symmetric Multi Processing

 Memory access time is uniform on 
all cores

 Limited scalability

 Example: Intel Woodcrest
 Two cores per chip, 3.0 GHz

 Each chip has 4 MB of L2 cache on-chip,

shared by both cores

 No off-chip cache

 Bus: Frontsidebus

SMP

Core

memory

Core

on-chip cache

Core Core

on-chip cache

bus

on-chip cache



Parallel ProgrammingITC: Jens Hollmann Folie 14

 Abbr. for cache-coherent Non-Uniform
Memory Architecture

 Memory access time is non-uniform

 Scalable

 Example: AMD Opteron
 Two cores per chip, 2.4 GHz

 Each core has separate 1 MB of L2-

cache on-chip

 No off-chip cache

 Interconnect: Hypertransport

ccNUMA

Core

memory

Core

on-chip
cache

Core

memory

on-
chip

cache

on-
chip

cache

Core

interconnect

on-chip
cache

on-chip
cache

on-chip
cache



Parallel ProgrammingITC: Jens Hollmann Folie 15

 If there are multiple caches not shared by all cores in the system, 
the system takes care of the cache coherence.

 Example:
int a[some_number]; //shared by all threads
thread 1: a[0] = 23;     thread 2: a[1] = 42;
--- thread + memory synchronization (barrier) ---
thread 1: x = a[1];      thread 2: y = a[0];

 Both a[0] and a[1] are stored in caches of thread 1 and 2

 Changes to data in the cache is at first only visible for the CPU that modified 

its cache

 After synchronization point all threads need to have the

same view of (shared) main memory

Cache Coherence (cc)



Parallel ProgrammingITC: Jens Hollmann Folie 16

 Computer Architectures
 Basic Computer Architectures

 Shared-Memory Parallel Systems

 Distributed-Memory Parallel Systems

 Parallelization at a Glance
 Basic Concepts

 Parallelization Strategies

 Prominent Issues

Introduction - Contents



Parallel ProgrammingITC: Jens Hollmann Folie 17

 Explicit data distribution

 Explicit communication

 Scalable

 Programming via MPI

Distributed-memory Parallel Systems

Process

Memory Memory Memory

Process Process

interconnect



Parallel ProgrammingITC: Jens Hollmann Folie 18

 Various independent computers are connected to each other over a 
non-cache-coherent second level interconnect 
 Infiniband

 Latency: <= 5 µs
 Bandwidth: >= 1200 MB/s

 GigaBit Ethernet

 Latency: <= 60 µs
 Bandwidth: >= 100 MB/s

Clusters

Latency: 
Time required to send a message of
size zero
(time to setup the communication)

Bandwidth: 
Rate at which large messages (>= 2 
MB) are transferred

2nd level interconnect (network)



Parallel ProgrammingITC: Jens Hollmann Folie 19

 Computer Architectures
 Basic Computer Architectures

 Shared-Memory Parallel Systems

 Distributed-Memory Parallel Systems

 Parallelization at a Glance
 Basic Concepts

 Parallelization Strategies

 Prominent Issues

Introduction - Contents



Parallel ProgrammingITC: Jens Hollmann Folie 20

 A process is the abstraction of a program in execution

 It can be in different states
 Running

 Waiting

 Ready

 Each process has its own address-space
 No common variables between processes

Processes



Parallel ProgrammingITC: Jens Hollmann Folie 21

 A thread is a lightweight process

 In difference to a process, a thread shares the address-space with 
all other threads of the process it belongs to, but has its own stack.
 Common variables between threads

Threads



Parallel ProgrammingITC: Jens Hollmann Folie 22

 Even on a multi-socket / multi-core system you should not make any 
assumption which process / thread is executed when an where!

 Two threads on one core:

 Two threads on two cores:

Process and Thread Scheduling by the OS

Thread1      Thread 2                 System thread

thread migration

“pinned” threads



Parallel ProgrammingITC: Jens Hollmann Folie 23

 Memory can be accessed by several threads running on different 
cores in a multi-socket / multi-core system

Shared-memory Parallelization

a=4

CPU1

a
c=3+a

CPU2



Parallel ProgrammingITC: Jens Hollmann Folie 24

 Each process has its own distinct memory
 Communication via Message Passing

Distributed-memory Parallelization

send a

CPU1 CPU2

areceive a a

local memory

transfer



Parallel ProgrammingITC: Jens Hollmann Folie 25

 Computer Architectures
 Basic Computer Architectures

 Shared-Memory Parallel Systems

 Distributed-Memory Parallel Systems

 Parallelization at a Glance
 Basic Concepts

 Parallelization Strategies

 Prominent Issues

Introduction - Contents



Parallel ProgrammingITC: Jens Hollmann Folie 26

 Time using 1 CPU: ࢀሺ૚ሻ

 Time using ݌ CPUs: ࢀሺ࢖ሻ

 Speedup ܵ: ሻ࢖ሺࡿ 	ൌ 	 ࢀ ૚
ࢀ ࢖

 Measures how much fast the parallel computation is

 Efficiency ܧ: ሻ࢖ሺࡱ 	ൌ 	 ࡿ ࢖
࢖

Speedup and Efficiency (1 / 2)



Parallel ProgrammingITC: Jens Hollmann Folie 27

 Example:
 ܶ 1 ൌ ,ݏ6 ܶሺ2ሻ ൌ ݏ4

ܵ 2 ൌ ଺
ସ
ൌ ଷ

ଶ
ൌ 1.5

ܧ 2 ൌ ଵ.ହ
ଶ
ൌ ଷ

ସ
ൌ 0.75

 Ideal case: ࢀሺ࢖ሻ ൌ ࢖/ሺ૚ሻࢀ
 ܵሺ݌ሻ ൌ ݌

 ሻ݌ሺܧ ൌ 1.0

Speedup and Efficiency (2 / 2)



Parallel ProgrammingITC: Jens Hollmann Folie 28

 Describes the influence of the serial part onto scalability (without
taking any overhead into account).

 ܵ ݌ ൌ ் ଵ
் ௣

ൌ ் ଵ

௙∗் ଵ ା	 ଵି௙ ∗೅ భ
೛

ൌ ଵ

௙ାభష೑೛
 ݂: serial part (0݂1)

 ܶሺ1ሻ : time using 1 CPU

 ܶሺ݌ሻ: time using p CPUs

 ܵሺ݌ሻ: speedup; ܵ ݌ ൌ ் ଵ
் ௣

 :ሻ݌ሺܧ efficiency; ܧ ݌ ൌ ௌ ௣
௣

 It is rather easy to scale to a small number of cores, but any 
parallelization is limited by the serial part of the program!

Amdahl’s Law



Parallel ProgrammingITC: Jens Hollmann Folie 29

 If 80% (measured in program runtime) of your work can be 
parallelized and “just” 20% are still running sequential, then your 
speedup will be:

Amdahl’s Law illustrated

1 processor:
time: 100%
speedup: 1

2 processors:
time: 60%
speedup: 1.7

4 processors:
time: 40%
speedup: 2.5

 processors:
time: 20%
speedup: 5



Parallel ProgrammingITC: Jens Hollmann Folie 30

 After the initial parallelization of a program, you will typically see 
speedup curves like this:

Speedup in Practice

sp
ee
du

p

1 2 3 4 5 6 7 8 . . .

1

2

3

4

5

6

7

8

p

Speedup according to Amdahl’s law



Parallel ProgrammingITC: Jens Hollmann Folie 31

 Chances for concurrent execution:
 Look for tasks that can be executed simultaneously

(task decomposition)

 Decompose data into distinct chunks to be processed independently

(data decomposition)

Finding Concurrency



Parallel ProgrammingITC: Jens Hollmann Folie 32

 Parallelization on a High Level (low granularity)
 Chances of low synchronization / communication cost

 Danger of load balancing issues

 Parallelization on a Low Level (high granularity)
 Danger of high synchro-

nization / communication cost

 Chances of avoiding load

balancing issues

 Compute intensive programs may employ multiple levels of
parallelization, maybe even with multiple parallelization paradigms
(hybrid parallelization).

Granularity



Parallel ProgrammingITC: Jens Hollmann Folie 33

 Computer Architectures
 Basic Computer Architectures

 Shared-Memory Parallel Systems

 Distributed-Memory Parallel Systems

 Parallelization at a Glance
 Basic Concepts

 Parallelization Strategies

 Prominent Issues

Introduction - Contents



Parallel ProgrammingITC: Jens Hollmann Folie 34

 You can still run into all issues of Serial Programming  !

 Additional issues:
 Is your parallelization correct?

 It is harder to debug parallel code than serial code!

 Specific issues of Parallel Programming:
 Introduction of overhead by parallelization

 Data Races / Race Conditions

 Deadlocks

 Load Balancing

 Serialization

 Irreproducibility / Different numerical results

Issues in Parallel Programming: Overview



Parallel ProgrammingITC: Jens Hollmann Folie 35

 Overhead introduced by the parallelization:
 Time to start / end / manage threads

 Time to send / exchange data

 Time spent in synchronization of threads / processes

 With parallelization:
 The total CPU time increases,

 The Wall time decreases,

 The System time stays the same.

 Efficient parallelization is about minimizing the overhead introduced
by the parallelization itself!

Parallelization Overhead



Parallel ProgrammingITC: Jens Hollmann Folie 36

 Data Race: Concurrent access of the same memory location by
multiple threads without proper synchronization
 Let x be initialized with 1

 Depending on which thread is faster, you will see either 1 or 5

 Result is nondeterministic (i.e. depends on OS scheduling)

 Data Races (and how to detect and avoid them) will be covered in 
more detail later!

Data Races / Race Conditions

x=5; printf(x);



Parallel ProgrammingITC: Jens Hollmann Folie 37

 When two or more threads / processes are waiting for another to
release a resource in a circular chain, the program appears to
„hang“:

Deadlock

I want to write!

Give me 
the 

paper!

Give me
the pen!



Parallel ProgrammingITC: Jens Hollmann Folie 38

 All threads / processes finish at the same time

 Some threads / processes take longer than others

 But: All threads / processes have to wait for the slowest thread / 

process, which is thus limiting

the scalability

Load Balancing

perfect load balancing
tim

e

load imbalance

tim
e



Parallel ProgrammingITC: Jens Hollmann Folie 39

 Serialization: When threads / processes wait „too much“
 Limited scalability, if at all

 Simple (and stupid) example:

Serialization

Send Recv
Data

Transfer

SendRecv
Data

Transfer

Send Recv
Data

Transfer

Calc

Calc

Wait

Wait


