Introduction to OpenMP: Exercises and Handout

Introduction to OpenMP

Dirk Schmidl

IT Center, RWTH Aachen University
Seffenter Weg 23, 52074 Aachen, Germany
schmidl@itc.rwth-aachen.de

Abstract

This document guides you through the hands-on examples and the exercises. Please follow the
instructions given during the lecture/exercise session on how to login to the cluster.

Please download the exercises and save them in your virtual machine. Then extract the exercises
with the command:

tar -xvf omp_exercises.tar

If you need help or have any question please do not hesitate to ask.

You can run the examples in two ways:

1. Open the *.cfile in Geany and compile and run it as usual.
2. There are prepared Makefiles in the directories. Switch into the example directory in your
shell and use the make targets described below.

Note: To install make in the VM run: $ sudo apt-get install make
Linux: The prepared makefiles provide several targets to compile and execute the code:

e debug: The code is compiled with OpenMP enabled, still with full debug support.

e release: The code is compiled with OpenMP and several compiler optimizations enabled,
should not be used for debugging.

e run: Execute the compiled code. The OMP_NUM_THREADS environment variable should be set
in the calling shell.

e clean: Clean any existing build files.

schmidl@itc.rwth-aachen.de Exercises_ OMP.docx

Introduction to OpenMP: Exercises and Handout

1 Hello World
Go to the hel lo directory. Compile the hel 1o code via ‘make [debug]release]’ and execute the
resulting executable via ‘OMP_NUM_THREADS=procs make run’, where procs denotes the number
of threads to be used.

Exercise 1: Change the code that (a) the thread number (thread id) and (b) the total number of
threads in the team are printed. Re-compile and execute the code in order to verify your changes.

C/C++: In order to print a decimal number, use the %d format specifier with printf():

int il = value;
int i2 = other_value;
printf(“value of i1l is: %d, and 12 is: %d”, il, i2);

Exercise 2: In which order did you expect the threads to print out the Hello World message? Did your
expectations meet your observations? If not, is that wrong?

2 Parallelization of Pi (numerical integration)
Go to the pi directory. This code computes Pi via numerical integration. Compile the pi code via
‘make [debug]release]’ and execute the resulting executable via ‘OMP_NUM_THREADS=procs
make run’, where procs denotes the number of threads to be used.

Exercise 1: Parallelize the Pi code with OpenMP. The compute intensive part resides in one single
loop in the CalcPi () function, hence the parallel region should be placed there as well. Re-compile
and execute the code in order to verify your changes.

Note: Make sure that your code does not contain any data race — that is two threads writing to the
same shared variable without proper synchronization.

Exercise 2: If you work on a multicore system (e.g. the cluster at RWTH Aachen University) measure
the speedup and the efficiency of the parallel Pi program.

Threads Runtime [sec] Speedup Efficiency

1

AL~ WN

schmidl@itc.rwth-aachen.de Exercises_ OMP.docx

Introduction to OpenMP: Exercises and Handout

3 First steps with Tasks: Fibonacci and a small code snippets
During these two exercises you will examine the new Tasking feature of OpenMP 3.0.

Exercise 1: Go to the Fibonacci directory. This code computes the Fibonacci number using a
recursive approach — which is not optimal from a performance point of view, but well-suited for this
exercise.

Examine the fibonacci code. Parallelize the code by using the Task concept of OpenMP.
Remember: The Parallel Region should reside in main() and the fib() function should be entered the
first time with one thread only. You can compile the code via ‘gmake [debug]release]’.

Exercise 2: The code below performs a traversal of a dynamic list and for each list element the
process() function is called. The for-loop continues until e->next points to null. Such a loop cannot
be parallelized in OpenMP with a for construct, as the number if loop iterations (= list elements)
cannot be computed. Parallelize this code using the Task concept of OpenMP 3.0. State the scope of
each variable explicitly.

01 List I;

02 Element e;

03

04

05

06

07 for(e = I->First; e; e = e->next)
08 {

09

10

11 process(e);
12

13 }

4 OpenMP Puzzles

The following declarations and definitions occur in all exercises before the Parallel Region:

int i;

double A[N] = { ... }, B[N] = { ... }, C[N], D[N];
const double c = ...;

const double x = .._;

double y;

Exercise 1: Insert missing OpenMP directives to parallelize this loop:

for (i = 0; i < Nj i++)
{
y = sqrt(ALi]);

schmidl@itc.rwth-aachen.de Exercises_ OMP.docx

Introduction to OpenMP: Exercises and Handout

DLi] =y + ALI] /7 (X * X);
}

Exercise 2: Insert missing OpenMP directives to make both loops run in parallel:

#pragma omp parallel

{
for (i = ; 1< N; i +=)
{
D[i] = x * A[i] + x * B[i];
}
#pragma omp
for (i = 0; 1 < Nj i++)
{

C[i] = ¢ * D[i];

} 7/ end omp parallel

Exercise 3: Can you parallelize this loop — if yes how, if not why?

for (int 1 = 1; i < N; i++)
{

AL1] = BLi] - ALi - 1];
3

5 Reasoning about Work-Distribution
Go to the for directory. Compile the for code via ‘make [debug]release]’ and execute the
resulting executable via ‘OMP_NUM_THREADS=procs make run’, where procs denotes the number
of threads to be used.

Exercise 1: Examine the code and think about where to put the parallelization directive(s).

schmidl@itc.rwth-aachen.de Exercises_ OMP.docx

Introduction to OpenMP: Exercises and Handout

Exercise 2: Measure the speedup and the efficiency of the parallelized code. How good does the
code scale and which scaling did you expect?

Threads Runtime [sec] Speedup Efficiency

1

Is this what you expected?

Exercise 3: Can the scaling be improved by different scheduling strategies? Try out different
strategies to find the best one for this example.

6 Parallelization of an iterative Jacobi Solver

Go to the jacobi directory. Compile the jacobi.c code via ‘make [debug]release]’ and
execute the resulting executable via ‘OMP_NUM_THREADS=procs make run’, where procs denotes
the number of threads to be used.

Exercise 1: Parallelize the compute-intensive program parts with OpenMP. For a simple start, create
one parallel region for each performance hotspot.

Exercise 2: Try to combine parallel regions that are in the same routine into one parallel region.

Exercise 3: If you are working on a NUMA machine, think about the data distribution of the jacobi
code. Change the data initialization for a better data distribution if needed.

7 Finding Data Races: Primes
Go to the primes directory. Compile the PrimeOpenMP code via ‘make [debug]release]’ and
execute the resulting executable via ‘OMP_NUM_THREADS=procs make run’, where procs denotes
the number of threads to be used.

Exercise 1: Execute the program twice, with a given number of threads (at least two). You will find
that the number of primes found in the specified interval will change - which of course is not the
correct result. Try to find the Data Race by looking at the source code ...

Exercise 2: Correct the PrimeOpenMP code using appropriate OpenMP synchronization constructs.

8 Dry Runs on Various Aspects
The code snippet below implements a Matrix times Vector (MxV) operation, where a is a vector of
R™, B is Matrix of R™" and cis a Vector of R": a=B"-c.

01 void mxv_row(int m, int n, double *A, double *B, double *C)

02 {

03 int i, j;

04

05 for (1=0; i<m; i++)

schmidl@itc.rwth-aachen.de Exercises_ OMP.docx

Introduction to OpenMP: Exercises and Handout

06 {

07 A[i] = 0.0;

08 for (J=0; j<n; j++)

09 ALT] += BLi*n+31*CLi1];
10 }

11 3}

Exercise 1: Parallelize the for loop in line 05 by providing the appropriate line in OpenMP. Which
variables have to be private and which variables have to be shared?

Exercise 2: Which schedule would you propose for this parallelization? Explain your answer and
briefly list the pros and contras for each of the three OpenMP worksharing schedules (namely static,
dynamic and guided) for this specific case.

Exercise 3: Would it be possible to parallelize the for loop in line 09? If your answer is yes, provide
the appropriate line in OpenMP and explain what scaling you would expect. If your answer is no,
explain why you think it is not possible.

Exercise 4: If the code would be called as shown below, how would the parallelization look like (in
line 05) and which variables would be private and shared? Provide the appropriate line in OpenMP
and state for each variable (m, n, A, B, C, i, j) whether it is private or shared.

21 intm= ___;

22 intn= _.__;

23 double* A = ___;

24 double* B = ___;

25 double* C = .._;

26

27 [.. program logic here ..]
28

29 #pragma omp parallel

30 {

31 mxv_row(m, n, A, B, C);
32

Exercise 5: In Exercise 8, the Fibonacci number fib(n) has been computed as:

fib(0)
fib(1)
fib(n)

0
1
fib(n-1) + Ffib(n-2)

This algorithm can be transformed to an iterative approach, which typically is more efficient:

schmidl@itc.rwth-aachen.de Exercises_ OMP.docx

Introduction to OpenMP: Exercises and Handout

C

= b; a=Db; b=c
fib(n)

a +
=b
Can this algorithm be parallelized (in OpenMP) as well? If you think so, provide a sketch of the
parallelization. If you think not, explain why.

schmidl@itc.rwth-aachen.de Exercises_ OMP.docx

