RWTH

IT Center

Introduction to OpenMP

Dirk Schmidl
IT Center, RWTH Aachen University
Member of the HPC Group
schmidl@itc.rwth-aachen.de

IT Center der RWTH Aachen University

History

‘R\Nﬂ'l

De-facto standard for Shared-Memory Parallelization.

1997: OpenMP 1.0 for FORTRAN
1998: OpenMP 1.0 for C and C++

1999: OpenMP 1.1 for FORTRAN
(errata)

2000: OpenMP 2.0 for FORTRAN
2002: OpenMP 2.0 for C and C++

2005: OpenMP 2.5 now includes
both programming languages.

05/2008: OpenMP 3.0 release
07/2011: OpenMP 3.1 release

07/2013: OpenMP 4.0 release

Introduction to OpenMP
Dirk Schmidl | IT Center der RWTH Aachen University

OpenMP

http://www.OpenMP.org

RWTH Aachen University is
a member of the OpenMP
Architecture Review Board
(ARB) since 2006.

‘R“m'l

OpenMP Overview
&
Parallel Region

OpenMP‘s machine model

@ OpenMP: Shared-Memory Parallel Programming Model.

All processors/cores access
a shared main memory.

Real architectures are
more complex, as we
will see later / as we
have seen.

Parallelization in OpenMP
employs multiple threads.

4 Introduction to OpenMP
Dirk Schmidl | IT Center der RWTH Aachen University

OpenMP Execution Model RWTH

OpenMP programs start with

. Serial Part
just one thread: The Master. Master Thread erlatrar
Parallel
Worker threadg are spawned Ffergioen
at Parallel Regions, together Worker 11
with the Master they form the Threads =u
Team of threads. g
E E ESeriaI Part
In between Parallel Regions the
Worker threads are put to sleep. \A L
The OpenMP Runtime takes care
of all thread management work. = Parallel
= Region
v

Concept: Fork-Join.
Allows for an incremental parallelization!

5 Introduction to OpenMP
Dirk Schmidl | IT Center der RWTH Aachen University

Parallel Region and Structured RWNTH
Blocks

The parallelism has to be expressed explicitly.
C/C++ Fortran

fpragma omp parallel 'Somp parallel
{

.. structured block
structured block

$!lomp end parallel

}
Structured Block Specification of number of threads:

- Exactly one entry point at the top » Environment variable:
- Exactly one exit point at the bottom OMP NUM THREADS=..
— Branching in or out is not allowed » Or:Vianum threads clause:

— Terminating the program is allowed add num threads (num) to the

(abort / exit) parallel construct

Introduction to OpenMP
Dirk Schmidl | IT Center der RWTH Aachen University

Demo Rm

Hello OpenMP World

7 Introduction to OpenMP
Dirk Schmidl | IT Center der RWTH Aachen University

Demo ‘ Rm

Hello orphaned OpenMP World

Introduction to OpenMP
Dirk Schmidl | IT Center der RWTH Aachen University

Starting OpenMP Programs on Linux RWTH

From within a shell, global setting of the number of threads:
export OMP NUM THREADS=4

./program

From within a shell, one-time setting of the number of threads:
OMP NUM THREADS=4 ./program

Introduction to OpenMP
Dirk Schmidl | IT Center der RWTH Aachen University

‘R“m'l

For Worksharing Construct

For Worksharing

RWTH

If only the parallel construct is used, each thread executes the

Structured Block.

Program Speedup: Worksharing

OpenMP‘s most common Worksharing construct: for

C/C++

int 1i;

fpragma omp for

for (i = 0; 1 < 100; i++)

ali] = bli] + c[1i];

Fortran
INTEGER :: 1
!'Somp do
DO 1 = 0, 99
ali] = b[i1] + cl[1];
END DO

—> Distribution of loop iterations over all threads in a Team.

— Scheduling of the distribution can be influenced.

Loops often account for most of a program‘s runtime!

11 Introduction to OpenMP
Dirk Schmidl | IT Center der RWTH Aachen University

Worksharing illustrated

Pseudo-Code
Here: 4 Threads

Thread 1
Thread 2
Serial
doi=0, 99
a(i) = b(i) + c(i) =l
end do
Thread 3
Thread 4

doi=0,24
a(i) = b(i) + c(i)
end do

doi= 25, 49
a(i) = b(i) + c(i)
end do

doi =50, 74
a(i) = b(i) + c(i)
end do

doi=75,99
a(i) = b(i) + c(i)
end do

12 Introduction to OpenMP
Dirk Schmidl | IT Center der RWTH Aachen University

Demo ‘ Rm

Summing up Vector Elements

13 Introduction to OpenMP
Dirk Schmidl | IT Center der RWTH Aachen University

Synchronization Overview RWTH

Can all loops be parallelized with £or-constructs? No!

- Simple test: If the results differ when the code is executed backwards, the

loop iterations are not independent. BUT: This test alone is not sufficient:

C/C++
int 1i;
#fpragma omp parallel for
for (i = 0; 1 < 100, i++)
{

s = s + al[il;
}

Data Race: If between two synchronization points at least one thread
writes to a memory location from which at least one other thread
reads, the result is not deterministic (race condition).

14 Introduction to OpenMP
Dirk Schmidl | IT Center der RWTH Aachen University

Synchronization: Critical Region RWTH

A Critical Region is executed by all threads, but by only one thread
simultaneously (Mutual Exclusion).

C/C++

fpragma omp critical (name)
{
structured block ...

}

Do you think this solution scales well?
C/C++

int 1i;

fpragma omp parallel for
for (1 = 0; 1 < 100; i++)
{

#fpragma omp critical
{ s = s + afli]l; }

}

15 Introduction to OpenMP
Dirk Schmidl | IT Center der RWTH Aachen University

RWTH

Data Scoping

16 Introduction to OpenMP
Dirk Schmidl | IT Center der RWTH Aachen University

Scoping Rules RWTH

Managing the Data Environment is the challenge of OpenMP.

Scoping in OpenMP: Dividing variables in shared and private:

—> private-list and shared-list on Parallel Region

—> private-list and shared-list on Worksharing constructs

- General default is shared for Parallel Region, firstprivate for Tasks.

—> Loop control variables on for-constructs are private

— Non-static variables local to Parallel Regions are private

—> private: A new uninitialized instance is created for each thread
—>firstprivate: Initialization with Master's value
—> lastprivate: Value of last loop iteration is written back to Master

—> Static variables are shared
17 Introduction to OpenMP
Dirk Schmidl | IT Center der RWTH Aachen University

Privatization of Global/Static Variables ‘ RWNTH

Global / static variables can be privatized with the threadprivate

directive \“3\.

- One instance is created for each thread 6Q‘

—> Before the first parallel region is encounter%(ea

—> Instance exists until the program endso,‘

- Does not work (well) with ne%eﬁ)éarallé@%mn

\
- Based on thread-local stor@g%LS)Qﬁ(
- TIsAlloc (WlnBZQAreadQ@‘}read key create (Posix-Threads), keyword

__th 8@‘8N U@&nsmn)

C/C++ \\\\ Fortran
s%&@ int i; SAVE INTEGER :: 1

_hreadprivate (1) !'Somp threadprivate (i)

18 Introduction to OpenMP
Dirk Schmidl | IT Center der RWTH Aachen University

‘R“m'l

The Barrier Construct

19 Introduction to OpenMP
Dirk Schmidl | IT Center der RWTH Aachen University

The Barrier Construct RWTH

OpenMP barrier (implicit or explicit)
— Threads wait until all threads of the current Team have reached the barrier
C/C++

fpragma omp barrier

All worksharing constructs contain an implicit barrier at the end

20 Introduction to OpenMP
Dirk Schmidl | IT Center der RWTH Aachen University

Introduction to OpenMP

‘R“m'l

Back to our bad
scaling example

C/C++
int 1i;
#fpragma omp parallel for

for (i = 0; 1 < 100; i++)
{

#pragma omp critical
{ s =s + alil; }

}

Dirk Schmidl | IT Center der RWTH Aachen University

It‘s your turn: Make It Scale! RWTH

#pragma omp parallel

doi=0, 24
{ s=s+ali)
end do
#pragma omp for
for (i = 0; 1 < 99; i++) doi =25, 49
{ s=s+ali)
doi=0,99 end do
s=s+a(i) | =P _
s = s + al[i]l; end do doi =50, 74
s=s+a(i)
end do
}
doi=75,99
s=s+a(i)
} // end parallel end do

22 Introduction to OpenMP
Dirk Schmidl | IT Center der RWTH Aachen University

The Reduction Clause RWNTH

In areduction-operation the operator is applied to all variables in the
list. The variables have to be shared.

- reduction (operator:list)

— The result is provided in the associated reduction variable

C/C++
fpragma omp parallel for reduction(+:s)
for(i = 0; 1 < 99; i++)
{
s = s + alil;

}

— Possible reduction operators with initialization value:
+ (0) ;0 1) r = 0) ’
& (~0), | (0), && (1), || (0),

» (0), min (least number), max (largest number)

23 Introduction to OpenMP
Dirk Schmidl | IT Center der RWTH Aachen University

Example RWTH

o

24 Introduction to OpenMP
Dirk Schmidl | IT Center der RWTH Aachen University

Example: Pi (1/2)

double f(double x)

{
return (4.0 / (1.0 + x*x));

}

double CalcPi (int n)
{
const doublefH =1.0/(double) n;
double fSum = 0.0;
double fX;
inti;

#pragma omp parallel for
for 1=0;i<n;i++)
{
fX =fH * ((double)i + 0.5);
fSum += f(fX);
}

return fH * fSum;

}

25 Introduction to OpenMP
Dirk Schmidl | IT Center der RWTH Aachen University

1
j 1+ x2
0
4F 14
35 / H...‘ 135
.
3t h, 13
h
a5l ‘“».H lasg
~
-

2l M. 12
15} \'1.5
1} 4
ost los
0 0
05 05 1 15

Example: Pi (1/2)

double f(double x)

{
return (4.0 / (1.0 + x*x));

}

double CalcPi (int n)
{
const doublefH =1.0/(double) n;
double fSum = 0.0;
double fX;
inti;

#pragma omp parallel for private(fX,i) reduction(+:fSum)
for 1=0;i<n;i++)
{
fX =fH * ((double)i + 0.5);
fSum += f(fX);
}

return fH * fSum;

}

26 Introduction to OpenMP
Dirk Schmidl | IT Center der RWTH Aachen University

1
T = >
1+ x
0
4F - 14
.."'u.
as| . Jas
~
.
3t . 13
h
a5l ‘“».H lasg
~
-

a| M. 12
15} \'1.5
1} 4
os| Jos
0 0
05 0 05 i 15

Example: Pi (2/2) RWTH

Results:
Threads Runtime [sec.] Speedup
1 1.11 1.00
2
4
8 0.14 7.93

Scalability is pretty good:

— About 100% of the runtime has been parallelized.

— As there is just one parallel region, there is virtually no overhead introduced

by the parallelization.

— Problem is parallelizable in a trivial fashion ...

27 Introduction to OpenMP
Dirk Schmidl | IT Center der RWTH Aachen University

‘R“m'l

Correctness Checking Tools

Race Condition RWTH

Data Race: the typical OpenMP programming error, when:

—> two or more threads access the same memory location, and
—> at least one of these accesses is a write, and
—> the accesses are not protected by locks or critical regions, and

—> the accesses are not synchronized, e.g. by a batrrier.

Non-deterministic occurrence: e.g. the sequence of the execution of
parallel loop iterations is non-deterministic and may change from
run to run

In many cases private clauses, barriers or critical regions are
missing
Data races are hard to find using a traditional debugger

— Use the Intel Inspector XE

29 Introduction to OpenMP
Dirk Schmidl | IT Center der RWTH Aachen University

Intel Inspector XE RWTH

Detection of

- Memory Errors
- Dead Locks

- Data Races

Support for
—> Linux (32bit and 64bit) and Windows (32bit and 64bit)

- WIN32-Threads, Posix-Threads, Intel Threading Building Blocks and OpenMP

30 Introduction to OpenMP
Dirk Schmidl | IT Center der RWTH Aachen University

Pl Example Code

double f(double x)

{
return (4.0 / (1.0 + x*x));

}

double CalcPi (int n)
{
const doublefH =1.0/(double) n;
double fSum = 0.0;
double fX;
inti;

#pragma omp parallel for private(fX,i) reduction(+:fSum)
for 1=0;i<n;i++)
{
fX =fH * ((double)i + 0.5);
fSum += f(fX);
}

return fH * fSum;

}

31 Introduction to OpenMP
Dirk Schmidl | IT Center der RWTH Aachen University

1
j 1+ x2
0
4F 14
35 / H...‘ 135
.
3t h, 13
h
a5l ‘“».H lasg
~
-

2l M. 12
15} \'1.5
1} 4
ost los
0 0
05 05 1 15

Pl Example Code RWTH

double f(double x)

{
return (4.0 / (1.0 + x*x));
}
double CalcPi (int n)
{
const doublefH =1.0/(double) n; What if we
double fSum = 0.0;
double fX; would have

inti;

forgotten this?

#pragma omp parallel for private(fX,i) reduetion{+fSum)
for (I=0;i<n;i++)
{
fX =fH * ((double)i + 0.5);
fSum += f(fX);
}

return fH * fSum;

}

32 Introduction to OpenMP
Dirk Schmidl | IT Center der RWTH Aachen University

Inspector XE — Configure Analysis RWTH

Threading Error Analysis Modes

1. Detect Deadlocks

2. Detect Deadlocks and Data Races
3. Locate Deadlocks and Data Races

more details,
more overhead

r"_ﬂ Configure Analysis Type Intel Inspector XE 2f

gﬁ.' Analysis Type
C| O start

B

| Memory Error Analysis Locate Deadlocks and Data Races

A Detect Leaks Widest scope threading error analysis type. Maximizes the load on the systerm.

A Detect Memory Proble Maximizes the time required to perform the analysis. Maximizes the chances the

analysis will fail because the system may run out of resources. Press F1 for more
A Locate Memory Proble gatails.

~ |¥ Threading Error Analysis
A Detect Deadlocks [] Terminate on deadlock —

sfack frame depth: [16 et l

SCope: [Nnrmal . l

33 Introduction to OpenMP
Dirk Schmidl | IT Center der RWTH Aachen University

Inspector XE — Results ‘ RWNTH

1 detected problems

The missing reduction

2 filters « detocted
. IS aetectea.
3 code location
roo1ti3 [-
|'ﬁ| Locate Deadlocks and Data Races Intel Inspector XE 2011

% Target|| © Analysis Type|| 2 Collection Log

Sort~ - ¥
Problem Sources Modules State Severity
_ Datarace pic piee MNew . N 1 item(s)
Problem
Data race 1 item(s)
Source
pi.c 1 itemis)
Module
pi.exe 1 itemi(s)
State
1 Mew 1 item(s)
— Suppressed
Code Locations ; Mot suppressed 1 item(s)
9] Description & Source Function Module Investigated
=Xl Read pi.c:71l CalcPi pi.exe Mot investigated 1 itemis)
69 {
78 fX = fH * ({double)i + 08.5);
71 f5um += F({f¥);
72 }
73 return fH * fS5um;
X2 Write pi.c:?l CalcPi pi.exe
69 {
78 fX = fH * ({double)i + B8.5);
71 f5um += f(fX);
72 }
73 return fH * f5um;

Y ———— e B ————————
Dirk Schmio enter der RWTH Aachen University

Pl Example Code RWTH

double f(double x)

{
return (4.0 / (1.0 + x*x));
}
double CalcPi (int n)
{
const doublefH =1.0/(double) n; What if we jUSt
double fSum = 0.0;
double fX; made the

inti;

variable private?

#pragma omp parallel for private(fX,i,f'Sum)
for (I=0;i<n;i++)
{
fX =fH * ((double)i + 0.5);
fSum += f(fX);
}

return fH * fSum;

}

35 Introduction to OpenMP
Dirk Schmidl | IT Center der RWTH Aachen University

Inspector XE — Static Security Analysis

At runtime no Error is detected!

RWTH

Compiling with the argument “-diag-enable sc-full” delivers:

Problems
IO L= Type Sources O State Wigight - Category
PL 3 Misuse of PRIVATE pi.c Fe Mew 100 Threading

pi.c(73): error #12358: variable "fSum" used here was last assigned at (file:pi.c line:71) in a parallel region where it
was marked PRIVATE at (file:pi.c line:67). PRIVATE variables have indeterminate value after leaving a parallel region;
consider using LASTPRIVATE to copy out last value on exit

P2 @ Uninitialized PRIVATE pi.c Fe Mew 100 Initialization

ﬁpi.ci?l]: error #12361: PRIVATE variable "fSum” is uninitialized in region at (file:pi.c line:&7).

Description Source Function Variable

69 i CalePi - pi.c:71
78 fX = fH * ((double)i + 6.5);:
71 f5um += f(fX);
72 }
73 return fH * fSum;

OpenMP* declaration pi.c:67 CalcPi
65 int i; CalcPi - pi.c:67
66
67 #pragma omp parallel for private(f¥,i,fSum)
68 for (i=08; i =n; i++)
69 i

At compile-time this error can be found!

36 Introduction to OpenMP
Dirk Schmidl | IT Center der RWTH Aachen University

Filters

Severity
Error

Type

Misuse of PRIVATE
Uninitialized PRIVATE
Source

pi.c

State

Mew

Suppressed

Mot suppressed

Investigated
Mot investigated

Categery
Initialization

Threading

Sort~ o %

2 itemis)

1 itemis)
1 itemis)

2 itemis)

2 itemis)

2 itemis)

2 itemis)

1 itemis)
1 itemis)

‘R“m'l

Single and Master Construct

The Single Construct RWTH

C/C++ Fortran
fpragma omp single [clause] 'Somp single [clause]
. structured block structured block ...
'Somp end single

The single construct specifies that the enclosed structured block is
executed by only on thread of the team.

—> It is up to the runtime which thread that is.

Useful for;:
- 1/0

- Memory allocation and deallocation, etc. (in general: setup work)

- Implementation of the single-creator parallel-executor pattern as we will see

NOW...

38 Introduction to OpenMP
Dirk Schmidl | IT Center der RWTH Aachen University

The Master Construct RWTH

C/C++ Fortran
fpragma omp master[clause] !'Somp master[clause]
structured block Structured block ...
'Somp end master

The master construct specifies that the enclosed structured block is
executed only by the master thread of a team.

Note: The master construct is no worksharing construct and does
not contain an implicit barrier at the end.

39 Introduction to OpenMP
Dirk Schmidl | IT Center der RWTH Aachen University

‘R“m'l

Section and Ordered Construct

How to parallelize a Tree Traversal? RWTH

How would you parallelize this code?

void traverse (Tree *tree)
{
if (tree->left) traverse (tree->left) ;

if (tree->right) traverse (tree->right) ;

process (tree) ;

One option: Use OpenMP‘s parallel sections.

41 Introduction to OpenMP
Dirk Schmidl | IT Center der RWTH Aachen University

The Sections Construct RWTH

C/C++ Fortran
fpragma omp sections [clause] I'Somp sections [clause]
{ !'Somp section
fpragma omp section ... structured block ...
structured block ... 'S omp section
fpragma omp section ... structured block ...
structured block ...
. !'Somp end sections
}

The sections construct contains a set of structured blocks that are
to be distributed among and executed by the team of threads.

42 Introduction to OpenMP
Dirk Schmidl | IT Center der RWTH Aachen University

How to parallelize a Tree Traversal?! ‘ RWTH

How would you parallelize this code?

void traverse (Tree *tree)

{

#pragma omp parallel sections Nested Parallel Regions

{
#pragma omp section

if (tree->left) traverse (tree->left);
#pragma omp section

if (tree->right) traverse (tree->right) ;

} // end omp parallel

process (tree) ;

We will later see how this can be done with tasks in a
better way.

— Not always well supported (how many threads to be used?)
Introduction to OpenMP

43
- Dirk Schmidl | IT Center der RWTH Aachen University

The ordered Construct RWNTH

Allows to execute a structured block within a parallel loop in sequential
order

- In addition, an ordered clause has to be added to the for construct which any

ordered construct may occur

fpragma omp parallel for ordered
for (i=0 ; i<10 ; i++){

fpragma omp ordered

{
}

}
Use Cases:

— Can be used e.g. to enforce ordering on printing of data

- May help to determine whether there is a data race

44 Introduction to OpenMP
Dirk Schmidl | IT Center der RWTH Aachen University

RWTH

Runtime Library

45 Introduction to OpenMP
Dirk Schmidl | IT Center der RWTH Aachen University

Runtime Library RWTH

C and C++;
- If OpenMP is enabled during compilation, the preprocessor symbol OPENMP
Is defined. To use the OpenMP runtime library, the header omp . h has to

be included.

2 omp set num threads (int): The specified number of threads will be

used for the parallel region encountered next.

< int omp get num threads: Returns the number of threads in the

current team.

< int omp get thread num(): Returns the number of the calling thread

In the team, the Master has always the id O.

Additional functions are available, e.g. to provide locking
functionality.

46 Introduction to OpenMP
Dirk Schmidl | IT Center der RWTH Aachen University

RWTH

Tasking

47 Introduction to OpenMP
Dirk Schmidl | IT Center der RWTH Aachen University

Recursive approach to compute RWTH

Fibonacci
int main (int argc, int fib (int n) {
char* argv|]) if (n < 2) return n;
{ int x = fib(n - 1);
[...] int y = fib(n - 2);
fib(input) ; return x+y;

[...] }

On the following slides we will discuss three approaches to
parallelize this recursive code with Tasking.

48 Introduction to OpenMP
Dirk Schmidl | IT Center der RWTH Aachen University

The Task Construct

RWTH

C/C++

fpragma omp task [clause]
structured block ...

Fortran

'Somp task [clause]
structured block ...
'Somp end task

Each encountering thread/task creates a new Task

— Code and data is being packaged up

- Tasks can be nested

- Into another Task directive

-~ Into a Worksharing construct

Data scoping clauses:

-~ shared(list)

> private(list) firstprivate(list)

- default(shared | none)

49 Introduction to OpenMP
Dirk Schmidl | IT Center der RWTH Aachen University

Tasks in OpenMP: Data Scoping RWTH

Some rules from Parallel Regions apply:

— Static and Global variables are shared

— Automatic Storage (local) variables are private

If shared scoping is not derived by default:

- Orphaned Task variables are firstprivate by default!
- Non-Orphaned Task variables inherit the shared attribute!

- Variables are firstprivate unless shared in the enclosing context

o) Introduction to OpenMP
Dirk Schmidl | IT Center der RWTH Aachen University

First version parallelized with Tasking RWNTH

(omp-vl)

int main(int argc, int fib(int n) {
char* argv([]) if (n < 2) return n;

{ int x, y;

#pragma omp task shared (x)
{

[...]
#pragma omp parallel

{ x = fib(n - 1);

. }
#pragma omp single #pragma omp task shared(y)
¢ {
fib (input) ; y = fib(n - 2);
} }
} #pragma omp taskwait
(...] return x+y;
} }
o Only one Task / Thread enters £ib () from main (), it is responsable for
creating the two initial work tasks

o Taskwait is required, as otherwise x and y would be lost

51 Introduction to OpenMP
Dirk Schmidl | IT Center der RWTH Aachen University

Fibonacci lllustration

T1 enters fib(4)

T1 creates tasks for
fib(3) and fib(2) @

T1 and T2 execute tasks

from the queue
T1 and T2 create 4 new @
tasks

T1 - T4 execute tasks
T:—mk Queye

Introduction to OpenMP
Dirk Schmidl | IT Center der RWTH Aachen University

‘R“m'l

Fibonacci lllustration

T1 enters fib(4)
T1 creates tasks for
fib(3) and fib(2) @

T1 and T2 execute tasks

from the queue

T1 and T2 create 4 new @ @
tasks

T1 - T4 execute tasks

53 Introduction to OpenMP
Dirk Schmidl | IT Center der RWTH Aachen University

Scalability measurements (1/3)

Overhead of task creation prevents better scalability!

Speedup of Fibonacci with Tasks

f /

/

6
S5 /
o
()
2 4 // =e—optimal
w
omp-vl

—

#Threads

Introduction to OpenMP
Dirk Schmidl | IT Center der RWTH Aachen University

Improved parallelization with Tasking RWNTH
(omp-v2)

Improvement: Don‘t create yet another task once a certain (small
enough) n is reached

int main (int argc, int fib(int n) {
char* argv|[]) if (n < 2) return n;

{ int x, vy;

[...] #pragma omp task shared(x) \
#pragma omp parallel if(n > 30)
{ {
#pragma omp single x = fib(n - 1);
{ }

fib (input) ; #pragma omp task shared(y) \
} if(n > 30)

} {
[] y = fib(n - 2);
} }
#pragma omp taskwait

return x+vy;

}
55 Introduction to OpenMP
Dirk Schmidl | IT Center der RWTH Aachen University

Scalability measurements (2/3) RWTH

Speedup is ok, but we still have some overhead when running with 4
or 8 threads

Speedup of Fibonacci with Tasks

e
Yy

(0]

Ul

=o—optimal

D

Speedup

omp-vl

//
j / —A—-0mp-v2
/

#Threads

Introduction to OpenMP
Dirk Schmidl | IT Center der RWTH Aachen University

Improved parallelization with Tasking RWNTH

(omp-v3)

Improvement: Skip the OpenMP overhead once a certain n
Is reached (no issue w/ production compilers)

int main (int argc,

char* argv|[])

[...]
#pragma omp parallel

{
#pragma omp single
{
fib (input) ;
}
}

Introduction to OpenMP
Dirk Schmidl | IT Center der RWTH Aachen University

int fib(int n) {

if (n < 2) return n;

if (n <= 30)

return serfib(n);

int x, y;
#pragma omp task shared(x)
{

x = fib(n - 1);
}
#fipragma omp task shared(y)
{

y = fib(n - 2);
}
#pragma omp taskwait

return x+y;

Scalability measurements (3/3)

Everything ok now ©

Speedup of Fibonacci with Tasks

N\
N

=o—optimal

Speedup
5 ow»

omp-vl

——0omp-v2

=>=0mp-v3

1 /

#Threads

58 Introduction to OpenMP
Dirk Schmidl | IT Center der RWTH Aachen University

Data Scoping Example (1/7) RWTH

int a = 1;
void foo()
{
int b =2, ¢ = 3;
#pragma omp parallel shared (b)
#pragma omp parallel private (b)
{
int d = 4;
#pragma omp task
{

int e 5;

// Scope of
// Scope of
// Scope of
// Scope of

T A Q0 O o

// Scope of

Introduction to OpenMP
Dirk Schmidl | IT Center der RWTH Aachen University

Data Scoping Example (2/7) RWTH

int a = 1;
void foo()
{
int b =2, ¢ = 3;
#pragma omp parallel shared (b)
#pragma omp parallel private (b)
{
int d = 4;
#pragma omp task
{

int e 5;

// Scope of shared
// Scope of
// Scope of
// Scope of

T A Q0 O o

// Scope of

Introduction to OpenMP
Dirk Schmidl | IT Center der RWTH Aachen University

Data Scoping Example (3/7) RWTH

int a = 1;
void foo()
{
int b =2, ¢ = 3;
#pragma omp parallel shared (b)
#pragma omp parallel private (b)
{
int d = 4;
#pragma omp task
{

int e 5;

// Scope of shared
// Scope of firstprivate
// Scope of

// Scope of

T A Q0 O o

// Scope of

Introduction to OpenMP
Dirk Schmidl | IT Center der RWTH Aachen University

Data Scoping Example (4/7)

int a = 1;
void foo()
{
int b =2, ¢ = 3;
#pragma omp parallel shared (b)
#pragma omp parallel private (b)
{
int d = 4;
#pragma omp task
{

int e 5;

// Scope of shared

// Scope of firstprivate

a
b

// Scope of c: shared
// Scope of d
e

// Scope of

Introduction to OpenMP
Dirk Schmidl | IT Center der RWTH Aachen University

RWTH

Data Scoping Example (5/7)

int a = 1;

void foo ()

{

B

int b =2, ¢ =
#pragma
#pragma
{

int d = 4;

#pragma omp task

{

}

3;

omp parallel shared(b)

omp parallel private (b)

int e

//
//
//
//
//

Introduction to OpenMP

Dirk Schmidl | IT Center der RWTH Aachen University

Scope
Scope
Scope
Scope

Scope

5;

of
of
of
of
of

T A Q0 O o

shared
firstprivate
shared

firstprivate

RWTH

Data Scoping Example (6/7)

int a = 1;
void foo()
{
int b =2, ¢ = 3;
#pragma omp parallel shared (b)
#pragma omp parallel private (b)
{
int d = 4;
#pragma omp task
{

int e 5;

// Scope of a: shared
// Scope of b: firstprivate
// Scope of c: shared
// Scope of d: firstprivate
// Scope of e: private

Introduction to OpenMP
Dirk Schmidl | IT Center der RWTH Aachen University

RWTH

Hint: Use default(none) to be

forced to think about every
variable if you do not see clear.

Data Scoping Example (7/7)

int a = 1;

void foo ()

{

o

int b =2, ¢ =
#pragma
#pragma
{

int d = 4;

#pragma omp task

{

}

3;

omp parallel shared(b)

omp parallel private (b)

int e

//
//
//
//
//

Introduction to OpenMP

Dirk Schmidl | IT Center der RWTH Aachen University

Scope
Scope
Scope
Scope

Scope

5;

of
of
of
of
of

T A Q0 O o

shared,
firstprivate,
shared,

firstprivate,

: private,

value
value
value
value

value

of
of
of
of
of

RWTH

O A Q0 O o

1
0 / undefined
3
4
5

The Barrier and Taskwait Constructs RWNTH

OpenMP barrier (implicit or explicit)
—> All tasks created by any thread of the current Team are guaranteed to be

completed at barrier exit

C/C++

fpragma omp barrier

Task barrier: taskwait
- Encountering Task suspends until child tasks are complete

— Only direct childs, not descendants!

C/C++

fpragma omp taskwait

Introduction to OpenMP
Dirk Schmidl | IT Center der RWTH Aachen University

Task Synchronization RWTH

Task Synchronization explained:

#pragma omp parallel num threads (np)

{
#pragma omp task

np Tasks created here, one for each thread

function A() ;

All Tasks guaranteed to be completed here

#pragma omp single

{
#pragma omp task <« 1 Task created here

function B() ;

} €
) B-Task guaranteed to be completed here

67 Introduction to OpenMP
Dirk Schmidl | IT Center der RWTH Aachen University

‘R“m'l

More Environment Variables

OpenMP Environment Variables (1/2) RWTH

OMP_NUM THREADS: Controls how many threads will be used to
execute the program.

OMP_SCHEDULE: If the schedule-type runtime is specified in a
schedule clause, the value specified in this environment variable will
be used.

OMP_DYNAMIC: The OpenMP runtime is allowed to smartly guess

how many threads might deliver the best performance. If you want
full control, set this variable to false.

OMP_NESTED: Most OpenMP implementations require this to be set
to true in order to enabled nested Parallel Regions. Remember:
Nesting Worksharing constructs is not possible.

Introduction to OpenMP
Dirk Schmidl | IT Center der RWTH Aachen University

OpenMP Environment Variables (2/2) RWNTH

Define interaction with system environment:
- Env. Var. OMP_MAX_NESTED_LEVEL + API functions

—> Controls the maximum number of active parallel regions
- Env. Var. OMP_THREAD LIMIT + API functions
— Controls the maximum number of OpenMP threads
- Env. Var. OMP_STACKSIZE
—> Controls the stack size of child threads
> Env. Var. OMP_WAIT_POLICY
— Control the thread idle policy:
—active: Good for dedicated systems (e.g. in batch mode)

- passive: Good for shared systems

70 Introduction to OpenMP
Dirk Schmidl | IT Center der RWTH Aachen University

RWTH

Questions?

71 Introduction to OpenMP
Dirk Schmidl | IT Center der RWTH Aachen University

