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History

‘R\Nﬂ'l

De-facto standard for Shared-Memory Parallelization.

1997: OpenMP 1.0 for FORTRAN
1998: OpenMP 1.0 for C and C++

1999: OpenMP 1.1 for FORTRAN
(errata)

2000: OpenMP 2.0 for FORTRAN
2002: OpenMP 2.0 for C and C++

2005: OpenMP 2.5 now includes
both programming languages.

05/2008: OpenMP 3.0 release
07/2011: OpenMP 3.1 release

07/2013: OpenMP 4.0 release
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OpenMP

http://www.OpenMP.org

RWTH Aachen University is
a member of the OpenMP
Architecture Review Board
(ARB) since 2006.
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OpenMP Overview
&
Parallel Region



OpenMP‘s machine model

@ OpenMP: Shared-Memory Parallel Programming Model.

All processors/cores access
a shared main memory.

Real architectures are
more complex, as we
will see later / as we
have seen.

Parallelization in OpenMP
employs multiple threads.
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OpenMP Execution Model RWTH

OpenMP programs start with

. Serial Part
just one thread: The Master. Master Thread erlatrar
Parallel
Worker threadg are spawned Ffergioen
at Parallel Regions, together Worker 11
with the Master they form the Threads =u
Team of threads. g
E E ESeriaI Part
In between Parallel Regions the
Worker threads are put to sleep. \A L
The OpenMP Runtime takes care
of all thread management work. = Parallel
= Region
v

Concept: Fork-Join.
Allows for an incremental parallelization!
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Parallel Region and Structured RWNTH
Blocks

The parallelism has to be expressed explicitly.
C/C++ Fortran

fpragma omp parallel 'Somp parallel
{

.. structured block
structured block

$!lomp end parallel

}
Structured Block Specification of number of threads:

- Exactly one entry point at the top » Environment variable:
- Exactly one exit point at the bottom OMP NUM THREADS=..
— Branching in or out is not allowed » Or:Vianum threads clause:

— Terminating the program is allowed add num threads (num) to the

(abort / exit) parallel construct
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Demo Rm

Hello OpenMP World
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Demo ‘ Rm

Hello orphaned OpenMP World
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Starting OpenMP Programs on Linux RWTH

From within a shell, global setting of the number of threads:
export OMP NUM THREADS=4

./program

From within a shell, one-time setting of the number of threads:
OMP NUM THREADS=4 ./program
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For Worksharing Construct



For Worksharing

RWTH

If only the parallel construct is used, each thread executes the

Structured Block.

Program Speedup: Worksharing

OpenMP‘s most common Worksharing construct: for

C/C++

int 1i;

fpragma omp for

for (i = 0; 1 < 100; i++)

ali] = bli] + c[1i];

Fortran
INTEGER :: 1
!'Somp do
DO 1 = 0, 99
ali] = b[i1] + cl[1];
END DO

—> Distribution of loop iterations over all threads in a Team.

— Scheduling of the distribution can be influenced.

Loops often account for most of a program‘s runtime!
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Worksharing illustrated

Pseudo-Code
Here: 4 Threads

Thread 1
Thread 2
Serial
doi=0, 99
a(i) = b(i) + c(i) =l
end do
Thread 3
Thread 4

doi=0,24
a(i) = b(i) + c(i)
end do

doi= 25, 49
a(i) = b(i) + c(i)
end do

doi =50, 74
a(i) = b(i) + c(i)
end do

doi=75,99
a(i) = b(i) + c(i)
end do
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Demo ‘ Rm

Summing up Vector Elements
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Synchronization Overview RWTH

Can all loops be parallelized with £or-constructs? No!

- Simple test: If the results differ when the code is executed backwards, the

loop iterations are not independent. BUT: This test alone is not sufficient:

C/C++
int 1i;
#fpragma omp parallel for
for (i = 0; 1 < 100, i++)
{

s = s + al[il;
}

Data Race: If between two synchronization points at least one thread
writes to a memory location from which at least one other thread
reads, the result is not deterministic (race condition).
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Synchronization: Critical Region RWTH

A Critical Region is executed by all threads, but by only one thread
simultaneously (Mutual Exclusion).

C/C++

fpragma omp critical (name)
{
structured block ...

}

Do you think this solution scales well?
C/C++

int 1i;

fpragma omp parallel for
for (1 = 0; 1 < 100; i++)
{

#fpragma omp critical
{ s = s + afli]l; }

}
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RWTH

Data Scoping

16 Introduction to OpenMP
Dirk Schmidl | IT Center der RWTH Aachen University



Scoping Rules RWTH

Managing the Data Environment is the challenge of OpenMP.

Scoping in OpenMP: Dividing variables in shared and private:

—> private-list and shared-list on Parallel Region

—> private-list and shared-list on Worksharing constructs

- General default is shared for Parallel Region, firstprivate for Tasks.

—> Loop control variables on for-constructs are private

— Non-static variables local to Parallel Regions are private

—> private: A new uninitialized instance is created for each thread
—>firstprivate: Initialization with Master's value
—> lastprivate: Value of last loop iteration is written back to Master

—> Static variables are shared
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Privatization of Global/Static Variables ‘ RWNTH

Global / static variables can be privatized with the threadprivate

directive \“3\.

- One instance is created for each thread 6Q‘

—> Before the first parallel region is encounter%(ea

—> Instance exists until the program endso,‘

- Does not work (well) with ne%eﬁ)éarallé@%mn

\
- Based on thread-local stor@g%LS)Qﬁ(
- TIsAlloc (WlnBZQAreadQ@‘}read key create (Posix-Threads), keyword

__th 8@‘8N U@&nsmn)

C/C++ \\\\ Fortran
s%&@ int i; SAVE INTEGER :: 1

_hreadprivate (1) !'Somp threadprivate (i)
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The Barrier Construct
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The Barrier Construct RWTH

OpenMP barrier (implicit or explicit)
— Threads wait until all threads of the current Team have reached the barrier
C/C++

fpragma omp barrier

All worksharing constructs contain an implicit barrier at the end
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Introduction to OpenMP
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Back to our bad
scaling example

C/C++
int 1i;
#fpragma omp parallel for

for (i = 0; 1 < 100; i++)
{

#pragma omp critical
{ s =s + alil; }

}

Dirk Schmidl | IT Center der RWTH Aachen University



It‘s your turn: Make It Scale! RWTH

#pragma omp parallel

doi=0, 24
{ s=s+ali)
end do
#pragma omp for
for (i = 0; 1 < 99; i++) doi =25, 49
{ s=s+ali)
doi=0,99 end do
s=s+a(i) | =P _
s = s + al[i]l; end do doi =50, 74
s=s+a(i)
end do
}
doi=75,99
s=s+a(i)
} // end parallel end do
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The Reduction Clause RWNTH

In areduction-operation the operator is applied to all variables in the
list. The variables have to be shared.

- reduction (operator:list)

— The result is provided in the associated reduction variable

C/C++
fpragma omp parallel for reduction(+:s)
for(i = 0; 1 < 99; i++)
{
s = s + alil;

}

— Possible reduction operators with initialization value:
+ (0) ;0 1) r = 0) ’
& (~0), | (0), && (1), || (0),

» (0), min (least number), max (largest number)
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Example RWTH

o
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Example: Pi (1/2)

double f(double x)

{
return (4.0 / (1.0 + x*x));

}

double CalcPi (int n)
{
const doublefH =1.0/(double) n;
double fSum = 0.0;
double fX;
inti;

#pragma omp parallel for
for 1=0;i<n;i++)
{
fX =fH * ((double)i + 0.5);
fSum += f(fX);
}

return fH * fSum;

}

25 Introduction to OpenMP
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Example: Pi (1/2)

double f(double x)

{
return (4.0 / (1.0 + x*x));

}

double CalcPi (int n)
{
const doublefH =1.0/(double) n;
double fSum = 0.0;
double fX;
inti;

#pragma omp parallel for private(fX,i) reduction(+:fSum)
for 1=0;i<n;i++)
{
fX =fH * ((double)i + 0.5);
fSum += f(fX);
}

return fH * fSum;

}
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Example: Pi (2/2) RWTH

Results:
# Threads Runtime [sec.] Speedup
1 1.11 1.00
2
4
8 0.14 7.93

Scalability is pretty good:

— About 100% of the runtime has been parallelized.

— As there is just one parallel region, there is virtually no overhead introduced

by the parallelization.

— Problem is parallelizable in a trivial fashion ...
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Race Condition RWTH

Data Race: the typical OpenMP programming error, when:

—> two or more threads access the same memory location, and
—> at least one of these accesses is a write, and
—> the accesses are not protected by locks or critical regions, and

—> the accesses are not synchronized, e.g. by a batrrier.

Non-deterministic occurrence: e.g. the sequence of the execution of
parallel loop iterations is non-deterministic and may change from
run to run

In many cases private clauses, barriers or critical regions are
missing
Data races are hard to find using a traditional debugger

— Use the Intel Inspector XE
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Intel Inspector XE RWTH

Detection of

- Memory Errors
- Dead Locks

- Data Races

Support for
—> Linux (32bit and 64bit) and Windows (32bit and 64bit)

- WIN32-Threads, Posix-Threads, Intel Threading Building Blocks and OpenMP
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Pl Example Code

double f(double x)

{
return (4.0 / (1.0 + x*x));

}

double CalcPi (int n)
{
const doublefH =1.0/(double) n;
double fSum = 0.0;
double fX;
inti;

#pragma omp parallel for private(fX,i) reduction(+:fSum)
for 1=0;i<n;i++)
{
fX =fH * ((double)i + 0.5);
fSum += f(fX);
}

return fH * fSum;

}
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Pl Example Code RWTH

double f(double x)

{
return (4.0 / (1.0 + x*x));
}
double CalcPi (int n)
{
const doublefH =1.0/(double) n; What if we
double fSum = 0.0;
double fX; would have

inti;

forgotten this?

#pragma omp parallel for private(fX,i) reduetion{+fSum)
for (I=0;i<n;i++)
{
fX =fH * ((double)i + 0.5);
fSum += f(fX);
}

return fH * fSum;

}
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Inspector XE — Configure Analysis RWTH

Threading Error Analysis Modes

1. Detect Deadlocks

2. Detect Deadlocks and Data Races
3. Locate Deadlocks and Data Races

more details,
more overhead

r"_ﬂ Configure Analysis Type Intel Inspector XE 2f

gﬁ.' Analysis Type
C| O start

B

| Memory Error Analysis Locate Deadlocks and Data Races

A Detect Leaks Widest scope threading error analysis type. Maximizes the load on the systerm.

A Detect Memory Proble Maximizes the time required to perform the analysis. Maximizes the chances the

analysis will fail because the system may run out of resources. Press F1 for more
A Locate Memory Proble  gatails.

~ |¥ Threading Error Analysis
A Detect Deadlocks [] Terminate on deadlock —

sfack frame depth: [16 et l

SCope: [Nnrmal . l
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Inspector XE — Results ‘ RWNTH

1 detected problems

The missing reduction

2 filters « detocted
. IS aetectea.
3 code location
roo1ti3 [ -
|'ﬁ| Locate Deadlocks and Data Races Intel Inspector XE 2011

% Target|| © Analysis Type|| 2 Collection Log

Sort~ - ¥
Problem Sources Modules State Severity
_ Datarace pic  piee  MNew . N 1 item(s)
Problem
Data race 1 item(s)
Source
pi.c 1 itemis)
Module
pi.exe 1 itemi(s)
State
1 Mew 1 item(s)
— Suppressed
Code Locations ; Mot suppressed 1 item(s)
9] Description &  Source Function Module Investigated
=Xl Read pi.c:71l CalcPi pi.exe Mot investigated 1 itemis)
69 {
78 fX = fH * ({double)i + 08.5);
71 f5um += F({f¥);
72 }
73 return fH * fS5um;
X2 Write pi.c:?l CalcPi pi.exe
69 {
78 fX = fH * ({double)i + B8.5);
71 f5um += f(fX);
72 }
73 return fH * f5um;

Y ———— e B ————————
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Pl Example Code RWTH

double f(double x)

{
return (4.0 / (1.0 + x*x));
}
double CalcPi (int n)
{
const doublefH =1.0/(double) n; What if we jUSt
double fSum = 0.0;
double fX; made the

inti;

variable private?

#pragma omp parallel for private(fX,i,f'Sum)
for (I=0;i<n;i++)
{
fX =fH * ((double)i + 0.5);
fSum += f(fX);
}

return fH * fSum;

}
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Inspector XE — Static Security Analysis

At runtime no Error is detected!

RWTH

Compiling with the argument “-diag-enable sc-full” delivers:

Problems
IO L= Type Sources O State Wigight - Category
PL 3 Misuse of PRIVATE pi.c Fe Mew 100 Threading

pi.c(73): error #12358: variable "fSum" used here was last assigned at (file:pi.c line:71) in a parallel region where it
was marked PRIVATE at (file:pi.c line:67). PRIVATE variables have indeterminate value after leaving a parallel region;
consider using LASTPRIVATE to copy out last value on exit

P2 @ Uninitialized PRIVATE pi.c Fe Mew 100 Initialization

ﬁpi.ci?l]: error #12361: PRIVATE variable "fSum” is uninitialized in region at (file:pi.c line:&7).

Description Source Function Variable

69 i CalePi - pi.c:71
78 fX = fH * ((double)i + 6.5);:
71 f5um += f(fX);
72 }
73 return fH * fSum;

OpenMP* declaration pi.c:67 CalcPi
65 int i; CalcPi - pi.c:67
66
67 #pragma omp parallel for private(f¥,i,fSum)
68 for (i=08; i =n; i++)
69 i

At compile-time this error can be found!
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Filters

Severity
Error

Type

Misuse of PRIVATE
Uninitialized PRIVATE
Source

pi.c

State

Mew

Suppressed

Mot suppressed

Investigated
Mot investigated

Categery
Initialization

Threading

Sort~ o %

2 itemis)

1 itemis)
1 itemis)

2 itemis)

2 itemis)

2 itemis)

2 itemis)

1 itemis)
1 itemis)
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The Single Construct RWTH

C/C++ Fortran
fpragma omp single [clause] 'Somp single [clause]
. structured block ... ... structured block ...
'Somp end single

The single construct specifies that the enclosed structured block is
executed by only on thread of the team.

—> It is up to the runtime which thread that is.

Useful for;:
- 1/0

- Memory allocation and deallocation, etc. (in general: setup work)

- Implementation of the single-creator parallel-executor pattern as we will see

NOW...

38 Introduction to OpenMP
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The Master Construct RWTH

C/C++ Fortran
fpragma omp master[clause] !'Somp master[clause]
structured block ... ... Structured block ...
'Somp end master

The master construct specifies that the enclosed structured block is
executed only by the master thread of a team.

Note: The master construct is no worksharing construct and does
not contain an implicit barrier at the end.

39 Introduction to OpenMP
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How to parallelize a Tree Traversal? RWTH

How would you parallelize this code?

void traverse (Tree *tree)
{
if (tree->left) traverse (tree->left) ;

if (tree->right) traverse (tree->right) ;

process (tree) ;

One option: Use OpenMP‘s parallel sections.
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The Sections Construct RWTH

C/C++ Fortran
fpragma omp sections [clause] I'Somp sections [clause]
{ !'Somp section
fpragma omp section ... structured block ...
structured block ... 'S omp section
fpragma omp section ... structured block ...
structured block ...
. !'Somp end sections
}

The sections construct contains a set of structured blocks that are
to be distributed among and executed by the team of threads.
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How to parallelize a Tree Traversal?! ‘ RWTH

How would you parallelize this code?

void traverse (Tree *tree)

{

#pragma omp parallel sections Nested Parallel Regions

{
#pragma omp section

if (tree->left) traverse (tree->left);
#pragma omp section

if (tree->right) traverse (tree->right) ;

} // end omp parallel

process (tree) ;

We will later see how this can be done with tasks in a
better way.

— Not always well supported (how many threads to be used?)
Introduction to OpenMP
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The ordered Construct RWNTH

Allows to execute a structured block within a parallel loop in sequential
order

- In addition, an ordered clause has to be added to the for construct which any

ordered construct may occur

fpragma omp parallel for ordered
for (i=0 ; i<10 ; i++){

fpragma omp ordered

{
}

}
Use Cases:

— Can be used e.g. to enforce ordering on printing of data

- May help to determine whether there is a data race

44 Introduction to OpenMP
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RWTH

Runtime Library
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Runtime Library RWTH

C and C++;
- If OpenMP is enabled during compilation, the preprocessor symbol OPENMP
Is defined. To use the OpenMP runtime library, the header omp . h has to

be included.

2 omp set num threads (int): The specified number of threads will be

used for the parallel region encountered next.

< int omp get num threads: Returns the number of threads in the

current team.

< int omp get thread num(): Returns the number of the calling thread

In the team, the Master has always the id O.

Additional functions are available, e.g. to provide locking
functionality.
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RWTH

Tasking
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Recursive approach to compute RWTH

Fibonacci
int main (int argc, int fib (int n) {
char* argv|]) if (n < 2) return n;
{ int x = fib(n - 1);
[...] int y = fib(n - 2);
fib(input) ; return x+y;

[...] }

On the following slides we will discuss three approaches to
parallelize this recursive code with Tasking.
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The Task Construct

RWTH

C/C++

fpragma omp task [clause]
structured block ...

Fortran

'Somp task [clause]
structured block ...
'Somp end task

Each encountering thread/task creates a new Task

— Code and data is being packaged up

- Tasks can be nested

- Into another Task directive

-~ Into a Worksharing construct

Data scoping clauses:

-~ shared(list)

> private(list) firstprivate(list)

- default(shared | none)
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Tasks in OpenMP: Data Scoping RWTH

Some rules from Parallel Regions apply:

— Static and Global variables are shared

— Automatic Storage (local) variables are private

If shared scoping is not derived by default:

- Orphaned Task variables are firstprivate by default!
- Non-Orphaned Task variables inherit the shared attribute!

- Variables are firstprivate unless shared in the enclosing context

o) Introduction to OpenMP
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First version parallelized with Tasking RWNTH

(omp-vl)

int main(int argc, int fib(int n) {
char* argv([]) if (n < 2) return n;

{ int x, y;

#pragma omp task shared (x)
{

[...]
#pragma omp parallel

{ x = fib(n - 1);

. }
#pragma omp single #pragma omp task shared(y)
¢ {
fib (input) ; y = fib(n - 2);
} }
} #pragma omp taskwait
(... ] return x+y;
} }
o Only one Task / Thread enters £ib () from main (), it is responsable for
creating the two initial work tasks

o Taskwait is required, as otherwise x and y would be lost

51 Introduction to OpenMP
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Fibonacci lllustration

T1 enters fib(4)

T1 creates tasks for
fib(3) and fib(2) @

T1 and T2 execute tasks

from the queue
T1 and T2 create 4 new @
tasks

T1 - T4 execute tasks
T:—mk Queye
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Fibonacci lllustration

T1 enters fib(4)
T1 creates tasks for
fib(3) and fib(2) @

T1 and T2 execute tasks

from the queue

T1 and T2 create 4 new @ @
tasks

T1 - T4 execute tasks
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Scalability measurements (1/3)

Overhead of task creation prevents better scalability!

Speedup of Fibonacci with Tasks

f /

/

6
S5 /
o
()
2 4 // =e—optimal
w
omp-vl

—

#Threads
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Improved parallelization with Tasking RWNTH
(omp-v2)

Improvement: Don‘t create yet another task once a certain (small
enough) n is reached

int main (int argc, int fib(int n) {
char* argv|[]) if (n < 2) return n;

{ int x, vy;

[...] #pragma omp task shared(x) \
#pragma omp parallel if(n > 30)
{ {
#pragma omp single x = fib(n - 1);
{ }

fib (input) ; #pragma omp task shared(y) \
} if(n > 30)

} {
[ ] y = fib(n - 2);
} }
#pragma omp taskwait

return x+vy;

}
55 Introduction to OpenMP
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Scalability measurements (2/3) RWTH

Speedup is ok, but we still have some overhead when running with 4
or 8 threads

Speedup of Fibonacci with Tasks

e
Yy

(0]

Ul

=o—optimal

D

Speedup

omp-vl

//
j / —A—-0mp-v2
/

#Threads
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Improved parallelization with Tasking RWNTH

(omp-v3)

Improvement: Skip the OpenMP overhead once a certain n
Is reached (no issue w/ production compilers)

int main (int argc,

char* argv|[])

[...]
#pragma omp parallel

{
#pragma omp single
{
fib (input) ;
}
}

Introduction to OpenMP
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int fib(int n) {

if (n < 2) return n;

if (n <= 30)

return serfib(n);

int x, y;
#pragma omp task shared(x)
{

x = fib(n - 1);
}
#fipragma omp task shared(y)
{

y = fib(n - 2);
}
#pragma omp taskwait

return x+y;



Scalability measurements (3/3)

Everything ok now ©

Speedup of Fibonacci with Tasks

N\
N

=o—optimal

Speedup
5 ow»

omp-vl

——0omp-v2

=>=0mp-v3

1 /

#Threads
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Data Scoping Example (1/7) RWTH

int a = 1;
void foo()
{
int b =2, ¢ = 3;
#pragma omp parallel shared (b)
#pragma omp parallel private (b)
{
int d = 4;
#pragma omp task
{

int e 5;

// Scope of
// Scope of
// Scope of
// Scope of

T A Q0 O o

// Scope of
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Data Scoping Example (2/7) RWTH

int a = 1;
void foo()
{
int b =2, ¢ = 3;
#pragma omp parallel shared (b)
#pragma omp parallel private (b)
{
int d = 4;
#pragma omp task
{

int e 5;

// Scope of shared
// Scope of
// Scope of
// Scope of

T A Q0 O o

// Scope of
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Data Scoping Example (3/7) RWTH

int a = 1;
void foo()
{
int b =2, ¢ = 3;
#pragma omp parallel shared (b)
#pragma omp parallel private (b)
{
int d = 4;
#pragma omp task
{

int e 5;

// Scope of shared
// Scope of firstprivate
// Scope of

// Scope of

T A Q0 O o

// Scope of
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Data Scoping Example (4/7)

int a = 1;
void foo()
{
int b =2, ¢ = 3;
#pragma omp parallel shared (b)
#pragma omp parallel private (b)
{
int d = 4;
#pragma omp task
{

int e 5;

// Scope of shared

// Scope of firstprivate

a
b

// Scope of c: shared
// Scope of d
e

// Scope of
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Data Scoping Example (5/7)

int a = 1;

void foo ()

{

B

int b =2, ¢ =
#pragma
#pragma
{

int d = 4;

#pragma omp task

{

}

3;

omp parallel shared(b)

omp parallel private (b)

int e

//
//
//
//
//
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of
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shared
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Data Scoping Example (6/7)

int a = 1;
void foo()
{
int b =2, ¢ = 3;
#pragma omp parallel shared (b)
#pragma omp parallel private (b)
{
int d = 4;
#pragma omp task
{

int e 5;

// Scope of a: shared
// Scope of b: firstprivate
// Scope of c: shared
// Scope of d: firstprivate
// Scope of e: private

Introduction to OpenMP
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Hint: Use default(none) to be

forced to think about every
variable if you do not see clear.




Data Scoping Example (7/7)

int a = 1;

void foo ()

{

o

int b =2, ¢ =
#pragma
#pragma
{

int d = 4;

#pragma omp task

{

}

3;

omp parallel shared(b)

omp parallel private (b)

int e

//
//
//
//
//
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Scope
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Scope
Scope

Scope

5;

of
of
of
of
of

T A Q0 O o

shared,
firstprivate,
shared,

firstprivate,

: private,

value
value
value
value

value

of
of
of
of
of
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1
0 / undefined
3
4
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The Barrier and Taskwait Constructs RWNTH

OpenMP barrier (implicit or explicit)
—> All tasks created by any thread of the current Team are guaranteed to be

completed at barrier exit

C/C++

fpragma omp barrier

Task barrier: taskwait
- Encountering Task suspends until child tasks are complete

— Only direct childs, not descendants!

C/C++

fpragma omp taskwait
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Task Synchronization RWTH

Task Synchronization explained:

#pragma omp parallel num threads (np)

{
#pragma omp task

np Tasks created here, one for each thread

function A() ;

All Tasks guaranteed to be completed here

#pragma omp single

{
#pragma omp task <« 1 Task created here

function B() ;

} €
) B-Task guaranteed to be completed here
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OpenMP Environment Variables (1/2) RWTH

OMP_NUM THREADS: Controls how many threads will be used to
execute the program.

OMP_SCHEDULE: If the schedule-type runtime is specified in a
schedule clause, the value specified in this environment variable will
be used.

OMP_DYNAMIC: The OpenMP runtime is allowed to smartly guess

how many threads might deliver the best performance. If you want
full control, set this variable to false.

OMP_NESTED: Most OpenMP implementations require this to be set
to true in order to enabled nested Parallel Regions. Remember:
Nesting Worksharing constructs is not possible.
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OpenMP Environment Variables (2/2) RWNTH

Define interaction with system environment:
- Env. Var. OMP_MAX_NESTED_LEVEL + API functions

—> Controls the maximum number of active parallel regions
- Env. Var. OMP_THREAD LIMIT + API functions
— Controls the maximum number of OpenMP threads
- Env. Var. OMP_STACKSIZE
—> Controls the stack size of child threads
> Env. Var. OMP_WAIT_POLICY
— Control the thread idle policy:
—active: Good for dedicated systems (e.g. in batch mode)

- passive: Good for shared systems
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RWTH

Questions?
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