
IT Center der RWTH Aachen University

Introduction to OpenMP

Dirk Schmidl

IT Center, RWTH Aachen University

Member of the HPC Group

schmidl@itc.rwth-aachen.de

Introduction to OpenMP

Dirk Schmidl | IT Center der RWTH Aachen University
2

History

 De-facto standard for Shared-Memory Parallelization.

 1997: OpenMP 1.0 for FORTRAN

 1998: OpenMP 1.0 for C and C++

 1999: OpenMP 1.1 for FORTRAN

(errata)

 2000: OpenMP 2.0 for FORTRAN

 2002: OpenMP 2.0 for C and C++

 2005: OpenMP 2.5 now includes

both programming languages.

 05/2008: OpenMP 3.0 release

 07/2011: OpenMP 3.1 release

 07/2013: OpenMP 4.0 release

http://www.OpenMP.org

RWTH Aachen University is
a member of the OpenMP
Architecture Review Board
(ARB) since 2006.

Introduction to OpenMP

Dirk Schmidl | IT Center der RWTH Aachen University
3

OpenMP Overview

&

Parallel Region

Introduction to OpenMP

Dirk Schmidl | IT Center der RWTH Aachen University
4

 OpenMP: Shared-Memory Parallel Programming Model.

All processors/cores access

a shared main memory.

Real architectures are

more complex, as we

will see later / as we

have seen.

Parallelization in OpenMP

employs multiple threads.

OpenMP‘s machine model

Memory

Cache Cache Cache Cache

Proc Proc Proc Proc

Crossbar / Bus

Introduction to OpenMP

Dirk Schmidl | IT Center der RWTH Aachen University
5

 OpenMP programs start with

just one thread: The Master.

 Worker threads are spawned

at Parallel Regions, together

with the Master they form the

Team of threads.

 In between Parallel Regions the

Worker threads are put to sleep.

The OpenMP Runtime takes care

of all thread management work.

 Concept: Fork-Join.

 Allows for an incremental parallelization!

OpenMP Execution Model

Master Thread Serial Part

Parallel
RegionSlave

ThreadsSlave
ThreadsWorker
Threads

Parallel
Region

Serial Part

Introduction to OpenMP

Dirk Schmidl | IT Center der RWTH Aachen University
6

 The parallelism has to be expressed explicitly.

 Structured Block

 Exactly one entry point at the top

 Exactly one exit point at the bottom

 Branching in or out is not allowed

 Terminating the program is allowed

(abort / exit)

Parallel Region and Structured
Blocks

C/C++

#pragma omp parallel

{

...

structured block

...

}

 Specification of number of threads:

 Environment variable:

OMP_NUM_THREADS=…

 Or: Via num_threads clause:

add num_threads(num) to the

parallel construct

Fortran

!$omp parallel

...

structured block

...

$!omp end parallel

Introduction to OpenMP

Dirk Schmidl | IT Center der RWTH Aachen University
7

Hello OpenMP World

Demo

Introduction to OpenMP

Dirk Schmidl | IT Center der RWTH Aachen University
8

Hello orphaned OpenMP World

Demo

Introduction to OpenMP

Dirk Schmidl | IT Center der RWTH Aachen University
9

 From within a shell, global setting of the number of threads:

export OMP_NUM_THREADS=4

./program

 From within a shell, one-time setting of the number of threads:

OMP_NUM_THREADS=4 ./program

Starting OpenMP Programs on Linux

Introduction to OpenMP

Dirk Schmidl | IT Center der RWTH Aachen University
10

For Worksharing Construct

Introduction to OpenMP

Dirk Schmidl | IT Center der RWTH Aachen University
11

 If only the parallel construct is used, each thread executes the

Structured Block.

 Program Speedup: Worksharing

 OpenMP‘s most common Worksharing construct: for

 Distribution of loop iterations over all threads in a Team.

 Scheduling of the distribution can be influenced.

 Loops often account for most of a program‘s runtime!

For Worksharing

C/C++

int i;

#pragma omp for

for (i = 0; i < 100; i++)

{

a[i] = b[i] + c[i];

}

Fortran

INTEGER :: i

!$omp do

DO i = 0, 99

a[i] = b[i] + c[i];

END DO

Introduction to OpenMP

Dirk Schmidl | IT Center der RWTH Aachen University
12

Worksharing illustrated

do i = 0, 99

a(i) = b(i) + c(i)

end do

do i = 0, 24

a(i) = b(i) + c(i)

end do

do i = 25, 49

a(i) = b(i) + c(i)

end do

do i = 50, 74

a(i) = b(i) + c(i)

end do

do i = 75, 99

a(i) = b(i) + c(i)

end do

MemoryPseudo-Code
Here: 4 Threads

Thread 1

Thread 2

Thread 3

Thread 4

Serial

A(0)
.
.
.

A(99)

B(0)
.
.
.

B(99)

C(0)
.
.
.

C(99)

Introduction to OpenMP

Dirk Schmidl | IT Center der RWTH Aachen University
13

Summing up Vector Elements

Demo

Introduction to OpenMP

Dirk Schmidl | IT Center der RWTH Aachen University
14

 Can all loops be parallelized with for-constructs? No!

 Simple test: If the results differ when the code is executed backwards, the

loop iterations are not independent. BUT: This test alone is not sufficient:

 Data Race: If between two synchronization points at least one thread

writes to a memory location from which at least one other thread

reads, the result is not deterministic (race condition).

Synchronization Overview

C/C++

int i;

#pragma omp parallel for

for (i = 0; i < 100; i++)

{

s = s + a[i];

}

Introduction to OpenMP

Dirk Schmidl | IT Center der RWTH Aachen University
15

 A Critical Region is executed by all threads, but by only one thread

simultaneously (Mutual Exclusion).

 Do you think this solution scales well?

Synchronization: Critical Region

C/C++

#pragma omp critical (name)

{

... structured block ...

}

C/C++

int i;

#pragma omp parallel for

for (i = 0; i < 100; i++)

{

#pragma omp critical

{ s = s + a[i]; }

}

Introduction to OpenMP

Dirk Schmidl | IT Center der RWTH Aachen University
16

Data Scoping

Introduction to OpenMP

Dirk Schmidl | IT Center der RWTH Aachen University
17

 Managing the Data Environment is the challenge of OpenMP.

 Scoping in OpenMP: Dividing variables in shared and private:

 private-list and shared-list on Parallel Region

 private-list and shared-list on Worksharing constructs

 General default is shared for Parallel Region, firstprivate for Tasks.

 Loop control variables on for-constructs are private

 Non-static variables local to Parallel Regions are private

 private: A new uninitialized instance is created for each thread

firstprivate: Initialization with Master‘s value

lastprivate: Value of last loop iteration is written back to Master

 Static variables are shared

Scoping Rules

Introduction to OpenMP

Dirk Schmidl | IT Center der RWTH Aachen University
18

 Global / static variables can be privatized with the threadprivate

directive

 One instance is created for each thread

Before the first parallel region is encountered

Instance exists until the program ends

Does not work (well) with nested Parallel Region

 Based on thread-local storage (TLS)

TlsAlloc (Win32-Threads), pthread_key_create (Posix-Threads), keyword

__thread (GNU extension)

Privatization of Global/Static Variables

C/C++

static int i;

#pragma omp threadprivate(i)

Fortran

SAVE INTEGER :: i

!$omp threadprivate(i)

Introduction to OpenMP

Dirk Schmidl | IT Center der RWTH Aachen University
19

The Barrier Construct

Introduction to OpenMP

Dirk Schmidl | IT Center der RWTH Aachen University
20

 OpenMP barrier (implicit or explicit)

 Threads wait until all threads of the current Team have reached the barrier

 All worksharing constructs contain an implicit barrier at the end

The Barrier Construct

C/C++

#pragma omp barrier

Introduction to OpenMP

Dirk Schmidl | IT Center der RWTH Aachen University
21

Back to our bad

scaling example
C/C++

int i;

#pragma omp parallel for

for (i = 0; i < 100; i++)

{

#pragma omp critical

{ s = s + a[i]; }

}

Introduction to OpenMP

Dirk Schmidl | IT Center der RWTH Aachen University
22

#pragma omp parallel

{

#pragma omp for

for (i = 0; i < 99; i++)

{

s = s + a[i];

}

} // end parallel

It‘s your turn: Make It Scale!

do i = 0, 99

s = s + a(i)

end do

do i = 0, 24
s = s + a(i)

end do

do i = 25, 49
s = s + a(i)

end do

do i = 50, 74
s = s + a(i)

end do

do i = 75, 99
s = s + a(i)

end do

Introduction to OpenMP

Dirk Schmidl | IT Center der RWTH Aachen University
23

 In a reduction-operation the operator is applied to all variables in the
list. The variables have to be shared.

reduction(operator:list)

 The result is provided in the associated reduction variable

 Possible reduction operators with initialization value:

+ (0), * (1), - (0),

& (~0), | (0), && (1), || (0),

^ (0), min (least number), max (largest number)

The Reduction Clause

C/C++

#pragma omp parallel for reduction(+:s)

for(i = 0; i < 99; i++)

{

s = s + a[i];

}

Introduction to OpenMP

Dirk Schmidl | IT Center der RWTH Aachen University
24

PI

Example

Introduction to OpenMP

Dirk Schmidl | IT Center der RWTH Aachen University
25

Example: Pi (1/2)

double f(double x)

{

return (4.0 / (1.0 + x*x));

}

double CalcPi (int n)

{

const double fH = 1.0 / (double) n;

double fSum = 0.0;

double fX;

int i;

#pragma omp parallel for

for (i = 0; i < n; i++)

{

fX = fH * ((double)i + 0.5);

fSum += f(fX);

}

return fH * fSum;

}

𝜋 =

0

1
4

1 + 𝑥2

Introduction to OpenMP

Dirk Schmidl | IT Center der RWTH Aachen University
26

Example: Pi (1/2)

double f(double x)

{

return (4.0 / (1.0 + x*x));

}

double CalcPi (int n)

{

const double fH = 1.0 / (double) n;

double fSum = 0.0;

double fX;

int i;

#pragma omp parallel for private(fX,i) reduction(+:fSum)

for (i = 0; i < n; i++)

{

fX = fH * ((double)i + 0.5);

fSum += f(fX);

}

return fH * fSum;

}

𝜋 =

0

1
4

1 + 𝑥2

Introduction to OpenMP

Dirk Schmidl | IT Center der RWTH Aachen University
27

Example: Pi (2/2)

Threads Runtime [sec.] Speedup

1 1.11 1.00

2

4

8 0.14 7.93

 Results:

 Scalability is pretty good:

 About 100% of the runtime has been parallelized.

 As there is just one parallel region, there is virtually no overhead introduced

by the parallelization.

 Problem is parallelizable in a trivial fashion ...

Introduction to OpenMP

Dirk Schmidl | IT Center der RWTH Aachen University
28

Correctness Checking Tools

Introduction to OpenMP

Dirk Schmidl | IT Center der RWTH Aachen University
29

Race Condition

 Data Race: the typical OpenMP programming error, when:

 two or more threads access the same memory location, and

 at least one of these accesses is a write, and

 the accesses are not protected by locks or critical regions, and

 the accesses are not synchronized, e.g. by a barrier.

 Non-deterministic occurrence: e.g. the sequence of the execution of

parallel loop iterations is non-deterministic and may change from

run to run

 In many cases private clauses, barriers or critical regions are

missing

 Data races are hard to find using a traditional debugger

 Use the Intel Inspector XE

Introduction to OpenMP

Dirk Schmidl | IT Center der RWTH Aachen University
30

Intel Inspector XE

 Detection of

 Memory Errors

 Dead Locks

 Data Races

 Support for

 Linux (32bit and 64bit) and Windows (32bit and 64bit)

 WIN32-Threads, Posix-Threads, Intel Threading Building Blocks and OpenMP

Introduction to OpenMP

Dirk Schmidl | IT Center der RWTH Aachen University
31

PI Example Code

double f(double x)

{

return (4.0 / (1.0 + x*x));

}

double CalcPi (int n)

{

const double fH = 1.0 / (double) n;

double fSum = 0.0;

double fX;

int i;

#pragma omp parallel for private(fX,i) reduction(+:fSum)

for (i = 0; i < n; i++)

{

fX = fH * ((double)i + 0.5);

fSum += f(fX);

}

return fH * fSum;

}

𝜋 =

0

1
4

1 + 𝑥2

Introduction to OpenMP

Dirk Schmidl | IT Center der RWTH Aachen University
32

PI Example Code

double f(double x)

{

return (4.0 / (1.0 + x*x));

}

double CalcPi (int n)

{

const double fH = 1.0 / (double) n;

double fSum = 0.0;

double fX;

int i;

#pragma omp parallel for private(fX,i) reduction(+:fSum)

for (i = 0; i < n; i++)

{

fX = fH * ((double)i + 0.5);

fSum += f(fX);

}

return fH * fSum;

}

What if we
would have

forgotten this?

Introduction to OpenMP

Dirk Schmidl | IT Center der RWTH Aachen University
33

Inspector XE – Configure Analysis

Threading Error Analysis Modes
1. Detect Deadlocks
2. Detect Deadlocks and Data Races
3. Locate Deadlocks and Data Races

more details,
more overhead

Introduction to OpenMP

Dirk Schmidl | IT Center der RWTH Aachen University
34

Inspector XE – Results

1

1

23

2

3

detected problems
filters
code location

The missing reduction
is detected.

Introduction to OpenMP

Dirk Schmidl | IT Center der RWTH Aachen University
35

PI Example Code

double f(double x)

{

return (4.0 / (1.0 + x*x));

}

double CalcPi (int n)

{

const double fH = 1.0 / (double) n;

double fSum = 0.0;

double fX;

int i;

#pragma omp parallel for private(fX,i,fSum)

for (i = 0; i < n; i++)

{

fX = fH * ((double)i + 0.5);

fSum += f(fX);

}

return fH * fSum;

}

What if we just
made the

variable private?

Introduction to OpenMP

Dirk Schmidl | IT Center der RWTH Aachen University
36

Inspector XE – Static Security Analysis

 At runtime no Error is detected!

 Compiling with the argument “-diag-enable sc-full” delivers:

 At compile-time this error can be found!

Introduction to OpenMP

Dirk Schmidl | IT Center der RWTH Aachen University
37

Single and Master Construct

Introduction to OpenMP

Dirk Schmidl | IT Center der RWTH Aachen University
38

 The single construct specifies that the enclosed structured block is

executed by only on thread of the team.

 It is up to the runtime which thread that is.

 Useful for:

 I/O

 Memory allocation and deallocation, etc. (in general: setup work)

 Implementation of the single-creator parallel-executor pattern as we will see

now…

The Single Construct

C/C++

#pragma omp single [clause]

... structured block ...

Fortran

!$omp single [clause]

... structured block ...

!$omp end single

Introduction to OpenMP

Dirk Schmidl | IT Center der RWTH Aachen University
39

 The master construct specifies that the enclosed structured block is

executed only by the master thread of a team.

 Note: The master construct is no worksharing construct and does

not contain an implicit barrier at the end.

The Master Construct

C/C++

#pragma omp master[clause]

... structured block ...

Fortran

!$omp master[clause]

... structured block ...

!$omp end master

Introduction to OpenMP

Dirk Schmidl | IT Center der RWTH Aachen University
40

Section and Ordered Construct

Introduction to OpenMP

Dirk Schmidl | IT Center der RWTH Aachen University
41

 How would you parallelize this code?

void traverse (Tree *tree)

{

if (tree->left) traverse(tree->left);

if (tree->right) traverse(tree->right);

process(tree);

}

 One option: Use OpenMP‘s parallel sections.

How to parallelize a Tree Traversal?

Introduction to OpenMP

Dirk Schmidl | IT Center der RWTH Aachen University
42

 The sections construct contains a set of structured blocks that are

to be distributed among and executed by the team of threads.

The Sections Construct

C/C++

#pragma omp sections [clause]

{

#pragma omp section

... structured block ...

#pragma omp section

... structured block ...

...

}

Fortran

!$omp sections [clause]

!$omp section

... structured block ...

!$ omp section

... structured block ...

...

!$omp end sections

Introduction to OpenMP

Dirk Schmidl | IT Center der RWTH Aachen University
43

 How would you parallelize this code?

void traverse (Tree *tree)

{

#pragma omp parallel sections

{

#pragma omp section

if (tree->left) traverse(tree->left);

#pragma omp section

if (tree->right) traverse(tree->right);

} // end omp parallel

process(tree);

}

 Downsides of this option:

 Unneccessary overhead and synchronization points

 Not always well supported (how many threads to be used?)

How to parallelize a Tree Traversal?!

Nested Parallel Regions

Barrier here!

We will later see how this can be done with tasks in a
better way.

Introduction to OpenMP

Dirk Schmidl | IT Center der RWTH Aachen University
44

 Allows to execute a structured block within a parallel loop in sequential
order

 In addition, an ordered clause has to be added to the for construct which any

ordered construct may occur

 Use Cases:

 Can be used e.g. to enforce ordering on printing of data

 May help to determine whether there is a data race

The ordered Construct

#pragma omp parallel for ordered

for (i=0 ; i<10 ; i++){

...

#pragma omp ordered

{

...

}

...

}

Introduction to OpenMP

Dirk Schmidl | IT Center der RWTH Aachen University
45

Runtime Library

Introduction to OpenMP

Dirk Schmidl | IT Center der RWTH Aachen University
46

 C and C++:

 If OpenMP is enabled during compilation, the preprocessor symbol _OPENMP

is defined. To use the OpenMP runtime library, the header omp.h has to

be included.

omp_set_num_threads(int): The specified number of threads will be

used for the parallel region encountered next.

int omp_get_num_threads: Returns the number of threads in the

current team.

int omp_get_thread_num(): Returns the number of the calling thread

in the team, the Master has always the id 0.

 Additional functions are available, e.g. to provide locking

functionality.

Runtime Library

Introduction to OpenMP

Dirk Schmidl | IT Center der RWTH Aachen University
47

Tasking

Introduction to OpenMP

Dirk Schmidl | IT Center der RWTH Aachen University
48

 On the following slides we will discuss three approaches to

parallelize this recursive code with Tasking.

Recursive approach to compute
Fibonacci

int main(int argc,

char* argv[])

{

[...]

fib(input);

[...]

}

int fib(int n) {

if (n < 2) return n;

int x = fib(n - 1);

int y = fib(n - 2);

return x+y;

}

Introduction to OpenMP

Dirk Schmidl | IT Center der RWTH Aachen University
49

 Each encountering thread/task creates a new Task

 Code and data is being packaged up

 Tasks can be nested

Into another Task directive

Into a Worksharing construct

 Data scoping clauses:

shared(list)

private(list) firstprivate(list)

default(shared | none)

The Task Construct

C/C++

#pragma omp task [clause]

... structured block ...

Fortran

!$omp task [clause]

... structured block ...

!$omp end task

Introduction to OpenMP

Dirk Schmidl | IT Center der RWTH Aachen University
50

 Some rules from Parallel Regions apply:

 Static and Global variables are shared

 Automatic Storage (local) variables are private

 If shared scoping is not derived by default:

 Orphaned Task variables are firstprivate by default!

 Non-Orphaned Task variables inherit the shared attribute!

 Variables are firstprivate unless shared in the enclosing context

Tasks in OpenMP: Data Scoping

Introduction to OpenMP

Dirk Schmidl | IT Center der RWTH Aachen University
51

o Only one Task / Thread enters fib() from main(), it is responsable for
creating the two initial work tasks

o Taskwait is required, as otherwise x and y would be lost

First version parallelized with Tasking
(omp-v1)

int main(int argc,

char* argv[])

{

[...]

#pragma omp parallel

{

#pragma omp single

{

fib(input);

}

}

[...]

}

int fib(int n) {

if (n < 2) return n;

int x, y;

#pragma omp task shared(x)

{

x = fib(n - 1);

}

#pragma omp task shared(y)

{

y = fib(n - 2);

}

#pragma omp taskwait

return x+y;

}

Introduction to OpenMP

Dirk Schmidl | IT Center der RWTH Aachen University
52

Fibonacci Illustration

 T1 enters fib(4)

fib(4)
 T1 creates tasks for

fib(3) and fib(2)

Task Queue

fib(3) fib(2)

 T1 and T2 execute tasks

from the queue

fib(3) fib(2) T1 and T2 create 4 new

tasks

fib(2) fib(1) fib(1) fib(0)

 T1 - T4 execute tasks

fib(2) fib(1) fib(1) fib(0)

Introduction to OpenMP

Dirk Schmidl | IT Center der RWTH Aachen University
53

Fibonacci Illustration

 T1 enters fib(4)

fib(4)
 T1 creates tasks for

fib(3) and fib(2)

 T1 and T2 execute tasks

from the queue

fib(3) fib(2) T1 and T2 create 4 new

tasks

 T1 - T4 execute tasks

fib(2) fib(1) fib(1) fib(0) …

fib(1) fib(0)

Introduction to OpenMP

Dirk Schmidl | IT Center der RWTH Aachen University
54

 Overhead of task creation prevents better scalability!

Scalability measurements (1/3)

0

1

2

3

4

5

6

7

8

9

1 2 4 8

Sp
e

e
d

u
p

#Threads

Speedup of Fibonacci with Tasks

optimal

omp-v1

Introduction to OpenMP

Dirk Schmidl | IT Center der RWTH Aachen University
55

 Improvement: Don‘t create yet another task once a certain (small
enough) n is reached

Improved parallelization with Tasking
(omp-v2)

int main(int argc,

char* argv[])

{

[...]

#pragma omp parallel

{

#pragma omp single

{

fib(input);

}

}

[...]

}

int fib(int n) {

if (n < 2) return n;

int x, y;

#pragma omp task shared(x) \

if(n > 30)

{

x = fib(n - 1);

}

#pragma omp task shared(y) \

if(n > 30)

{

y = fib(n - 2);

}

#pragma omp taskwait

return x+y;

}

Introduction to OpenMP

Dirk Schmidl | IT Center der RWTH Aachen University
56

 Speedup is ok, but we still have some overhead when running with 4

or 8 threads

Scalability measurements (2/3)

0

1

2

3

4

5

6

7

8

9

1 2 4 8

Sp
e

e
d

u
p

#Threads

Speedup of Fibonacci with Tasks

optimal

omp-v1

omp-v2

Introduction to OpenMP

Dirk Schmidl | IT Center der RWTH Aachen University
57

 Improvement: Skip the OpenMP overhead once a certain n

is reached (no issue w/ production compilers)

Improved parallelization with Tasking
(omp-v3)

int main(int argc,

char* argv[])

{

[...]

#pragma omp parallel

{

#pragma omp single

{

fib(input);

}

}

[...]

}

int fib(int n) {

if (n < 2) return n;

if (n <= 30)

return serfib(n);

int x, y;

#pragma omp task shared(x)

{

x = fib(n - 1);

}

#pragma omp task shared(y)

{

y = fib(n - 2);

}

#pragma omp taskwait

return x+y;

}

Introduction to OpenMP

Dirk Schmidl | IT Center der RWTH Aachen University
58

 Everything ok now 

Scalability measurements (3/3)

0

1

2

3

4

5

6

7

8

9

1 2 4 8

Sp
e

e
d

u
p

#Threads

Speedup of Fibonacci with Tasks

optimal

omp-v1

omp-v2

omp-v3

Introduction to OpenMP

Dirk Schmidl | IT Center der RWTH Aachen University
59

int a = 1;

void foo()

{

int b = 2, c = 3;

#pragma omp parallel shared(b)

#pragma omp parallel private(b)

{

int d = 4;

#pragma omp task

{

int e = 5;

// Scope of a:

// Scope of b:

// Scope of c:

// Scope of d:

// Scope of e:

} } }

Data Scoping Example (1/7)

Introduction to OpenMP

Dirk Schmidl | IT Center der RWTH Aachen University
60

int a = 1;

void foo()

{

int b = 2, c = 3;

#pragma omp parallel shared(b)

#pragma omp parallel private(b)

{

int d = 4;

#pragma omp task

{

int e = 5;

// Scope of a: shared

// Scope of b:

// Scope of c:

// Scope of d:

// Scope of e:

} } }

Data Scoping Example (2/7)

Introduction to OpenMP

Dirk Schmidl | IT Center der RWTH Aachen University
61

int a = 1;

void foo()

{

int b = 2, c = 3;

#pragma omp parallel shared(b)

#pragma omp parallel private(b)

{

int d = 4;

#pragma omp task

{

int e = 5;

// Scope of a: shared

// Scope of b: firstprivate

// Scope of c:

// Scope of d:

// Scope of e:

} } }

Data Scoping Example (3/7)

Introduction to OpenMP

Dirk Schmidl | IT Center der RWTH Aachen University
62

int a = 1;

void foo()

{

int b = 2, c = 3;

#pragma omp parallel shared(b)

#pragma omp parallel private(b)

{

int d = 4;

#pragma omp task

{

int e = 5;

// Scope of a: shared

// Scope of b: firstprivate

// Scope of c: shared

// Scope of d:

// Scope of e:

} } }

Data Scoping Example (4/7)

Introduction to OpenMP

Dirk Schmidl | IT Center der RWTH Aachen University
63

int a = 1;

void foo()

{

int b = 2, c = 3;

#pragma omp parallel shared(b)

#pragma omp parallel private(b)

{

int d = 4;

#pragma omp task

{

int e = 5;

// Scope of a: shared

// Scope of b: firstprivate

// Scope of c: shared

// Scope of d: firstprivate

// Scope of e:

} } }

Data Scoping Example (5/7)

Introduction to OpenMP

Dirk Schmidl | IT Center der RWTH Aachen University
64

int a = 1;

void foo()

{

int b = 2, c = 3;

#pragma omp parallel shared(b)

#pragma omp parallel private(b)

{

int d = 4;

#pragma omp task

{

int e = 5;

// Scope of a: shared

// Scope of b: firstprivate

// Scope of c: shared

// Scope of d: firstprivate

// Scope of e: private

} } }

Data Scoping Example (6/7)

Hint: Use default(none) to be
forced to think about every

variable if you do not see clear.

Introduction to OpenMP

Dirk Schmidl | IT Center der RWTH Aachen University
65

int a = 1;

void foo()

{

int b = 2, c = 3;

#pragma omp parallel shared(b)

#pragma omp parallel private(b)

{

int d = 4;

#pragma omp task

{

int e = 5;

// Scope of a: shared, value of a: 1

// Scope of b: firstprivate, value of b: 0 / undefined

// Scope of c: shared, value of c: 3

// Scope of d: firstprivate, value of d: 4

// Scope of e: private, value of e: 5

} } }

Data Scoping Example (7/7)

Introduction to OpenMP

Dirk Schmidl | IT Center der RWTH Aachen University
66

 OpenMP barrier (implicit or explicit)

 All tasks created by any thread of the current Team are guaranteed to be

completed at barrier exit

 Task barrier: taskwait

 Encountering Task suspends until child tasks are complete

Only direct childs, not descendants!

The Barrier and Taskwait Constructs

C/C++

#pragma omp taskwait

C/C++

#pragma omp barrier

Introduction to OpenMP

Dirk Schmidl | IT Center der RWTH Aachen University
67

 Task Synchronization explained:

#pragma omp parallel num_threads(np)

{

#pragma omp task

function_A();

#pragma omp barrier

#pragma omp single

{

#pragma omp task

function_B();

}

}

Task Synchronization

np Tasks created here, one for each thread

All Tasks guaranteed to be completed here

1 Task created here

B-Task guaranteed to be completed here

Introduction to OpenMP

Dirk Schmidl | IT Center der RWTH Aachen University
68

More Environment Variables

Introduction to OpenMP

Dirk Schmidl | IT Center der RWTH Aachen University
69

 OMP_NUM_THREADS: Controls how many threads will be used to

execute the program.

 OMP_SCHEDULE: If the schedule-type runtime is specified in a

schedule clause, the value specified in this environment variable will

be used.

 OMP_DYNAMIC: The OpenMP runtime is allowed to smartly guess

how many threads might deliver the best performance. If you want

full control, set this variable to false.

 OMP_NESTED: Most OpenMP implementations require this to be set

to true in order to enabled nested Parallel Regions. Remember:

Nesting Worksharing constructs is not possible.

OpenMP Environment Variables (1/2)

Introduction to OpenMP

Dirk Schmidl | IT Center der RWTH Aachen University
70

 Define interaction with system environment:

 Env. Var. OMP_MAX_NESTED_LEVEL + API functions

Controls the maximum number of active parallel regions

 Env. Var. OMP_THREAD_LIMIT + API functions

Controls the maximum number of OpenMP threads

 Env. Var. OMP_STACKSIZE

Controls the stack size of child threads

 Env. Var. OMP_WAIT_POLICY

Control the thread idle policy:

active: Good for dedicated systems (e.g. in batch mode)

passive: Good for shared systems

OpenMP Environment Variables (2/2)

Introduction to OpenMP

Dirk Schmidl | IT Center der RWTH Aachen University
71

Questions?

