
IT Center der RWTH Aachen University

OpenMP and Performance

Dirk Schmidl

IT Center, RWTH Aachen University

Member of the HPC Group

schmidl@itc.rwth-aachen.de

OpenMP and Performance

Dirk Schmidl | IT Center der RWTH Aachen University
2

Tuning Cycle

 Performance Tuning aims to improve the runtime of an existing

application.

Collecting

Analyzing

Optimizing

Testing

OpenMP and Performance

Dirk Schmidl | IT Center der RWTH Aachen University
3

Hotspots

 A Hotspot is a source code region where a significant part of the

runtime is spent.

 Hotspots can indicate where to start with serial optimization or

shared memory parallelization.

 Use a tool to identify hotspots. In many cases the results are

surprising.

90/10 law

90% of the runtime in a program is spent in 10% of the code.

OpenMP and Performance

Dirk Schmidl | IT Center der RWTH Aachen University
4

Performance Tools

OpenMP and Performance

Dirk Schmidl | IT Center der RWTH Aachen University
5

VTune Amplifier XE

 Performance Analyses for

 Serial Applications

 Shared Memory Parallel Applications

 Sampling Based measurements

 Features:

 Hot Spot Analysis

 Concurrency Analysis

 Wait

 Hardware Performance Counter Support

OpenMP and Performance

Dirk Schmidl | IT Center der RWTH Aachen University
6

Stream

 Standard Benchmark to measure memory performance.

 Version is parallelized with OpenMP.

Measures Memory bandwidth for:

y=x (copy)

y=s*x (scale)

y=x+z (add)

y=x+s*z (triad)

for double vectors x,y,z and scalar double value s

#pragma omp parallel for
for (j=0; j<N; j++)

b[j] = scalar*c[j];

Function Rate (MB/s) Avg time Min time Max time
Copy: 33237.0185 0.0050 0.0048 0.0055
Scale: 33304.6471 0.0049 0.0048 0.0059
Add: 35456.0586 0.0070 0.0068 0.0073
Triad: 36030.9600 0.0069 0.0067 0.0072

OpenMP and Performance

Dirk Schmidl | IT Center der RWTH Aachen University
7

Amplifier XE – Measurement Runs

1

2

2

1

Basic Analysis Types

Hardware Counter Analysis Types, choose Nehalem Architecture, on cluster-linux-tuning.

3

3 Analysis for Intel Xeon Phi coprocessors, choose this for OpenMP target programs.

OpenMP and Performance

Dirk Schmidl | IT Center der RWTH Aachen University
8

Amplifier XE – Hotspot Analysis

1

2

3

1

2

3

Source Code View (only if compiled with -g)

Hotspot: Add Operation of Stream

Metrics View

Double clicking on a function opens source code view.

Hotspots

OpenMP and Performance

Dirk Schmidl | IT Center der RWTH Aachen University
9

Load Balancing

OpenMP and Performance

Dirk Schmidl | IT Center der RWTH Aachen University
10

Load imbalance

 Load imbalance occurs in a parallel program

 when multiple threads synchronize at global synchronization points

 and these threads need a different amount of time to finish the calculation.

T1:

T2:

T3:

work

work

work

barrier 1

work

work

work

barrier 2

work

work

work

barrier

barrier

T1:

T2:

T3:

work

work

work

barrier 1

work

work

work

barrier 2

work

work

work

imbalanced
workload

balanced
workload

OpenMP and Performance

Dirk Schmidl | IT Center der RWTH Aachen University
11

Case Study: CG

 Sparse Linear Algebra

 Sparse Linear Equation Systems occur in

many scientific disciplines.

 Sparse matrix-vector multiplications (SpMxV)

are the dominant part in many iterative

solvers (like the CG) for such systems.

 number of non-zeros << n*n

Beijing Botanical Garden

Oben Rechts: Orginal Gebäude
Unten Rechts: Modell
Unten Links: Matrix

(Quelle: Beijing Botanical Garden and University of
Florida, Sparse Matrix Collection)

OpenMP and Performance

Dirk Schmidl | IT Center der RWTH Aachen University
12

Case Study: CG

 𝑨 =

𝟏 𝟎 𝟎 𝟎
𝟐 𝟐 𝟎 𝟎
𝟎 𝟎 𝟑 𝟎
𝟒 𝟎 𝟒 𝟒

 Format: compressed row storage

 store all values and columns in arrays (length nnz)

 store beginning of a new row in a third array (length n+1)

value:

index:

row:

1 2 3 4 44

0 0 1 2 0 32

0 1 3 4 7

for (i = 0; i < A.num_rows; i++){
sum = 0.0;
for (nz=A.row[i]; nz<A.row[i+1]; ++nz){
sum+= A.value[nz]*x[A.index[nz]];

}
y[i] = sum;

}
 𝑦 = 𝐴 ∗ 𝑥

2

OpenMP and Performance

Dirk Schmidl | IT Center der RWTH Aachen University
13

Load Imbalance in VTune

 Grouping execution time of parallel regions by threads helps to

detect load imbalance.

 Significant potions of Spin Time also indicate load balance

problems.

 Different loop schedules might help to avoid these problems.

OpenMP and Performance

Dirk Schmidl | IT Center der RWTH Aachen University
14

Load Imbalance in VTune

 The Timeline can help to investigate the problem further.

 Zooming in, e.g. to one iteration is also possible.

OpenMP and Performance

Dirk Schmidl | IT Center der RWTH Aachen University
15

Parallel Loop Scheduling

OpenMP and Performance

Dirk Schmidl | IT Center der RWTH Aachen University
16

Load Balancing

Demo

OpenMP and Performance

Dirk Schmidl | IT Center der RWTH Aachen University
17

 for-construct: OpenMP allows to influence how the iterations are

scheduled among the threads of the team, via the schedule clause:

schedule(static [, chunk]): Iteration space divided into blocks of

chunk size, blocks are assigned to threads in a round-robin fashion. If chunk

is not specified: #threads blocks.

schedule(dynamic [, chunk]): Iteration space divided into blocks

of chunk (not specified: 1) size, blocks are scheduled to threads in the order

in which threads finish previous blocks.

schedule(guided [, chunk]): Similar to dynamic, but block size

starts with implementation-defined value, then is decreased exponentially

down to chunk.

 Default on most implementations is schedule(static).

Influencing the For Loop Scheduling

OpenMP and Performance

Dirk Schmidl | IT Center der RWTH Aachen University
18

False Sharing

OpenMP and Performance

Dirk Schmidl | IT Center der RWTH Aachen University
19

 There is a growing gap between core and memory performance:

 memory, since 1980: 1.07x per year improvement in latency

 single core: since 1980: 1.25x per year until 1986, 1.52x p. y. until 2000,

1.20x per year until 2005, then no change on a per-core basis

 Source: John L. Hennessy, Stanford University, and David A. Patterson, University of California, September 25, 2012

Memory Bottleneck

OpenMP and Performance

Dirk Schmidl | IT Center der RWTH Aachen University
20

 CPU is fast

 Order of 3.0 GHz

 Caches:

 Fast, but expensive

 Thus small, order of MB

 Memory is slow

 Order of 0.3 GHz

 Large, order of GB

 A good utilization of caches is

crucial for good performance of HPC applications!

Caches

core

memory

off-chip cache

on-chip cache

OpenMP and Performance

Dirk Schmidl | IT Center der RWTH Aachen University
21

 Latency on the Intel Westmere-EP 3.06 GHz processor

Visualization of the Memory
Hierarchy

0

2

4

6

8

10

12

14

16

18

20

1
 B

4
 B

1
6

 B

6
4

 B

2
5

6
 B

1
 K

B

4
 K

B

1
6

 K
B

6
4

 K
B

2
5

6
 K

B

1
 M

B

4
 M

B

1
2

 M
B

3
2

 M
B

1
2

8
 M

B

5
1

2
 M

B

2
 G

B

La
te

n
cy

 in
 n

s

Memory Footprint

L1
 c

ac
h

e

L2
 c

ac
h

e

L3
 c

ac
h

e

OpenMP and Performance

Dirk Schmidl | IT Center der RWTH Aachen University
22

Data in Caches

 When data is used, it is copied into

caches.

 The hardware always copies

chunks into the cache, so called

cache-lines.

 This is useful, when:

 the data is used frequently (temporal

consistency)

 consecutive data is used which is on

the same cache-line (special

consistency)

Core

memory

on-chip cache

Core

on-chip cacheon-chip cache

bus

OpenMP and Performance

Dirk Schmidl | IT Center der RWTH Aachen University
23

False Sharing

 False Sharing occurs when

 different threads use elements of the

same cache-line

 one of the threads writes to the

cache-line

 As a result the cache line is moved

between the threads, also there is

no real dependency

 Note: False Sharing is a

performance problem, not a

correctness issue

Core

memory

on-chip cache

Core

on-chip cacheon-chip cache

bus

OpenMP and Performance

Dirk Schmidl | IT Center der RWTH Aachen University
24

Summing up vector

elements again

OpenMP and Performance

Dirk Schmidl | IT Center der RWTH Aachen University
25

#pragma omp parallel

{

#pragma omp for

for (i = 0; i < 99; i++)

{

s = s + a[i];

}

} // end parallel

It‘s your turn: Make It Scale!

do i = 0, 99

s = s + a(i)

end do

do i = 0, 24
s = s + a(i)

end do

do i = 25, 49
s = s + a(i)

end do

do i = 50, 74
s = s + a(i)

end do

do i = 75, 99
s = s + a(i)

end do

OpenMP and Performance

Dirk Schmidl | IT Center der RWTH Aachen University
26

False Sharing

double s_priv[nthreads];

#pragma omp parallel num_threads(nthreads)

{

int t=omp_get_thread_num();

#pragma omp for

for (i = 0; i < 99; i++)

{

s_priv[t] += a[i];

}

} // end parallel

for (i = 0; i < nthreads; i++)

{

s += s_priv[i];

}

OpenMP and Performance

Dirk Schmidl | IT Center der RWTH Aachen University
27

False Sharing

 no performance benefit for

more threads

 Reason: false sharing of

s_priv

 Solution: padding so that

only one variable per cache

line is used
0

1000

2000

3000

4000

1 2 3 4 5 6 7 8 9 10 11 12

M
FL

O
P

S

#threads

with false sharing

1 2 3 4 …

1 2 …3

Standard

With padding

cache line 1 cache line 2

0

1000

2000

3000

4000

1 2 3 4 5 6 7 8 9 10 11 12

M
FL

O
P

S

#threads

with false sharing without false sharing

OpenMP and Performance

Dirk Schmidl | IT Center der RWTH Aachen University
28

NUMA Architectures

OpenMP and Performance

Dirk Schmidl | IT Center der RWTH Aachen University
29

Non-Uniform Memory Arch.

How To Distribute The Data ?

double* A;

A = (double*)

malloc(N * sizeof(double));

for (int i = 0; i < N; i++) {

A[i] = 0.0;

}

Core

memory

Core

on-chip
cache

Core Core

memory

interconnect

on-chip
cache

on-chip
cache

on-chip
cache

A[0] … A[N]

OpenMP and Performance

Dirk Schmidl | IT Center der RWTH Aachen University
30

About Data Distribution

 Important aspect on cc-NUMA systems

 If not optimal, longer memory access times and hotspots

 OpenMP does not provide support for cc-NUMA

 Placement comes from the Operating System

 This is therefore Operating System dependent

 Windows, Linux and Solaris all use the “First Touch” placement

policy by default

 May be possible to override default (check the docs)

OpenMP and Performance

Dirk Schmidl | IT Center der RWTH Aachen University
31

Non-Uniform Memory Arch.

 Serial code: all array elements are allocated in the memory of the

NUMA node containing the core executing this thread

double* A;

A = (double*)

malloc(N * sizeof(double));

for (int i = 0; i < N; i++) {

A[i] = 0.0;

}

Core

memory

Core

on-chip
cache

Core Core

memory

interconnect

on-chip
cache

on-chip
cache

on-chip
cache

A[0] … A[N]

OpenMP and Performance

Dirk Schmidl | IT Center der RWTH Aachen University
32

Non-Uniform Memory Arch.

 First Touch w/ parallel code: all array elements are allocated in the

memory of the NUMA node containing the core executing the thread

initializing the respective partition

double* A;

A = (double*)

malloc(N * sizeof(double));

omp_set_num_threads(2);

#pragma omp parallel for

for (int i = 0; i < N; i++) {

A[i] = 0.0;

}

Core

memory

Core

on-chip
cache

Core Core

memory

interconnect

on-chip
cache

on-chip
cache

on-chip
cache

A[0] … A[N/2] A[N/2] … A[N]

OpenMP and Performance

Dirk Schmidl | IT Center der RWTH Aachen University
33

 Before you design a strategy for thread binding, you should have a

basic understanding of the system topology. Please use one of the

following options on a target machine:

 Intel MPI‘s cpuinfo tool

module switch openmpi intelmpi

cpuinfo

Delivers information about the number of sockets (= packages) and the

mapping of processor ids used by the operating system to cpu cores.

 hwlocs‘ hwloc-ls tool

hwloc-ls

Displays a graphical representation of the system topology, separated into

NUMA nodes, along with the mapping of processor ids used by the

operating system to cpu cores and additional info on caches.

Get Info on the System Topology

OpenMP and Performance

Dirk Schmidl | IT Center der RWTH Aachen University
34

 Selecting the „right“ binding strategy depends not only on the

topology, but also on the characteristics of your application.

 Putting threads far apart, i.e. on different sockets

May improve the aggregated memory bandwidth available to your

application

May improve the combined cache size available to your application

May decrease performance of synchronization constructs

 Putting threads close together, i.e. on two adjacent cores which possibly

shared some caches

May improve performance of synchronization constructs

May decrease the available memory bandwidth and cache size

 If you are unsure, just try a few options and then select the best one.

Decide for Binding Strategy

OpenMP and Performance

Dirk Schmidl | IT Center der RWTH Aachen University
35

OpenMP 4.0: Places + Binding Policies (1/2)

 Define OpenMP Places

 set of OpenMP threads running on one or more processors

 can be defined by the user, i.e. OMP_PLACES=cores

 Define a set of OpenMP Thread Affinity Policies

 SPREAD: spread OpenMP threads evenly among the places

 CLOSE: pack OpenMP threads near master thread

 MASTER: collocate OpenMP thread with master thread

 Goals

 user has a way to specify where to execute OpenMP threads for

 locality between OpenMP threads / less false sharing / memory bandwidth

OpenMP and Performance

Dirk Schmidl | IT Center der RWTH Aachen University
36

Places

 Assume the following machine:

 2 sockets, 4 cores per socket, 4 hyper-threads per core

 Abstract names for OMP_PLACES:

 threads: Each place corresponds to a single hardware thread on the target

machine.

 cores: Each place corresponds to a single core (having one or more hardware

threads) on the target machine.

 sockets: Each place corresponds to a single socket (consisting of one or more

cores) on the target machine.

p0 p1 p2 p3 p4 p5 p6 p7

OpenMP and Performance

Dirk Schmidl | IT Center der RWTH Aachen University
37

OpenMP 4.0: Places + Binding Policies (2/2)

 Example‘s Objective:

 separate cores for outer loop and near cores for inner loop

 Outer Parallel Region: proc_bind(spread), Inner: proc_bind(close)

 spread creates partition, compact binds threads within respective partition

OMP_PLACES=(0,1,2,3), (4,5,6,7), ... = (0-3):8:4 = cores

#pragma omp parallel proc_bind(spread)

#pragma omp parallel proc_bind(close)

 Example

 initial

 spread 4

 close 4

p0 p1 p2 p3 p4 p5 p6 p7

p0 p1 p2 p3 p4 p5 p6 p7

p0 p1 p2 p3 p4 p5 p6 p7

OpenMP and Performance

Dirk Schmidl | IT Center der RWTH Aachen University
38

Serial vs. Parallel Initialization

 Performance of OpenMP-parallel STREAM vector assignment

measured on 2-socket Intel® Xeon® X5675 („Westmere“) using

Intel® Composer XE 2013 compiler with different thread binding

options:

0

10000

20000

30000

40000

50000

1 2 4 8 12 16 20 24

B
an

d
w

id
th

 in
 M

B
/s

Number of Threads
serial init. / no binding serial init. / close binding
serial init. / spread binding NUMA aware init. / close binding
NUMA aware init. / spread binding

OpenMP and Performance

Dirk Schmidl | IT Center der RWTH Aachen University
39

Detecting remote accesses

OpenMP and Performance

Dirk Schmidl | IT Center der RWTH Aachen University
40

Hardware Counters

Definition: Hardware Performance Counters
In computers, hardware performance counters, or hardware counters are a set of special-
purpose registers built into modern microprocessors to store the counts of hardware-
related activities within computer systems. Advanced users often rely on those counters
to conduct low-level performance analysis or tuning.
(from: http://en.wikipedia.org)

OpenMP and Performance

Dirk Schmidl | IT Center der RWTH Aachen University
41

Hardware Performance Counters

 Hardware Counters of our Intel Nehalem Processor:
SB_DRAIN.ANY, STORE_BLOCKS.AT_RET, STORE_BLOCKS.L1D_BLOCK, PARTIAL_ADDRESS_ALIAS, DTLB_LOAD_MISSES.ANY, DTLB_LOAD_MISSES.WALK_CO, DTLB_LOAD_MISSES.STLB_HIT, DTLB_LOAD_MISSES.PDE_MIS, DTLB_LOAD_MISSES.LARGE_W,
MEM_INST_RETIRED.LOADS, MEM_INST_RETIRED.STORES, MEM_INST_RETIRED.LATENCY, MEM_STORE_RETIRED.DTLB_, UOPS_ISSUED.ANY, UOPS_ISSUED.STALLED_CYCLE, UOPS_ISSUED.FUSED, MEM_UNCORE_RETIRED.L3_D,
MEM_UNCORE_RETIRED.OTHE, MEM_UNCORE_RETIRED.REMO, MEM_UNCORE_RETIRED.REMO, MEM_UNCORE_RETIRED.LOCA, MEM_UNCORE_RETIRED.UNCA, FP_COMP_OPS_EXE.X87, FP_COMP_OPS_EXE.MMX, FP_COMP_OPS_EXE.SSE_FP,
FP_COMP_OPS_EXE.SSE2_INT, FP_COMP_OPS_EXE.SSE_FP_P, FP_COMP_OPS_EXE.SSE_FP_S, FP_COMP_OPS_EXE.SSE_SING, FP_COMP_OPS_EXE.SSE_DOU, SIMD_INT_128.PACKED_MPY, SIMD_INT_128.PACKED_SHIFT, SIMD_INT_128.PACK,
SIMD_INT_128.UNPACK, SIMD_INT_128.PACKED_LOGIC, SIMD_INT_128.PACKED_ARITH, SIMD_INT_128.SHUFFLE_MOV, LOAD_DISPATCH.RS, LOAD_DISPATCH.RS_DELAYED, LOAD_DISPATCH.MOB, LOAD_DISPATCH.ANY, ARITH.CYCLES_DIV_BUSY,
INST_QUEUE_WRITES, INST_DECODED.DEC0, TWO_UOP_INSTS_DECODED, INST_QUEUE_WRITE_CYCLES, LSD_OVERFLOW, L2_RQSTS.LD_HIT, L2_RQSTS.LD_MISS, L2_RQSTS.LOADS, L2_RQSTS.RFO_HIT, L2_RQSTS.RFO_MISS, L2_RQSTS.RFOS,
L2_RQSTS.IFETCH_HIT, L2_RQSTS.IFETCH_MISS, L2_RQSTS.IFETCHES, L2_RQSTS.PREFETCH_HIT, L2_RQSTS.PREFETCH_MISS, L2_RQSTS.PREFETCHES, L2_DATA_RQSTS.DEMAND.I_S, L2_DATA_RQSTS.DEMAND.S_S, L2_DATA_RQSTS.DEMAND.E_S,
L2_DATA_RQSTS.DEMAND.M_, L2_DATA_RQSTS.DEMAND.ME, L2_DATA_RQSTS.PREFETCH.I_, L2_DATA_RQSTS.PREFETCH.S, L2_DATA_RQSTS.PREFETCH.E, L2_DATA_RQSTS.PREFETCH.M, L2_DATA_RQSTS.PREFETCH.M, L2_WRITE.RFO.I_STATE,
L2_WRITE.RFO.S_STATE, L2_WRITE.RFO.M_STATE, L2_WRITE.RFO.HIT, L2_WRITE.RFO.MESI, L2_WRITE.LOCK.I_STATE, L2_WRITE.LOCK.S_STATE, L2_WRITE.LOCK.E_STATE, L2_WRITE.LOCK.M_STATE, L2_WRITE.LOCK.HIT, L2_WRITE.LOCK.MESI,
L1D_WB_L2.I_STATE, L1D_WB_L2.S_STATE, L1D_WB_L2.E_STATE, L1D_WB_L2.M_STATE, L1D_WB_L2.MESI, CPU_CLK_UNHALTED.THREAD, CPU_CLK_UNHALTED.REF_P, L1D_CACHE_LD.I_STATE, L1D_CACHE_LD.S_STATE, L1D_CACHE_LD.E_STATE,
L1D_CACHE_LD.M_STATE, L1D_CACHE_LD.MESI, L1D_CACHE_ST.S_STATE, L1D_CACHE_ST.E_STATE, L1D_CACHE_ST.M_STATE, L1D_CACHE_LOCK.HIT, L1D_CACHE_LOCK.S_STATE, L1D_CACHE_LOCK.E_STATE, L1D_CACHE_LOCK.M_STATE, L1D_ALL_REF.ANY,
L1D_ALL_REF.CACHEABLE, DTLB_MISSES.ANY, DTLB_MISSES.WALK_COMPLET, DTLB_MISSES.STLB_HIT, DTLB_MISSES.PDE_MISS, DTLB_MISSES.LARGE_WALK_C, LOAD_HIT_PRE, L1D_PREFETCH.REQUESTS, L1D_PREFETCH.MISS, L1D_PREFETCH.TRIGGERS,
L1D.M_REPL, L1D.M_EVICT, L1D.M_SNOOP_EVICT, L1D_CACHE_PREFETCH_LOCK, L1D_CACHE_LOCK_FB_HIT, CACHE_LOCK_CYCLES.L1D_L2, CACHE_LOCK_CYCLES.L1D, IO_TRANSACTIONS, L1I.CYCLES_STALLED, LARGE_ITLB.HIT, ITLB_MISSES.ANY,
ITLB_MISSES.WALK_COMPLET, ILD_STALL.LCP, ILD_STALL.MRU, ILD_STALL.IQ_FULL, ILD_STALL.REGEN, ILD_STALL.ANY, BR_INST_EXEC.COND, BR_INST_EXEC.DIRECT, BR_INST_EXEC.INDIRECT_NON, BR_INST_EXEC.NON_CALLS, BR_INST_EXEC.RETURN_NEA,
BR_INST_EXEC.DIRECT_NEAR, BR_INST_EXEC.INDIRECT_NEA, BR_INST_EXEC.NEAR_CALLS, BR_INST_EXEC.TAKEN, BR_MISP_EXEC.COND, BR_MISP_EXEC.DIRECT, BR_MISP_EXEC.INDIRECT_NO, BR_MISP_EXEC.NON_CALLS, BR_MISP_EXEC.RETURN_NEA,
BR_MISP_EXEC.DIRECT_NEAR, BR_MISP_EXEC.INDIRECT_NEA, BR_MISP_EXEC.NEAR_CALLS, BR_MISP_EXEC.TAKEN, RESOURCE_STALLS.ANY, RESOURCE_STALLS.LOAD, RESOURCE_STALLS.RS_FULL, RESOURCE_STALLS.STORE, RESOURCE_STALLS.ROB_FULL,
RESOURCE_STALLS.FPCW, RESOURCE_STALLS.MXCSR, RESOURCE_STALLS.OTHER, MACRO_INSTS.FUSIONS_DECO, BACLEAR_FORCE_IQ, ITLB_FLUSH, OFFCORE_REQUESTS.L1D_WR, UOPS_EXECUTED.PORT0, UOPS_EXECUTED.PORT1,
UOPS_EXECUTED.PORT2_COR, UOPS_EXECUTED.PORT3_COR, UOPS_EXECUTED.PORT4_COR, UOPS_EXECUTED.PORT5, UOPS_EXECUTED.PORT015, UOPS_EXECUTED.PORT234, OFFCORE_REQUESTS_SQ_FUL, OFF_CORE_RESPONSE_0, SNOOP_RESPONSE.HIT,
SNOOP_RESPONSE.HITE, SNOOP_RESPONSE.HITM, OFF_CORE_RESPONSE_1, INST_RETIRED.ANY_P, INST_RETIRED.X87, INST_RETIRED.MMX, UOPS_RETIRED.ANY, UOPS_RETIRED.RETIRE_SLOTS, UOPS_RETIRED.MACRO_FUSE, MACHINE_CLEARS.CYCLES,
MACHINE_CLEARS.MEM_ORDE, MACHINE_CLEARS.SMC, BR_INST_RETIRED.ALL_BRAN, BR_INST_RETIRED.CONDITION, BR_INST_RETIRED.NEAR_CAL, BR_MISP_RETIRED.ALL_BRAN, BR_MISP_RETIRED.NEAR_CAL, SSEX_UOPS_RETIRED.PACKED,
SSEX_UOPS_RETIRED.SCALAR, SSEX_UOPS_RETIRED.PACKED, SSEX_UOPS_RETIRED.SCALAR, SSEX_UOPS_RETIRED.VECTOR, ITLB_MISS_RETIRED, MEM_LOAD_RETIRED.L1D_HIT, MEM_LOAD_RETIRED.L2_HIT, MEM_LOAD_RETIRED.L3_UNS,
MEM_LOAD_RETIRED.OTHER_, MEM_LOAD_RETIRED.L3_MISS, MEM_LOAD_RETIRED.HIT_LFB, MEM_LOAD_RETIRED.DTLB_MI, FP_MMX_TRANS.TO_FP, FP_MMX_TRANS.TO_MMX, FP_MMX_TRANS.ANY, MACRO_INSTS.DECODED, UOPS_DECODED.MS,
UOPS_DECODED.ESP_FOLDING, UOPS_DECODED.ESP_SYNC, RAT_STALLS.FLAGS, RAT_STALLS.REGISTERS, RAT_STALLS.ROB_READ_POR, RAT_STALLS.SCOREBOARD, RAT_STALLS.ANY, SEG_RENAME_STALLS, ES_REG_RENAMES, UOP_UNFUSION,
BR_INST_DECODED, BPU_MISSED_CALL_RET, BACLEAR.BAD_TARGET, BPU_CLEARS.EARLY, BPU_CLEARS.LATE, L2_TRANSACTIONS.LOAD, L2_TRANSACTIONS.RFO, L2_TRANSACTIONS.IFETCH, L2_TRANSACTIONS.PREFETCH, L2_TRANSACTIONS.L1D_WB,
L2_TRANSACTIONS.FILL, L2_TRANSACTIONS.WB, L2_TRANSACTIONS.ANY, L2_LINES_IN.S_STATE, L2_LINES_IN.E_STATE, L2_LINES_IN.ANY, L2_LINES_OUT.DEMAND_CLEA, L2_LINES_OUT.DEMAND_DIRT, L2_LINES_OUT.PREFETCH_CLE,
L2_LINES_OUT.PREFETCH_DIR, L2_LINES_OUT.ANY, SQ_MISC.SPLIT_LOCK, SQ_FULL_STALL_CYCLES, FP_ASSIST.ALL, FP_ASSIST.OUTPUT, FP_ASSIST.INPUT, SIMD_INT_64.PACKED_MPY, SIMD_INT_64.PACKED_SHIFT, SIMD_INT_64.PACK,
SIMD_INT_64.UNPACK, SIMD_INT_64.PACKED_LOGICA, CPUID, SIMD_INT_64.PACKED_ARITH, SIMD_INT_64.SHUFFLE_MOVE, UNC_GQ_CYCLES_FULL.READ_, UNC_GQ_CYCLES_FULL.WRITE, UNC_GQ_CYCLES_FULL.PEER_, UNC_GQ_CYCLES_NOT_EMPTY,
UNC_GQ_CYCLES_NOT_EMPTY, UNC_GQ_CYCLES_NOT_EMPTY, UNC_GQ_ALLOC.READ_TRACK, UNC_GQ_ALLOC.RT_L3_MISS, UNC_GQ_ALLOC.RT_TO_L3_RE, UNC_GQ_ALLOC.RT_TO_RTID_, UNC_GQ_ALLOC.WT_TO_RTID, UNC_GQ_ALLOC.WRITE_TRAC,
UNC_GQ_ALLOC.PEER_PROBE, UNC_GQ_DATA.FROM_QPI, UNC_GQ_DATA.FROM_QMC, UNC_GQ_DATA.FROM_L3, UNC_GQ_DATA.FROM_CORES_, UNC_GQ_DATA.FROM_CORES_, UNC_GQ_DATA.TO_QPI_QMC, UNC_GQ_DATA.TO_L3,
UNC_GQ_DATA.TO_CORES, UNC_SNP_RESP_TO_LOCAL_H, UNC_SNP_RESP_TO_LOCAL_H, UNC_SNP_RESP_TO_LOCAL_H, UNC_SNP_RESP_TO_LOCAL_H, UNC_SNP_RESP_TO_LOCAL_H, UNC_SNP_RESP_TO_LOCAL_H, UNC_SNP_RESP_TO_REMOTE,
UNC_SNP_RESP_TO_REMOTE, UNC_SNP_RESP_TO_REMOTE, UNC_SNP_RESP_TO_REMOTE, UNC_SNP_RESP_TO_REMOTE, UNC_SNP_RESP_TO_REMOTE, UNC_SNP_RESP_TO_REMOTE, UNC_L3_HITS.READ, UNC_L3_HITS.WRITE, UNC_L3_HITS.PROBE,
UNC_L3_HITS.ANY, UNC_L3_MISS.READ, UNC_L3_MISS.WRITE, UNC_L3_MISS.PROBE, UNC_L3_MISS.ANY, UNC_L3_LINES_IN.M_STATE, UNC_L3_LINES_IN.E_STATE, UNC_L3_LINES_IN.S_STATE, UNC_L3_LINES_IN.F_STATE, UNC_L3_LINES_IN.ANY,
UNC_L3_LINES_OUT.M_STATE, UNC_L3_LINES_OUT.E_STATE, UNC_L3_LINES_OUT.S_STATE, UNC_L3_LINES_OUT.I_STATE, UNC_L3_LINES_OUT.F_STATE, UNC_L3_LINES_OUT.ANY, UNC_QHL_REQUESTS.IOH_RE, UNC_QHL_REQUESTS.IOH_WR,
UNC_QHL_REQUESTS.REMOTE, UNC_QHL_REQUESTS.REMOTE, UNC_QHL_REQUESTS.LOCAL_, UNC_QHL_REQUESTS.LOCAL_, UNC_QHL_CYCLES_FULL.IOH, UNC_QHL_CYCLES_FULL.REM, UNC_QHL_CYCLES_FULL.LOCA, UNC_QHL_CYCLES_NOT_EMPT,
UNC_QHL_CYCLES_NOT_EMPT, UNC_QHL_CYCLES_NOT_EMPT, UNC_QHL_OCCUPANCY.IOH, UNC_QHL_OCCUPANCY.REMOT, UNC_QHL_OCCUPANCY.LOCAL, UNC_QHL_ADDRESS_CONFLIC, UNC_QHL_ADDRESS_CONFLIC, UNC_QHL_CONFLICT_CYCLES.I,
UNC_QHL_CONFLICT_CYCLES., UNC_QHL_CONFLICT_CYCLES., UNC_QHL_TO_QMC_BYPASS, UNC_QMC_NORMAL_FULL.RE, UNC_QMC_NORMAL_FULL.RE, UNC_QMC_NORMAL_FULL.RE, UNC_QMC_NORMAL_FULL.WRI, UNC_QMC_NORMAL_FULL.WRI,
UNC_QMC_NORMAL_FULL.WRI, UNC_QMC_ISOC_FULL.READ.C, UNC_QMC_ISOC_FULL.READ.C, UNC_QMC_ISOC_FULL.READ.C, UNC_QMC_ISOC_FULL.WRITE.C, UNC_QMC_ISOC_FULL.WRITE.C, UNC_QMC_ISOC_FULL.WRITE.C, UNC_QMC_BUSY.READ.CH0,
UNC_QMC_BUSY.READ.CH1, UNC_QMC_BUSY.READ.CH2, UNC_QMC_BUSY.WRITE.CH0, UNC_QMC_BUSY.WRITE.CH1, UNC_QMC_BUSY.WRITE.CH2, UNC_QMC_OCCUPANCY.CH0, UNC_QMC_OCCUPANCY.CH1, UNC_QMC_OCCUPANCY.CH2,
UNC_QMC_ISSOC_OCCUPANCY., UNC_QMC_ISSOC_OCCUPANCY., UNC_QMC_ISSOC_OCCUPANCY., UNC_QMC_ISSOC_READS.ANY, UNC_QMC_NORMAL_READS.C, UNC_QMC_NORMAL_READS.C, UNC_QMC_NORMAL_READS.C,
UNC_QMC_NORMAL_READS.A, UNC_QMC_HIGH_PRIORITY_RE, UNC_QMC_HIGH_PRIORITY_RE, UNC_QMC_HIGH_PRIORITY_RE, UNC_QMC_HIGH_PRIORITY_RE, UNC_QMC_CRITICAL_PRIORIT, UNC_QMC_CRITICAL_PRIORIT, UNC_QMC_CRITICAL_PRIORIT,
UNC_QMC_CRITICAL_PRIORIT, UNC_QMC_WRITES.FULL.CH0, UNC_QMC_WRITES.FULL.CH1, UNC_QMC_WRITES.FULL.CH2, UNC_QMC_WRITES.FULL.ANY, UNC_QMC_WRITES.PARTIAL.C, UNC_QMC_WRITES.PARTIAL.C, UNC_QMC_WRITES.PARTIAL.C,
UNC_QMC_CANCEL.CH0, UNC_QMC_CANCEL.CH1, UNC_QMC_CANCEL.CH2, UNC_QMC_CANCEL.ANY, UNC_QMC_PRIORITY_UPDATE, UNC_QMC_PRIORITY_UPDATE, UNC_QMC_PRIORITY_UPDATE, UNC_QMC_PRIORITY_UPDATE,
UNC_QHL_FRC_ACK_CNFLTS.L, UNC_QPI_TX_STALLED_SINGL, UNC_QPI_TX_STALLED_SINGL, UNC_QPI_TX_STALLED_SINGL, UNC_QPI_TX_STALLED_SINGL, UNC_QPI_TX_STALLED_SINGL, UNC_QPI_TX_STALLED_SINGL, UNC_QPI_TX_STALLED_SINGL,
UNC_QPI_TX_STALLED_SINGL, UNC_QPI_TX_STALLED_MULTI, UNC_QPI_TX_STALLED_MULTI, UNC_QPI_TX_STALLED_MULTI, UNC_QPI_TX_STALLED_MULTI, UNC_QPI_TX_STALLED_MULTI, UNC_QPI_TX_STALLED_MULTI, UNC_QPI_TX_STALLED_MULTI,
UNC_QPI_TX_HEADER.BUSY.LI, UNC_QPI_TX_HEADER.BUSY.LI, UNC_QPI_RX_NO_PPT_CREDI, UNC_QPI_RX_NO_PPT_CREDI, UNC_DRAM_OPEN.CH0, UNC_DRAM_OPEN.CH1, UNC_DRAM_OPEN.CH2, UNC_DRAM_PAGE_CLOSE.CH0,
UNC_DRAM_PAGE_CLOSE.CH1, UNC_DRAM_PAGE_CLOSE.CH2, UNC_DRAM_PAGE_MISS.CH0, UNC_DRAM_PAGE_MISS.CH1, UNC_DRAM_PAGE_MISS.CH2, UNC_DRAM_READ_CAS.CH0, UNC_DRAM_READ_CAS.AUTO, UNC_DRAM_READ_CAS.CH1,
UNC_DRAM_READ_CAS.AUTO, UNC_DRAM_READ_CAS.CH2, UNC_DRAM_READ_CAS.AUTO, UNC_DRAM_WRITE_CAS.CH0, UNC_DRAM_WRITE_CAS.AUTO, UNC_DRAM_WRITE_CAS.CH1, UNC_DRAM_WRITE_CAS.AUTO, UNC_DRAM_WRITE_CAS.CH2,
UNC_DRAM_WRITE_CAS.AUTO, UNC_DRAM_REFRESH.CH0

L1I.HITS:
Counts all instruction fetches that hit the L1
instruction cache.

BR_MISP_EXEC.COND:
Counts the number of mispredicted conditional
near branch instructions executed, but not
necessarily retired.

OpenMP and Performance

Dirk Schmidl | IT Center der RWTH Aachen University
42

Hardware Performance Counters

Derived Metrics

 Clock cycles per Instructions (CPI)

 CPI indicates if the application is utilizing the CPU or not

 Take care: Doing “something” does not always mean doing “something useful”.

 Floating Point Operations per second (FLOPS)

 How many arithmetic operations are done per second?

 Floating Point operations are normally really computing and for some

algorithms the number of floating point operations needed can be determined.

OpenMP and Performance

Dirk Schmidl | IT Center der RWTH Aachen University
43

Hardware Performance Counters

CPI rate (Clock cycles per instruction): In theory modern processors

can finish 4 instructions in 1 cycle, so a CPI rate of 0.25 is possible. A

value between 0.25 and 1 is often considered as good for HPC

applications.

1

1

Introduction to OpenMP

Dirk Schmidl, Christian Terboven | IT Center der RWTH Aachen University
44

Counters for Remote Traffic

 Stream example (𝒂 = 𝒃 + 𝐬 ∗ 𝒄) with and without parallel initialization.

 2 socket sytem with Xeon X5675 processors, 12 OpenMP threads

copy scale add triad

ser_init 18.8 GB/s 18.5 GB/s 18.1 GB/s 18.2 GB/s

par_init 41.3 GB/s 39.3 GB/s 40.3 GB/s 40.4 GB/s

CPU 0

T1 T2 T3

T4 T5 T6

CPU 1

T7 T8 T9

T10 T11 T12

MEM

a[0,N-1]

b[0,N-1]

c[0,N-1]

CPU 0

T1 T2 T3

T4 T5 T6

CPU 1

T7 T8 T9

T10 T11 T12

MEM

a[0,(N/2)-1]

b[0,(N/2)-1]

c[0,(N/2)-1]

ser_init:

par_init:

MEM

MEM

a[N/2,N-1]

b[N/2,N-1]

c[N/2,N-1]

OpenMP and Performance

Dirk Schmidl | IT Center der RWTH Aachen University
45

Counters for Remote Traffic

 Hardware counters can measure local and remote memory

accesses.

 MEM_UNCORE_RETIRED.LOCAL_DRAM_AND_REMOTE_CACHE_HIT

accesses to local memory

 MEM_UNCORE_RETIRED.REMOTE_DRAM

accesses to remote memory

 Absolute values are hard to interpret, but the ratio between both is

useful.

OpenMP and Performance

Dirk Schmidl | IT Center der RWTH Aachen University
46

Counters for Remote Traffic

 Detecting bad memory accesses for the stream benchmark.

 Ratio of remote memory accesses:

copy scale add triad

ser_init 52% 50% 50% 51%

par_init 0.5% 1.7% 0.6% 0.2%

Percentage of remote accesses for ser_init and par_init stream benchmark.

OpenMP and Performance

Dirk Schmidl | IT Center der RWTH Aachen University
47

Back to the CG Solver

OpenMP and Performance

Dirk Schmidl | IT Center der RWTH Aachen University
48

Case Study CG: Step 1

Hotspot analysis of the serial code:

Hotspots are:

1. matrix-vector multiplication

2. scaled vector additions

3. dot product

2.
1.

3.
2.

2.
3.

OpenMP and Performance

Dirk Schmidl | IT Center der RWTH Aachen University
49

Case Study CG: Step 1

Tuning:

 parallelize all hotspots with a parallel for construct

 use a reduction for the dot-product

 activate thread binding

0

2

4

6

8

10

0

1000

2000

3000

4000

5000

1 2 4 8 16 32 64 128

Sp
e

e
d

u
p

R
u

n
ti

m
e

 in
 s

e
c.

Number of Threads

Runtime - no binding Runtime - binding

Speedup - no binding Speedup - binding

OpenMP and Performance

Dirk Schmidl | IT Center der RWTH Aachen University
50

Case Study CG: Step 2

Hotspot analysis of naive parallel version:

A lot of remote accesses occur in nearly all places.

OpenMP and Performance

Dirk Schmidl | IT Center der RWTH Aachen University
51

Case Study CG: Step 2

Tuning:

 Initialize the data in parallel

 Add parallel for constructs to all initialization loops

 Scalability improved a lot by this tuning on the large machine.

0

5

10

15

20

25

30

35

0

200

400

600

800

1000

1200

1400

1 2 4 8 16 32 64 128

Sp
e

e
d

u
p

R
u

n
ti

m
e

 in
 s

e
c.

Number of Threads

Runtime Speedup

OpenMP and Performance

Dirk Schmidl | IT Center der RWTH Aachen University
52

Case Study CG: Step 3

 Analyzing load imbalance in the concurrency view:

 10 seconds out of ~35 seconds are overhead time

 other parallel regions which are called the same amount of time only

produce 1 second of overhead

OpenMP and Performance

Dirk Schmidl | IT Center der RWTH Aachen University
53

Case Study CG: Step 3

 Tuning:

 pre-calculate a schedule for the matrix-vector multiplication, so that the non-

zeros are distributed evenly instead of the rows

0

10

20

30

40

50

0

200

400

600

800

1000

1200

1400

1 2 4 8 16 32 64 128

Sp
e

e
d

u
p

R
u

n
ti

m
e

 in
 s

e
c.

Number of Threads

Runtime - precalculated

Speedup - precalculated

OpenMP and Performance

Dirk Schmidl | IT Center der RWTH Aachen University
54

The Roofline Model

OpenMP and Performance

Dirk Schmidl | IT Center der RWTH Aachen University
55

When to stop tuning?

 Depends on many different factors:

 How often is the code program used?

 What are the runtime requirements?

 Which performance can I expect?

 Investigating kernels may help to understand larger applications.

OpenMP and Performance

Dirk Schmidl | IT Center der RWTH Aachen University
56

Roofline Model

 Peak performance of a 4 socket Nehalem Server is 256 GFLOPS.

OpenMP and Performance

Dirk Schmidl | IT Center der RWTH Aachen University
57

Roofline Model

 Memory bandwidth measured with Stream benchmark is about

75 GB/s.

OpenMP and Performance

Dirk Schmidl | IT Center der RWTH Aachen University
58

Roofline Model

 The “Roofline” describes the peak performance the system can

reach depending on the “operational intensity” of the algorithm.

OpenMP and Performance

Dirk Schmidl | IT Center der RWTH Aachen University
59

Roofline Model

Example: Sparse Matrix Vector Multiplication y=Ax

Given:

 x and y are in the cache

 A is too large for the cache

 measured performance was

12 GFLOPS

• 1 ADD and 1 MULT per element
• load of value (double) and

index (int) per element
-> 2 Flops / 12 Byte = 1/6 Flops/Byte

12,5

OpenMP and Performance

Dirk Schmidl | IT Center der RWTH Aachen University
60

Questions?

