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Tuning Cycle ‘ RWTH

Performance Tuning aims to improve the runtime of an existing
application.

[ Collecting }

[ Testing } [ Analyzing }

[ Optimizing }
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Hotspots

A Hotspot is a source code region where a significant part of the
runtime is spent.

90/10 law

90% of the runtime in a program is spent in 10% of the code.

Hotspots can indicate where to start with serial optimization or
shared memory parallelization.

Use a tool to identify hotspots. In many cases the results are
surprising.

3 OpenMP and Performance
Dirk Schmidl | IT Center der RWTH Aachen University




RWTH

Performance Tools
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VTune Amplifier XE RWTH

Performance Analyses for

—> Serial Applications

— Shared Memory Parallel Applications

Sampling Based measurements
Features:

- Hot Spot Analysis
— Concurrency Analysis
- Wait

- Hardware Performance Counter Support
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Stream

RWTH

Standard Benchmark to measure memory performance.

Version is parallelized with OpenMP.

Measures Memory bandwidth for:
y=x (copy)
y=s*x (scale)
y=x+z (add)
y=x+s*z (triad)

#pragma omp parallel for
for (j=0; j<N; j++)
b[j] = scalar*c]j];

for double vectors x,y,z and scalar double value s

Function Rate (MB/s) Avgtime Mintime Maxtime
Copy: 33237.0185 0.0050 0.0048 0.0055
Scale: 33304.6471 0.0049 0.0048 0.0059
Add: 35456.0586 0.0070 0.0068 0.0073
Triad: 36030.9600 0.0069 0.0067 0.0072
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Amplifier XE — Measurement Runs RWTH

1 Basic Analysis Types

2 Hardware Counter Analysis Types, choose Nehalem Architecture, on cluster-linux-tuning.

3 Analysis for Intel Xeon Phi coprocessors, choose this for OpenMP target programs.

@ Choose Analysis Type

& /B

| F Algorithm Analysis 1
A Basic Hotspots
A Advanced Hotspots
A Concurrency
A Locks and Waits
[» | Intel Core 2 Processor Analysis
= | Nehalem [ Westmere Analysis
A General Exploration 2
A Read Bandwidth
A Write Bandwidth
A Memory Access
A Cycles and uOps
A Front End Investigation
[* (= sandy Bridge / vy Bridge / Haswell Analysis
[+ |=F Intel Atom Processor Analysis
~ | ¥ Knights Corner Platform Analysis 3
.Iﬁ'." otspots |
A General Exploration

A Bandwidth
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New Ampli... %

Intel VTune Amplifier XE 201

Hotspots - Knights Corner Platform | Copy |

|dentify time-consuming code in your application. Advanced Hotspots analysis
{formerly, Lightweight Hotspots) uses the kernel driver and extends the hotspots
analysis by collecting call stacks, context switch and statistical call count data and
analyzing the CPl (Cycles Per Instruction) metric. At the default level this analysis
uses higher frequency sampling at lower overhead compared to Basic Hotspo...

Project Propertiﬁ
—_

List of Intel Xeon Phi coprocessor cards: |D =

[] Analyze user tasks

(=) Details

[Events configured for CPU: Intel(R) Xeon(R) E5 processor

the Sample After values in the table below by a multiplier. The multiplier
depends on the value of the Duration time estimate option specified in

Fhm Mrmimet Meae mrekime Aislae

NOTE: For analysis purposes, Intel Vune Amplifier XE 2013 may adjust ﬁ

Event Name Sample After Event Description
CPU_CLKE _UNHALTED 10000000 1
INSTRUCTIONS_EXECUTED 10000000
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Amplifier XE — Hotspot Analysis

RWTH

Double clicking on a function opens source code view.

1 Source Code View (only if compiled with -g)

2 Hotspot: Add Operation of Stream

3 Metrics View
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|. Source || Assembly | o El
Line Source
238 #else
23% #pragma omp parallel for
246 for (j=0: j=N; j++)
242 #endif 2
243 times[2][k] = mysecond() - times[2][k]:
244
245 times[3][k] = mysecond();
246 #ifdef TUNED
247 tuned STREAM Triad(scalar);
248 #else
249 #pragma omp parallel for
258 for (j=0; j=N; j++)
251 alj] = b[jl+scalar*c[i]:
252 #endif
253 times[3][k] = mysecond() - times[3][k];
254 } 1
Selected 1 row(s):

Hotspots
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Load Balancing
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Load imbalance RWNTH

Load imbalance occurs in a parallel program

- when multiple threads synchronize at global synchronization points

— and these threads need a different amount of time to finish the calculation.

barrier 1 barrier 2
T1:
imbalanced
workload T2:
T3:
barrier 1 barrier 2
T1:
balanced 7.
workload '
T3:
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Case Study: CG RWTH

Sparse Linear Algebra
— Sparse Linear Equation Systems occur in

many scientific disciplines.

— Sparse matrix-vector multiplications (SpMxV)

are the dominant part in many iterative

solvers (like the CG) for such systems.

— number of non-zeros << n*n

Beijing Botanical Garden

Oben Rechts:  Orginal Gebaude
Unten Rechts: Modell
Unten Links: Matrix

(Quelle: Beijing Botanical Garden and University of
Florida, Sparse Matrix Collection)
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Case Study: CG RWTH

value; 1
index:

row.

for (i = @; 1 < A.num_rows; i++){
sum = 0.0;
for (nz=A.row[i]; nz<A.row[i+1]; ++nz){
sum+= A.value[nz]*x[A.index[nz]];

}

_— O N =
SO NO
_w oo
- o O O

y[i] = sum;

y=A % X

}

Format: compressed row storage

store all values and columns in arrays (length nnz)
store beginning of a new row in a third array (length n+1)

O P2 O
R POl
"]
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Load Imbalance in VTune ‘ RWTH

Grouping execution time of parallel regions by threads helps to
detect load imbalance.

Significant potions of Spin Time also indicate load balance
problems.

Different loop schedules might help to avoid these problems.

B Basic Hotspots Hotspots by CPU Usage viewpoint (change) (3

" Analysis Type | | B® Collection Log | | ¥ Summany n:ﬁ EhRe BRIl | % Caller/Callee | | &% Top-down Tree ETE:-M and Frames

Grouping: Process / Function / Thread / Call Stack
Process / Function / Thread [ Call Stack ERLEmeknglllzat oy ﬁ Sl e e Module Start Address
@ idie B Poor [0 Ok (@ Ideal [ Over Overhead Time Spin Time
- kemel smr-FASTexe | 23373 G 7 sdes I —
~run_loopsompsparallel for@ss 14.906s 0s Ds kernel_smxv-F ... Oxd0edde
D’_start (TID: 28437) 3.708= (N 0s 0s kernel_smxw-F ... Oxd0elde
[*OMP Worker Thread #1 (TID: 28583) 2.810= Os 0= kernel_smxv-F ... 0x40e0de
[* OMP Worker Thread #2 (TID: 2B584) 2.639s [ Os 0s| kernel_smxv-F ... Ox40elde
[» OMP Worker Thread #3 (TID: 28585) 2.319: [ 0s 0z kernel_smxv-F .. Oxd0elde
[ OMP Worker Thread #4 (TID: 28586) 1.720s 0 0s 0s kernel_smxv-F ... O0xd0elde
[» OMP Worker Thread #5 (TID: 28587) 1.710= [0 0s 0z kernel_smxv-F .. Oxd0elde
[* [OpenMP worker] 7.536s I 0s 7.5365 libiompS.so 0=Bhf70
D’run_I00p$omp$parallel_for@45 0.891sl Os 0s kernel_smxw-F ... Oxd0e5da
D’Iaperf::Inad_drnps_matlab_matrix-fdnuble. int= 0.030s| Os 0= kernel_smxv-F ... 0x41d570
D’[DpenMP‘fnrk] 0.010s| Os 0.010s libiomp5.s0 Dx46dB0
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Load Imbalance in VTune

The Timeline can help to mvestlgate the problem further.

QP QO

pr—— — e ——
565 5?5

555

_start (TID: 28437

OMP Worker Threa

OMP Worker Threa

OMP Worker Threa

Thread

OMP Worker Threa

OMP Worker Threa

CPU Usage

Frame Rate

Zoomin

Qe G-

.to one iteration is also possible.

58270ms
I . |

in, e.

8210ms

ol

5822[]n‘|s 58230ms 58240ms 58250ms 58260ms 58280m:
||||||||| PR T T T T T SN R N R T PEEFEEEE . |

_start (TID: 28437
OMP Worker Threa
OMP Worker Threa
OMP Worker Threa
OMP Worker Threa
OMP Worker Threa

Thread

CPU Usage

Frame Rate

* Filter: 29.7% is shown +

.,
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Ruler Area
P Frame

Thread

[+] B Running
Lk CPU Time

[+] duk Overhead...
[]® CPU Sample

[#] CPU Usage
Lk CPU Time

Ruler Area
F=1 Frame

Thread

[ Running
Lk CPU Time
Uk Overhead...
[]% CPU Sample
CPU Usage
Wk CPU Time
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Parallel Loop Scheduling
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Demo Rm

Load Balancing
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Influencing the For Loop Scheduling RWTH

for-construct: OpenMP allows to influence how the iterations are
scheduled among the threads of the team, via the schedule clause:

- schedule (static [, chunk]): Iteration space divided into blocks of
chunk size, blocks are assigned to threads in a round-robin fashion. If chunk

IS not specified: #threads blocks.

- schedule (dynamic [, chunk]): Iteration space divided into blocks
of chunk (not specified: 1) size, blocks are scheduled to threads in the order

in which threads finish previous blocks.

- schedule (guided [, chunk]): Similar to dynamic, but block size

starts with implementation-defined value, then is decreased exponentially
down to chunk.

Default on most implementations is schedule (static).
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False Sharing
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Memory Bottleneck RWTH

There is a growing gap between core and memory performance:
- memory, since 1980: 1.07x per year improvement in latency
—> single core: since 1980: 1.25x per year until 1986, 1.52x p. y. until 2000,

1.20x per year until 2005, then no change on a per-core basis

100,000

110, 000 D ;

1010 T

Performance

100_ ................................................................................................................................

10._ ............................................................................................................................... e

1995 2000 2005 2010

Year

1980 1985 1990

- Source: John L. Hennessy, Stanford University, and David A. Patterson, University of California, September 25, 2012
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Caches

“ CPU is fast
- Order of 3.0 GHz

N Caches: on-chip cache

- Fast, but expensive
off-chip cache

- Thus small, order of MB

“ Memory is slow
—> Order of 0.3 GHz

memory

- Large, order of GB

@ A good utilization of caches is
crucial for good performance of HPC applications!
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Visualization of the Memory RWTH
Hierarchy

Latency on the Intel Westmere-EP 3.06 GHz processor

20 - - - -
5 1 |
| | |
16 -
| | |
14 -
y | | |
- (o)) Q (o))
10 - sh < =
o o] o | o
_'_,8_ (@] Q Q
36 1 d 11
| |
4 - | |
2 - | |
O IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
T3535ege28222e228
- O N+ O T O3 0N 0o N

Memory Footprint

21 OpenMP and Performance
Dirk Schmidl | IT Center der RWTH Aachen University



Data in Caches ‘ RWTH

When data is used, it is copied into

caches. /
The hardware always copies

chunks into the cache, so called
cache-lines. on-chip cache

This is useful, when:

— the data is used frequently (temporal

consistency)

— consecutive data is used which is on

the same cache-line (special
memory

consistency)
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False Sharing ‘ RWTH

False Sharing occurs when

- different threads use elements of the

same cache-line

- one of the threads writes to the

cache-line

As aresult the cache line is moved
between the threads, also there is
no real dependency

Note: False Sharing is a

performance problem, not a
correctness issue
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‘R“m'l

Summing up vector
elements again



It‘s your turn: Make It Scale! RWTH

#pragma omp parallel

doi=0, 24
{ s=s+ali)
end do
#pragma omp for
for (i = 0; 1 < 99; i++) doi =25, 49
{ s=s+ali)
doi=0,99 end do
s=s+a(i) | =P _
s = s + al[i]l; end do doi =50, 74
s=s+a(i)
end do
}
doi=75,99
s=s+a(i)
} // end parallel end do

25 OpenMP and Performance
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False Sharing RWTH

double s priv[nthreads];
#ipragma omp parallel num threads (nthreads)
{

int t=omp get thread num();

#pragma omp for

for (1 = 0; i < 99; i++)

{

s priv([t] += al[i];

}
} // end parallel
for (1 = 0, 1 < nthreads; i++)
{

s += s privi[i];

}
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False Sharing

Standard 1121314

With padding 1

no performance benefit for
more threads

Reason: false sharing of
S_priv
Solution: padding so that

only one variable per cache
line is used

cache line 1

4000

3000

MFLOPS
N
=]
=)
<]

1000

0

RWTH

S —

e —

1 2 3 45 6 7 8 9 1011 12

#threads

—with false-shaxiitg falsewitdning false sharing

cache line 2
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NUMA Architectures
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Non-Uniform Memory Arch. n Rw&!i’\li\EAlgglw

Core Core Core Core
double* A;

A = (double¥*) Ocna_cc :(iap ocna_cC :iep ocna-((:: :iep 0er':l-cc :(iép
malloc (N * sizeof (double)) ;

interconnect

for (int i = 0; i < N; i++) {
A[i] = 0.0;
} memory memory

29 OpenMP and Performance
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About Data Distribution RWTH

Important aspect on cc-NUMA systems
—> If not optimal, longer memory access times and hotspots

OpenMP does not provide support for cc-NUMA
Placement comes from the Operating System

— This is therefore Operating System dependent

Windows, Linux and Solaris all use the “First Touch” placement
policy by default

- May be possible to override default (check the docs)

OpenMP and Performance
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Non-Uniform Memory Arch.

@ Serial code: all array elements are allocated in the memory of the
NUMA node containing the core executing this thread

Core Core Core Core
double* A;

A = (double¥*) ﬁ;ﬁ:ﬁ CE;E? 2;ig) i;ﬁ:?
malloc (N * sizeof (double)) ;

interconnect

for (int i = 0; i < N; i++) {
A[i] = 0.0;
} memory memory
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Non-Uniform Memory Arch.

@ First Touch w/ parallel code: all array elements are allocated in the
memory of the NUMA node containing the core executing the thread
Initializing the respective partition

Core Core Core Core
double* A;

A = (double¥*) ﬁ;ﬁ:ﬁ CE;E? i;ig) ﬁgﬁzf
malloc (N * sizeof (double)) ;

omp set num threads(2);

interconnect

#pragma omp parallel for

for (int 1 = 0; 1 < N; i++) {
A[i] = 0.0;

} memory memory
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Get Info on the System Topology RWTH

Before you design a strategy for thread binding, you should have a
basic understanding of the system topology. Please use one of the
following options on a target machine:

- Intel MPI‘s cpuinfo tool
< module switch openmpi intelmpi
- cpuinfo
— Delivers information about the number of sockets (= packages) and the

mapping of processor ids used by the operating system to cpu cores.

- hwlocs' hwloc-1s tool

2> hwloc-1s

- Displays a graphical representation of the system topology, separated into
NUMA nodes, along with the mapping of processor ids used by the

operating system to cpu cores and additional info on caches.

33 OpenMP and Performance
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Decide for Binding Strategy RWTH

Selecting the ,,right*“ binding strategy depends not only on the
topology, but also on the characteristics of your application.

— Putting threads far apart, i.e. on different sockets

—>May improve the aggregated memory bandwidth available to your

application
—>May improve the combined cache size available to your application
—>May decrease performance of synchronization constructs

— Putting threads close together, i.e. on two adjacent cores which possibly

shared some caches
—>May improve performance of synchronization constructs

—>May decrease the available memory bandwidth and cache size

If you are unsure, just try a few options and then select the best one.
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OpenMP 4.0: Places + Binding Policies (1/2) RWTIH

Define OpenMP Places

— set of OpenMP threads running on one or more processors

—> can be defined by the user, i.e. OMP PLACES=cores

Define a set of OpenMP Thread Affinity Policies
- SPREAD: spread OpenMP threads evenly among the places

- CLOSE: pack OpenMP threads near master thread
- MASTER: collocate OpenMP thread with master thread

Goals

—> user has a way to specify where to execute OpenMP threads for

—> locality between OpenMP threads / less false sharing / memory bandwidth

35 OpenMP and Performance
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Places ‘ RWTH

Assume the following machine:

— 2 sockets, 4 cores per socket, 4 hyper-threads per core

Abstract names for OMP_PLACES:
—> threads: Each place corresponds to a single hardware thread on the target

machine.

—> cores: Each place corresponds to a single core (having one or more hardware

threads) on the target machine.

— sockets: Each place corresponds to a single socket (consisting of one or more

cores) on the target machine.
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OpenMP 4.0: Places + Binding Policies (2/2) RWTH

Example‘s Objective:
—> separate cores for outer loop and near cores for inner loop
Outer Parallel Region: proc_bind(spread), Inner: proc_bind(close)

—> spread creates partition, compact binds threads within respective partition
OMP PLACES=(0,1,2,3), (4,5,6,7), ... = (0-3):8:4 = cores

#pragma omp parallel proc bind(spread)
#pragma omp parallel proc bind(close)

Example
- initial 000 0000 0000 0000 0000 0000 0000 0000

- spread 4
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Serial vs. Parallel Initialization

“ Performance of OpenMP-parallel STREAM vector assignment
measured on 2-socket Intel® Xeon® X5675 (,,Westmere®) using
Intel® Composer XE 2013 compiler with different thread binding
options:

50000

<
0 40000
=
£30000

=
220000
<o 1 Il 1l “I I “l JHEH 1
1 2 £ 8 12 16 20 24

Number of Threads
M serial init. / no binding M serial init. / close binding
M serial init. / spread binding NUMA aware init. / close binding

m NUMA aware init. / spread binding
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Detecting remote accesses



‘R\Nﬂ'l

Hardware Counters

/Definition: Hardware Performance Counters \
In computers, hardware performance counters, or hardware counters are a set of special-
purpose registers built into modern microprocessors to store the counts of hardware-
related activities within computer systems. Advanced users often rely on those counters

to conduct low-level performance analysis or tuning.

Qrom: http://en.wikipedia.org) /
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Hardware Performance Counters

41

Hardware Counters of our Intel Nehalem Processor:;

SB_DRAIN.ANY, STORE_BLOCKS.AT_RET, STOH DAD_MISSES.PDE_MIS, DTLB_LOAD_MISSES.LARGE_W,
MEM_INST_RETIRED.LOADS, MEM_INST_RET| I_l I H ITS O MEM_UNCORE_RETIRED.L3_D,
MEM_UNCORE_RETIRED.OTHE, MEM_UNCO¥ * * MP_OPS_EXE.MMX, FP_COMP_OPS_EXE.SSE_FP,
FP_COMP_OPS_EXE.SSE2_INT, FP_COMP_OP| . . . T_128.PACKED_SHIFT, SIMD_INT_128.PACK,
SIMD_INT_128.UNPACK, SIMD_INT_128.PAC| C t I I t t f t h th t h t th Ll B, LOAD_DISPATCH.ANY, ARITH.CYCLES_DIV_BUSY,
INST_QUEUE_WRITES, INST_DECODED.DECO, ounts a Instruction re €s d I € D_HIT, L2_RQSTS.RFO_MISS, L2_RQSTS.RFOS,
L2_RQSTS.IFETCH_HIT, L2_RQSTS.IFETCH_MIS 5.DEMAND.S_S, L2_DATA_RQSTS.DEMAND.E_S,
L2_DATA_RQSTS.DEMAND.M_, L2_DATA_RQ. t t h h_RQSTS.PREFETCH.M, L2_WRITE.RFO.|_STATE,
L2_WRITE.RFO.S_STATE, L2_WRITE.RFO.M_S |nS ru C IO n Ca che E, L2_WRITE.LOCK.HIT, L2_WRITE.LOCK.MESI,
L1D_WB_L2.|_STATE, L1D_WB_L2.5_STATE, LID_WB_. nv DowWE 1D_CACHE_LD.S_STATE, L1D_CACHE_LD.E_STATE,
L1D_CACHE_ LD.M_STATE, L1D_CACHE_LD.MESI, LLD_CACHE_ST.S STATE L1D_CACHE_STE STATE L1D_ CACHE _ST.M_STATE, L1D CACHE_ LOCK HIT, L1D CACHE LOCK.S._ STATE L1D_CACHE_LOCK.E_STATE, L1D_CACHE_LOCK.M_STATE, LLD_ALL_REF.ANY,
L1D_ALL_REF.CACHEABLE, DTLB_MISSES.ANY, DTLB_MISSES.WALK_COMPLET, DTLB_MISSES.STLB_HIT, DTLB_MISSES.PDE_MISS, DTLB_MISSES.LARGE_WALK_C, LOAD_HIT_PRE, L1D_PREFETCH.REQUESTS, L1D_PREFETCH.MISS, L1D_PREFETCH.TRIGGERS,
L1D.M_REPL, L1D.M_EVICT, L1D.M_SNOOP_EVICT, L1D_CACHE_PREFETCH_LOCK, L1D_CACHE_LOCK_FB_HIT, CACHE_LOCK_CYCLES.L1D_L2, CACHE_LOCK_CYCLES.L1D, I0_TRANSACTIONS, L1I.CYCLES_STALLED, LARGE_ITLB.HIT, ITLB_MISSES.ANY,
ITLB_MISSES.WALK_COMPLET, ILD_STALL.LCP, ILD_STALL.MRU, ILD_STALL.IQ_FULL, ILD_STALL.REGEN, ILD_STALL.ANY, BR_INST_EXEC.COND, BR_INST_EXEC.DIRECT, BR_INST_EXEC.INDIRECT_NON, BR_INST_EXEC.NON_CALLS, BR_INST_EXEC.RETURN_NEA,
BR_INST_EXEC.DIRECT_NEAR, BR_INST_EXEC.INDIRECT_NEA, BR_INST_EXEC.NEAR_CALLS, BR_INST_EXEC.TAKEN, BR_MISP_EXEC.COND, BR_MISP_EXEC.DIRECT, BR_MISP_EXEC.INDIRECT_NO, BR_MISP_EXEC.NON_CALLS, BR_MISP_EXEC.RETURN_NEA,
BR_MISP_EXEC.DIRECT_NEAR, BR_MISP_EXEC.INDIRECT_NEA, BR_MISP_EXEC.NEAR_CALLS, BR_MISP_EXEC.TAKEN, RESOURCE_STALLS.ANY, RESOURCE_STALLS.LOAD, RESOURCE_STALLS.RS_FULL, RESOURCE_STALLS.STORE, RESOURCE_STALLS.ROB_FULL,
RESOURCE_STALLS.FPCW, RESOURCE_STALLS.MXCSR, RESOURCE_STALLS.OTHER, MACRO_INSTS.FUSIONS_DECO, BACLEAR_FORCE_IQ, ITLB_FLUSH, OFFCORE_REQUESTS.L1D_WR, UOPS_EXECUTED.PORTO, UOPS_EXECUTED.PORT1,
UOPS_EXECUTED.PORT2_COR, UOPS_EXECUTED.PORT3_COR, UOPS_EXECUTED.PORT4_COR, UOPS_EXECUTED.PORTS, UOPS_EXECUTED.PORTO15, UOPS_EXECUTED.PORT234, OFFCORE_REQUESTS_SQ_FUL, OFF_CORE_RESPONSE_0, SNOOP_RESPONSE.HIT,
SNOOP_RESPONSE.HITE, SNOOP_RESPONSE.HITM, OFF_CORE_RESPONSE_1, INST_RETIRED.ANY_P, INST_RETIRED.X87, INST_RETIRED.MMX, UOPS_RETIRED.ANY, UOPS_RETIRED.RETIRE_SLOTS, UOPS_RETIRED.MACRO_FUSE, MACHINE_CLEARS.CYCLES,
MACHINE_CLEARS.MEM_ORDE, MACHINE_CLEARS.SMC, BR_INST_RETIRED.ALL_BRAN, BR_INST_RETIRED.CONDITION, BR_INST_RETIRED.NEAR_CAL, BR_MISP_RETIRED.ALL_BRAN, BR_MISP_RETIRED.NEAR_CAL, SSEX_UOPS_RETIRED.PACKED,
SSEX_UOPS_RETIRED.SCALAR, SSEX_UOPS_RETIRED.PACKED, SSEX_UOPS_RETIRED.SCALAR, SSEX_UOPS_RETIRED.VECTOR, ITLB_MISS_RETIRED, MEM_LOAD_RETIRED.L1D_HIT, MEM_LOAD_RETIRED.L2_HIT, MEM_LOAD_RETIRED.L3_UNS,
MEM_LOAD_RETIRED.OTHER_, MEM_LOAD_RETIRED.L3_MISS, MEM_LOAD_RETIRED.HIT_LFB, MEM_LOAD_RETIRED.DTLB_MI, FP_MMX_TRANS.TO_FP, FP_MMX_TRANS.TO_MMX, FP_MMX_TRANS.ANY, MACRO_INSTS.DECODED, UOPS_DECODED.MS,
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Hardware Performance Counters RWTH

Derived Metrics

Clock cycles per Instructions (CPI)

— CPIl indicates if the application is utilizing the CPU or not

— Take care: Doing “something” does not always mean doing “something useful”.
Floating Point Operations per second (FLOPS)

- How many arithmetic operations are done per second?

— Floating Point operations are normally really computing and for some

algorithms the number of floating point operations needed can be determined.
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Hardware Performance Counters RWTH

1 CPIl rate (Clock cycles per instruction): In theory modern processors
can finish 4 instructions in 1 cycle, so a CPI rate of 0.25 is possible. A
value between 0.25 and 1 is often considered as good for HPC
applications.

Elapsed Time: 1.872s

Hardware Event Count: 125,574,000,000
CPU _CLK_UNHALTED.THREAD: 6.3462e+10
INST_RETIRED.ANY: 6.2112e+10
1 CPIRate: 1.022

The CPl may be too high. This could be caused by issues such as memol
instructions. Explore the other hardware-related metrics to identify wha

Retire Stalls: 0.570s
A high number of retire stalls is detected. This may result from branch n
issues. Use this metric to find where you have stalled instructions. Once

LLC Miss: 0.013s
LLC Load Misses Serviced By Remote DRAM: 0.001s
Instruction Starvation: 0.098s
Branch Mispredict: 0.001s

Execution Stalls: 0.288s
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Counters for Remote Traffic ‘ RWTH

Stream example (@ = b + s * ¢) with and without parallel initialization.

- 2 socket sytem with Xeon X5675 processors, 12 OpenMP threads

__ lcopy lscale  ladd __|triad

ser_init 18.8GB/s 18.5GB/s 18.1GB/s 18.2 GB/s
par_init 41.3GB/s 39.3GB/s 40.3GB/s 40.4GB/s

ser_init: T1 T2 T3 T7 T8 T9
CPU O CPU 1 MEM

T4 T5 T6 T10 T11 T12

par_init: T1 T2 T3 T7 T8 T9

CPUO CPU1
0

T4 T5 T6 TI0 T11 T12
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Counters for Remote Traffic RWTH

Hardware counters can measure local and remote memory
accesses.

- MEM_UNCORE_RETIRED.LOCAL_DRAM_AND REMOTE_CACHE_HIT
accesses to local memory
- MEM_UNCORE_RETIRED.REMOTE_DRAM

accesses to remote memory

Absolute values are hard to interpret, but the ratio between both is
useful.
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Counters for Remote Traffic RWTH

Detecting bad memory accesses for the stream benchmark.

: Source | | Assembly | |§| |§| |E| |E| Assembly grouping: | Address

So Hardware Event Count: Total by Hardware Event Type
Y Source
Li. MEM_UMNCORE_RETIRED.LOCAL DRAM AND REMOTE_CACHE_HIT MEM_UNCORE_RETIRED.REMOTE_DRAM

232 #pragma omp parallel for
233 for (j=0; j<N; i++) 20,000 20,000 |

Ratio of remote memory accesses:

____ lcopy  [scale ladd _lwiad

ser_init 52% 50% 50% 51%
par_init 0.5% 1.7% 0.6% 0.2%

Percentage of remote accesses for ser_init and par_init stream benchmark.
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RWTH

Back to the CG Solver

47 OpenMP and Performance
Dirk Schmidl | IT Center der RWTH Aachen University



Case Study CG: Step 1

Hotspot analysis of the serial code:

call Stack CPU Time: Total by Utilization
[]idle @ Poor [JOk [ Ideal [ Over
T | o
P u matvec 40.8% [ 1.
b xpay 1.4%| 2.
P axpy 1.4%' 2.
I vectorDot 1.2% 3.
P axpy 1.1%] 2.
I vectorDot 0.6% 3.

Hotspots are:

1. matrix-vector multiplication
2. scaled vector additions

3. dot product
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Case Study CG: Step 1 RWTH

Tuning:
parallelize all hotspots with a parallel for construct
use a reduction for the dot-product
activate thread binding

5000 — "™WRuntime-nobinding =W Runtime-binding 10

—Speedup - no bindin —Speedup - bindin
. 4000 P p g P p g 8

/ o~
3000 6

2000
11 ;/\\,t - 2

1 2 4 8 16 32 64 128
Number of Threads
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Case Study CG: Step 2 RWTH

Hotspot analysis of naive parallel version:
Event Name
MEM_UNCORE_RETIRED.LOCAL_DRAM_AND_REMOTE_CACHE_HIT

MEM_UNCORE_RETIRED.REMOTE_DRAM

A lot of remote accesses occur in nearly all places.

MEM_UNCORE_RETIRED.LOCAL ... MEM_UNCORE_RETIRED.REMOTE...

void matvec({const int n, const int

int i,73;
#pragma omp parallel for private(j) 20,000 0
for{i=0; i<n; i++){ 0 0
y[i]=0; 0 0
for(j=ptrl[il; j<ptr[i+1]; j 6,740,000 [N 3,720,000 [

y[il+=value[j]*x[index[| 17,580,000 NN 6,680,000
}
}
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Case Study CG: Step 2 RWTH

Tuning:
Initialize the data in parallel
Add parallel for constructs to all initialization loops

1400 et —— 35
1200 untime peedup _— 20

/

9

9 1000 / 25
£ 800 20 2
Q / 8
€ 600 15 @
o— (o}
e} / )
S 400 / 10

O [ [ [ [ [ [ [ O
1 2 4 8 16 32 64 128

Number of Threads

Scalability improved a lot by this tuning on the large machine.
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Case Study CG: Step 3 RWTH

Analyzing load imbalance in the concurrency view:

S0o.. CPU Time: Total by... Ove...

Line S and...
[]idle @ Poor [JOk B It

49 void matvec(const int n, const int nnz, .

50 int 1,3;

51  #pragma omp parallel for private(j) 22.462s [ 10.612s

52 for(i=0; i<n; 1i++){ 0.050s Os

53 y[i]=0; 0.060s Os

54 for(j=ptr[i]; j<ptrli+l]; j++){ 1.?415. Os

55 y[il+=value[jl*x[index[j]1]; | 9.998s [ Os

10 seconds out of ~35 seconds are overhead time

other parallel regions which are called the same amount of time only
produce 1 second of overhead
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Case Study CG: Step 3 RWTH

Tuning:
—> pre-calculate a schedule for the matrix-vector multiplication, so that the non-

zeros are distributed evenly instead of the rows

1400 Runtime - precalculated

_ 1200 - s
1000 —Speedup - precalculated /

(9]
3 Q
k= - 30 5
= 800 / 3
£ 600 - 20 &
= / )
S 400 /
(2 L
200 e 10
0 [ [ [ [ [ [ [ 0
1 2 4 8 16 32 64 128

Number of Threads
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RWTH

The Roofline Model
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When to stop tuning? RWTH

Depends on many different factors:

- How often is the code program used?
- What are the runtime requirements?

- Which performance can | expect?

Investigating kernels may help to understand larger applications.
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Roofline Model RWTH

Peak performance of a 4 socket Nehalem Server is 256 GFLOPS.

512
256
128
64
32
16
8

GFLOPS

0,5 I T T T T T T I
1/8 1/4 1/2 1 2 4 8 16 32

Operational Intensity in Flops/Byte
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Roofline Model RWTH

Memory bandwidth measured with Stream benchmark is about
75 GB/s.

512
256
128
64
32
16
8

GFLOPS

0,5 I T T T T T T I
1/8 1/4 1/2 1 2 4 8 16 32

Operational Intensity in Flops/Byte
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Roofline Model RWTH

The “Roofline” describes the peak performance the system can
reach depending on the “operational intensity” of the algorithm.
512
256
128
64
32
16

GFLOPS

0,5 T I I I I I I |
1/8 1/4 1/2 1 2 4 8 16 32
Operational Intensity in Flops/Byte
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Roofline Model

Example: Sparse Matrix Vector Multiplication y=Ax

Given:
x and y are in the cache
A is too large for the cache
measured performance was iz
12 GFLOPS 128

e 1 ADD and 1 MULT per element 12,5
* |oad of value (double) and
index (int) per element
-> 2 Flops / 12 Byte = 1/6 Flops/Byte 1

\\

1/8 1/4 1/2 1 2 4 8 16 32
Operational Intensity in Flops/Byte
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RWTH

Questions?
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