Aufgaben zur Veranstaltung Lineare Algebra 1, WS 2017/2018

Benno Willemsen, Jürgen Dietel, Lars Klöser

FH Aachen, Campus Jülich; IT Center, RWTH Aachen University

Übungsblatt 10

13.12.2017

Präsenzaufgaben

1.) Zeigen Sie, dass die folgenden Vektoren in $C[-\infty, \infty]$ linear unabhängig sind:

(a)
$$f_1(x) = 6$$
, $f_2(x) = 3 \cdot \sin x$, $f_3(x) = 2 \cdot \cos x$

(b)
$$f_1(x) = (3-x)^2$$
, $f_2(x) = x^2 + 6x$, $f_3(x) = 5$

(c)
$$f_1(x) = e^{2x}$$
, $f_2(x) = x^2$, $f_3(x) = x$

2.) Stellen Sie (möglichst einfach) fest, ob folgende Mengen von Vektoren ein Erzeugendensystem oder sogar eine Basis im \mathbb{R}^n bilden. Stellen Sie ggf. fest, ob es eine Teilmenge der Vektoren gibt, die eine Basis bildet. Geben Sie jeweils die Dimension des aufgespannten Unterraums an.

(a)
$$\left\{ \begin{pmatrix} 0 \\ 2 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 7 \\ 1 \\ 4 \end{pmatrix} \right\}$$
 (b) $\left\{ \begin{pmatrix} 1 \\ 3 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \begin{pmatrix} -4 \\ 1 \end{pmatrix} \right\}$

(c)
$$\left\{ \begin{pmatrix} 1\\2\\3 \end{pmatrix}, \begin{pmatrix} 3\\1\\2 \end{pmatrix}, \begin{pmatrix} 2\\3\\1 \end{pmatrix} \right\}$$
 (d) $\left\{ \begin{pmatrix} -2\\-1\\-2\\1 \end{pmatrix}, \begin{pmatrix} 1\\2\\1\\2 \end{pmatrix}, \begin{pmatrix} 2\\0\\2\\0 \end{pmatrix} \right\}$

- 3.) Zeigen Sie, dass die Menge $\{f_1, f_2, f_3\}$ der reellen Funktionen genau dann linear unabhängig ist, wenn $\{f_1, f_1 + f_2, f_3\}$ linear unabhängig ist.
- 4.) Schreiben Sie das Polynom $v(t)=t^2+4t-3$ auf $\mathbb R$ als eine Linearkombination der Polynome $e_1(t)=t^2-2t+5,\ e_2(t)=2t^2-3t$ und $e_3(t)=t+3.$

5.) (a) Zeigen Sie, dass die 3 Vektoren $\{\vec{v}_1,\vec{v}_2,\vec{v}_3\}$ eine Basis im \mathbb{R}^3 bilden:

$$\vec{v}_1 = \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}, \quad \vec{v}_2 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \quad \vec{v}_3 = \begin{pmatrix} 0 \\ 2 \\ 1 \end{pmatrix}.$$

(b) Weiter sind die 3 Vektoren $\{\vec{w_1}, \vec{w_2}, \vec{w_3}\}$ gegeben:

$$\vec{w}_1 = \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix}, \quad \vec{w}_2 = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}, \quad \vec{w}_3 = \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix}.$$

Tauschen Sie jeden der 3 Vektoren aus des Menge $\{\vec{v}_1, \vec{v}_2, \vec{v}_3\}$ so gegen einen Vektor aus der Menge $\{\vec{w}_1, \vec{w}_2, \vec{w}_3\}$ aus, dass wieder eine Basis im \mathbb{R}^3 entsteht.

Hinweis: Dabei soll jeweils aus der Menge $\{\vec{v}_1,\vec{v}_2,\vec{v}_3\}$ genau ein Vektor ausgetauscht werden.

6.) Es sei $\{v_1,v_2\}$ eine Basis eines 2-dimensionalen $\mathbb R$ -Vektorraums V. Man untersuche, für welche Zahlen $r,s\in\mathbb R$ auch die beiden Vektoren $w_1=rv_1+v_2$ und $w_2=v_1+sv_2$ eine Basis von V bilden.

Hausaufgaben (Abgabe bis 19.12.2017)

7.) Bestimmen Sie dim(L(a,b,c)) in Abhängigkeit von $\alpha,\gamma\in\mathbb{R}$

$$a = \begin{pmatrix} 1 \\ \alpha \\ 0 \end{pmatrix}, b = \begin{pmatrix} 0 \\ \alpha \\ \gamma \end{pmatrix}, c = \begin{pmatrix} \alpha \\ 0 \\ 1 \end{pmatrix}$$

8.) Sind folgende Funktionsmengen auf dem Intervall [-2;2] linear unabhängig?

$$M_1 = \{\sinh(x), e^x, e^{2-x}\}$$
 $M_2 = \{\sinh(x), e^x, e^{-2x}\}$

9.) $M=\{f,g,h,i\}$ sei eine Menge linear unabhängiger Vektoren aus einem Vektorraum V mit $dim(V)\geq 4$. Wie muss α gewählt werden, damit $\{f+g,g+h,h+i,i+\alpha\cdot f\}$ linear unabhängig sind?