Aufgaben zur Veranstaltung Lineare Algebra 1, WS 2018/2019

Benno Willemsen, Louai Ben Yahia, Lars Klöser

FH Aachen, Campus Jülich; IT Center, RWTH Aachen University

Übungsblatt 11

12.12.2018

Präsenzaufgaben

1.) Zeigen Sie, dass die folgenden Vektoren in $C[-\infty, \infty]$ linear unabhängig sind:

(a)
$$f_1(x) = 6$$
, $f_2(x) = 3 \cdot \sin x$, $f_3(x) = 2 \cdot \cos x$

(b)
$$f_1(x) = (3-x)^2$$
, $f_2(x) = x^2 + 6x$, $f_3(x) = 5$

(c)
$$f_1(x) = e^{2x}$$
, $f_2(x) = x^2$, $f_3(x) = x$

2.) Stellen Sie (möglichst einfach) fest, ob folgende Mengen von Vektoren ein Erzeugendensystem oder sogar eine Basis im \mathbb{R}^n bilden. Stellen Sie ggf. fest, ob es eine Teilmenge der Vektoren gibt, die eine Basis bildet. Geben Sie jeweils die Dimension des aufgespannten Unterraums an.

(a)
$$\left\{ \begin{pmatrix} 0 \\ 2 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 7 \\ 1 \\ 4 \end{pmatrix} \right\}$$
 (b) $\left\{ \begin{pmatrix} 1 \\ 3 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \begin{pmatrix} -4 \\ 1 \end{pmatrix} \right\}$

(c)
$$\left\{ \begin{pmatrix} 1\\2\\3 \end{pmatrix}, \begin{pmatrix} 3\\1\\2 \end{pmatrix}, \begin{pmatrix} 2\\3\\1 \end{pmatrix} \right\}$$
 (d) $\left\{ \begin{pmatrix} -2\\-1\\-2\\1 \end{pmatrix}, \begin{pmatrix} 1\\2\\1\\2 \end{pmatrix}, \begin{pmatrix} 2\\0\\2\\0 \end{pmatrix} \right\}$

- 3.) Schreiben Sie das Polynom $v(t)=t^2+4t-3$ auf $\mathbb R$ als eine Linearkombination der Polynome $e_1(t)=t^2-2t+5,\ e_2(t)=2t^2-3t$ und $e_3(t)=t+3.$
- 4.) Zeigen Sie, dass die Menge $\{f_1,f_2,f_3\}$ der reellen Funktionen genau dann linear unabhängig ist, wenn $\{f_1,f_1+f_2,f_3\}$ linear unabhängig ist.
- 5.) Beweisen oder widerlegen Sie:
 - (a) Seien zwei endliche Mengen M und N Teilmengen des \mathbb{R}^n . Aus $N\subseteq M$ folgt $L(N)\subseteq L(M)$.
 - (b) Für $M\subseteq\mathbb{R}^n$, M endlich, gilt L(M)=L(L(M))

Hausaufgaben (Abgabe bis 18.12.2018)

6.)	Stellen Sie fest ob die folgenden Vektoren linear unabhänig sind.
	(a) $\{\sin^2(x)e^x, \cos^2(x)e^x, e^x\}$
	(b) $\{\sin(x), \cos(x), \tan(x)\}$
	(jeweils 3 Punkte
7.)	Überlegen Sie, ob die folgenden Behauptungen stimmen, kreuzen Sie passend dazu ja oder nein an, und begründen Sie Ihre Entscheidung. ja nein
	a) \square Für jede Menge $E\subset V$, V ist Vektorraum und E Erzeugendensystem, gilt $\exists B\subset E$ sodass B Basis von V.
	b) \square \square $\{p_1, p_2, p_3\}$ ist Erzeugendensystem des \mathbb{R}^2 , daraus folgt, dass $\{p_1, p_2\}$ eine Basis der \mathbb{R}^2 ist.
	c) \square Die lineare Unabhängigkeit zweier Vektoren $x,y\in\mathbb{R}^n$ erkennt man immer daran, dass sie entsprechend viele Nullkomponenten besitzen.
	d) \square \square Es seien $a,b\in\mathbb{R}^3$. Falls $a\times b\neq 0$ ist $\{a,b,a\times b\}$ Basis des \mathbb{R}^3
	e) 🗌 🔲 Der Vektorraum der Polynome höchstens 3. Grades hat die Dimension 4.
	f) \square Die Vektoren x_1, x_2, \ldots, x_n aus einem Vektorraum V sind genau dann linear unabhängig, wenn man sie nur trivial zur 0 linear kombinieren kann.
	(jeweils 1 Punkt pro Antwort)
8.)	Gegeben sind n Untervektorräume $U_i,\ i=1,,n$ eines Vektorraums V . Es sei $U=\{u_1++u_n u_i\in U_i, i=1,,n\}.$
	(a) Zeigen Sie, dass U ein Untervektorraum von V ist.
	(b) Zeigen Sie weiter, dass jede Darstellung $u \in U, \ u = \sum_{i=1}^n u_i$ eindeutig ist, wenr aus $\sum_{i=1}^n u_i = 0$ mit $u_i \in U_i$ folgt, dass $u_i = 0$ für alle $i = 1,, n$.
	(jeweils 3 Punkte)