FH AACHEN STANDORTE JÜLICH, KÖLN, FORSCHUNGSZENTRUM JÜLICH RECHEN- UND KOMMUNIKATIONSZENTRUM DER RWTH AACHEN

M. Grajewski, P. Jansen, B. Willemsen

BACHELORSTUDIENGANG "SCIENTIFIC PROGRAMMING" MATSE AUSBILDUNG

Klausur Lineare Algebra I, SS 2013, am 05.07.2013

Name:				
Vorname:				
MatrNr.:				
Unterschrift:				
			n	nax. Punktzahl
Aufgabe	1)			(14)
Aufgabe	2)			(14)
Aufgabe	3)			(14)
Aufgabe	4)			(14)
Aufgabe	5)			(14)
Aufgabe	6)			(14)
Aufgabe	7)			(16)
Gesamtpunkte:			Note:	

Ein Zauberkünstler "verblüfft"mit einem Rechentrick:

Er beauftragt einen Zuschauer damit, sich 3 beliebige Zahlen auszudenken und verdeckt auf einem Blatt aufzuschreiben.

Der Zauberer will auf Anhieb die 3 gedachten Zahlen erraten, wenn man ihm nur die 3 Summen von jeweils 2 gedachten Zahlen nennt. Der Zuschauer nennt als Summen die Zahlen 6, 11 und 15. Welches sind in diesem Fall die gedachten Zahlen?

Ergebnis: 5, 1 und 10

 ${\cal V}$ ist der von den folgenden Vektoren aufgespannte Vektorraum:

$$\left(\begin{array}{c}3\\11\\2\end{array}\right), \left(\begin{array}{c}2\\5\\1\end{array}\right)$$

V ist der von den folgenden vektoren aufgespannte vektorraum. $\binom{3}{11}, \binom{2}{5}.$ Bestimmen Sie alle ganzen Zahlen b so, dass $\binom{3b+6}{b^2+3}$ ein Element des Vektorraums V ist.

Ergebnis: b = -1 oder b = -2

Zeigen Sie, dass die Menge $G=\mathbb{Q}_{>0}$ mitsamt der zugehörigen Verknüpfung

$$a\odot b:=\frac{a\cdot b}{2}$$

eine Gruppe bildet.

Kein Ergebnis anzugeben!

Eine sturmgefährdete Fichte an einem gleichmäßig geneigten Hang soll mit Seilen an den Punkten A und B befestigt werden. Zur Berechnung dient ein kartesisches Koordinatensystem $(x, y, z)^T$, wobei z die relative Höhe zum Fuß der Fichte ist. Die Fichte wächst total gerade, also nur in z-Richtung.

Eine Einheit entspricht einem Meter. In diesem Koordinatensystem steht die Fichte am Punkt $P = (1, 4, 0)^T$ auf dem Boden. Die Befestigungspunkte liegen bei $A = (4, 6, -1)^T$ und $B = (2, 2, 1)^T$. Die Seile werden in 5 m Höhe an der Fichte befestigt.

a) Fertigen Sie eine Skizze an.

Kein Ergebnis anzugeben

b) Welche Länge haben die beiden Seile?

Ergebnis: $\sqrt{49}$ und $\sqrt{21}$

c) Sind die jeweiligen Winkel zwischen den Seilen und der Hangebene größer als 30°?
Die Winkel zwischen den Seilen und der Hangebene sind beide größer als 30°

Begründen Sie Ihre Antworten.

Zeigen Sie mit vollständiger Induktion, dass $\forall n \in \mathbb{N}$ und $a, b \in \mathbb{R}$ gilt:

$$\begin{pmatrix} 1 & 0 & a \\ 0 & 1 & b \\ 0 & 0 & 1 \end{pmatrix}^n = \begin{pmatrix} 1 & 0 & na \\ 0 & 1 & nb \\ 0 & 0 & 1 \end{pmatrix}$$

Kein Ergebnis anzugeben!

Betrachtet wird der Vektorraum \mathbb{C}^3 mit folgendem Skalarprodukt

$$\langle \vec{a}, \vec{b} \rangle = \sum_{k=1}^{3} a_k \cdot \overline{b_k}, \ \vec{a}, \vec{b} \in \mathbb{C}^3$$

Gegeben ist der Vektor $\begin{pmatrix} 1 \\ i \\ 1 \end{pmatrix}$. Finden Sie zwei Vektoren aus \mathbb{C}^3 , sodass zusammen mit dem gegebenenen Vektor eine orthogonale Basis des \mathbb{C}^3 entsteht.

Hinweise: $i^2 = -1$, $\overline{b_k}$ ist die konjugiert komplexe Zahl zu b_k .

Beispielergebnis:
$$\frac{1}{\sqrt{6}} \begin{pmatrix} 2 \\ -i \\ -1 \end{pmatrix}$$
 und $\frac{1}{\sqrt{28}} \begin{pmatrix} -2-2i \\ -1-2i \\ 4+i \end{pmatrix}$

Aufgabe 7

Welche Aussagen sind richtig, welche falsch? Geben Sie jeweils ein Beispiel bzw. ein Gegenbeispiel an.

Nr.	richtig	falsch	Aussage
1			Gegeben seien zwei Matrizen $A, B \in \mathbb{R}^{2\times 2}$.
			Dann gilt $(A \cdot B)^T = A^T \cdot B^T$.
2			Jede Teilmenge einer Menge linear abhï $\frac{1}{2}$ ngiger
			Vektoren ist linear abhi; $\frac{1}{2}$ ngig.
3			Zwei Vektoren $\vec{a}, \vec{b} \in \mathbb{R}^2$ heiï; $\frac{1}{2}$ en orthonormal,
			wenn $\vec{b}^T \cdot \vec{a} = 0$ und $\ \vec{a}\ = \ \vec{b}\ = 1$ gilt.
4			Vier Punkte aus dem \mathbb{R}^3 liegen immer in einer
			Ebene.

Kein Ergebnis anzugeben!