Übungsblatt 11 16.12.2021

1. Gegeben sind die folgenden Vektoren:

$$\begin{pmatrix} 7\\1\\4 \end{pmatrix}, \begin{pmatrix} 0\\2\\1 \end{pmatrix}.$$

Ergänzen Sie einen dritten Vektor, so dass die 3 Vektoren eine Basis des \mathbb{R}^3 bilden.

- 2. Beweisen oder widerlegen Sie:
 - a) Seien zwei endliche Mengen M und N Teilmengen des \mathbb{R}^n . Aus $N\subseteq M$ folgt $L(N)\subseteq L(M)$.
 - b) Für $M \subseteq \mathbb{R}^n$, M endlich, gilt L(M) = L(L(M))
- 3. Sei $U \subseteq \mathbb{R}^4$ der von den Vektoren v_1, v_2, v_3 erzeugte Untervektorraum.

$$\vec{v_1} = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \end{pmatrix}, \vec{v_2} = \begin{pmatrix} 0 \\ -2 \\ 2 \\ 5 \end{pmatrix} \vec{v_3} = \begin{pmatrix} 2 \\ 4 \\ -4 \\ -8 \end{pmatrix}$$

- a) Geben Sie eine Basis des Untervektorraums U an.
- b) Ergänzen Sie diese Basis des Untervektorraums U zu einer Basis des \mathbb{R}^4
- 4. Gegeben sei $p(x)=1+2x+3x^2+4x^3\in P_3$. Berechnen Sie die Koordinaten des Polynoms p(x) bezüglich der Basis $B=\{1,(x-1),(x-1)^2,(x-1)^3\}$.
- 5. Untersuchen Sie die folgenden Funktionensysteme auf lineare Unabhängigkeit, wobei die Definitionsmenge immer \mathbb{R} ist:
 - a) $\{x, e^{-x}, xe^{-x}\}$
 - b) $\{2, \sin^2 x, \cos^2 x\}$