FH AACHEN STANDORTE JÜLICH, KÖLN, FORSCHUNGSZENTRUM JÜLICH IT CENTER DER RWTH AACHEN UNIVERSITY

M. Grajewski, A. Kleefeld, B. Wienke

$\begin{array}{c} {\rm BACHELORSTUDIENGANG} \\ {\rm "ANGEWANDTE~MATHEMATIK~UND~INFORMATIK"} \\ {\rm MATSE~AUSBILDUNG} \end{array}$

Klausur Lineare Algebra 1, WS 2020/21, am 18.03.2021

Name:		
Vorname:		
MatrNr.:		
Unterschrift:		
		max. Punktzahl
Aufgabe 1)		(6+5+1)
Aufgabe 2)		(7+5)
Aufgabe 3)		(3+3+3+3)
Aufgabe 4)		(9+3)
Aufgabe 5)		(5+4+4)
Aufgabe 6)		(1+7+5)
Aufgabe 7)		(6+7)
Aufgabe 8)		(10+3)
Gesamtpunkte: Note:		

Wir betrachten \mathbb{R}^3 mit dem Standardskalarprodukt. Die Vektoren

$$b_1 = \begin{pmatrix} 1 \\ 1 \\ a \end{pmatrix}, b_2 = \begin{pmatrix} -a \\ 0 \\ 1 \end{pmatrix}, b_3 = \begin{pmatrix} a \\ 2 \\ 1 \end{pmatrix}$$

sollen eine Basis des \mathbb{R}^3 bilden.

a) Bestimmen Sie alle möglichen $a \in \mathbb{R},$ die das oben genannte Kriterium erfüllen.

Ergebnis: alle $a \in \mathbb{R}$

b) Bestimmen Sie die Mengen M_{12}, M_{13} und M_{23} mit

$$M_{ij} := \{ a \in \mathbb{R} \mid b_i \perp b_j \}.$$

Ergebnis: $M_{12} = \mathbb{R}, M_{13} = \{-1\}, M_{23} = \{-1,1\}$

c) Für welche $a \in \mathbb{R}$ bilden die drei Vektoren dem
nach eine Orthogonalbasis?

Ergebnis: a = -1

Beim Blick in den Kühlschrank findet Kunigunde für die eingeladenen Gäste folgende Zutaten: 1,5 kg Kartoffeln, 900 g Fleisch und 5 Eier.

- Für Gericht A benötigt sie pro Portion 100 g Kartoffeln, 200 g Fleisch und ein Ei.
- Für Gericht B benötigt sie pro Portion 500 g Kartoffeln und 100 g Fleisch.
- Für Gericht C benötigt sie pro Portion 200 g Kartoffeln, 200 g Fleisch und 2 Eier.
- a) Bestimmen Sie, wie viele Portionen sie jeweils zubereiten kann, falls sie alle ihre Vorräte exakt aufbrauchen möchte und nicht unbedingt ganze Portionen braucht.

```
Ergebnis: Gericht A: 2, Gericht B: 2, Gericht C: 1,5
```

b) Welche Möglichkeiten hat sie, falls sie stattdessen möglichst viele, aber nur ganze Portionen zubereiten will, jedes Gericht mindestens einmal zubereitet werden soll und ihre Vorräte nicht aufgebraucht werden müssen?

Ergebnis:

```
Option 1: 3xA, 1xB, 1xC
Option 2: 2xA, 2xB, 1xC
Option 3: 1xA, 2xB, 2xC
```

Ein Roboterarm, der am Montagepunkt P(4,3) montiert ist, soll Gegenstände auf ein Förderband auf der Geraden

$$f: x = \begin{pmatrix} -1 \\ -1 \end{pmatrix} + \lambda \cdot \begin{pmatrix} -1 \\ 1 \end{pmatrix} \quad \text{mit } \lambda \in \mathbb{R},$$

legen. Bestimmen Sie für die folgenden Fälle jeweils

- ullet an welchem Punkt G der Roboterarm den Gegenstand auf das Förderband legt
- welchen Abstand er vom Montagepunkt zu G überwinden muss,
- den Winkel zwischen seiner Bewegungsrichtung und der Laufrichtung des Förderbandes wenn er
 - a) den waagerechten Weg, also parallel zur x-Achse,

Ergebnis:
$$G_a = \begin{pmatrix} -5 \\ 3 \end{pmatrix}$$
, $d_a = 9$, $\alpha_a = 45^{\circ}$

b) den senkrechten Weg, also parallel zur y-Achse,

Ergebnis:
$$G_b = \begin{pmatrix} 4 \\ -6 \end{pmatrix}$$
, $d_b = 9$, $\alpha_b = 45^{\circ}$

c) den kürzesten Weg bzw.

Ergebnis:
$$G_c = \begin{pmatrix} -\frac{1}{2} \\ -\frac{3}{2} \end{pmatrix}$$
, $d_c = \frac{9}{\sqrt{2}}$, $\alpha_c = 90^{\circ}$

d) den Weg in Richtung des Vektors $v = (2,1)^T$

Ergebnis:
$$G_d = \begin{pmatrix} -2 \\ 0 \end{pmatrix}, d_d = 3\sqrt{5}, \alpha_d = 72^{\circ}$$

wählt.

Hinweise:

- Eine Skizze kann hilfreich sein.
- $\arccos(\frac{1}{\sqrt{10}}) \approx 72^{\circ}$

Gegeben sind folgende Vektoren:

$$\left(\begin{array}{c}4\\3\\0\end{array}\right), \left(\begin{array}{c}7\\-1\\1\end{array}\right), \left(\begin{array}{c}-17\\6\\-3\end{array}\right)$$

a) Wenden Sie das Orthonormierungsverfahren nach Gram-Schmidt in der angegebenen Reihenfolge auf die drei Vektoren an.

Ergebnis: $w_1 = \frac{1}{5} \begin{pmatrix} 4 \\ 3 \\ 0 \end{pmatrix}, w_2 = \frac{1}{\sqrt{26}} \begin{pmatrix} 3 \\ -4 \\ 1 \end{pmatrix}$

 w_3 nicht berechenbar (Begründung angeben!)

b) Welche Dimension hat der von den drei Vektoren aufgespannte Unterraum? Begründen Sie Ihre Antwort.

Ergebnis: $\dim(v1,v2,v3) = 2$

Eine gleichseitige 4-seitige Pyramide besteht bekanntlich aus 4 gleichen Seiten sowie einer Grundfläche. Es sei bekannt:

- Die Seite S_1 liegt in der Ebene 2x 4y + z = 0.
- Eine andere Seite S_2 liegt in der Ebene 4x + 2y z = 0.
- Eine dritte Seite S_3 beinhaltet die Punkte A(4,2,0), B(2,6,0) und C(1,3,10).
- a) Zeigen Sie, dass die Schnittgerade von S_1 und S_3 genau durch die Punkte A und C verläuft.

keine Angabe

b) Berechnen Sie die Spitze der Pyramide.

Ergebnis:
$$S = C = \begin{pmatrix} 1 \\ 3 \\ 10 \end{pmatrix}$$

c) Berechnen Sie die Oberfläche, d.h. die Fläche aller 4 Seiten und der Grundfläche, unter der Annahme, dass A, B und C genau die Ecken von S_3 bilden.

Ergebnis:
$$A_{Ges} = 20 + 20\sqrt{21}$$

a) Seien $a=(a_1,a_2,a_3)^T, b=(b_1,b_2,b_3)^T\in\mathbb{R}^3$. Geben Sie das Kreuzprodukt (Vektorprodukt) $a\times b$ an.

Ergebnis:
$$a \times b = \begin{pmatrix} a_2b_3 - a_3b_2 \\ a_3b_1 - a_1b_3 \\ a_1b_2 - a_2b_1 \end{pmatrix}$$

b) Bekanntermaßen besitzen Geraden in \mathbb{R}^3 keine Darstellung in Normalform, weil die Richtung eines Normalenvektors zu einer Geraden nicht bestimmt ist. Sie besitzen aber sehr wohl eine parameterfreie Darstellung. Zu $v \in \mathbb{R}^3 \setminus \{0\}$ und $x_0 \in \mathbb{R}^3$ sei

$$G := \{ x \in \mathbb{R}^3 \mid (x - x_0) \times v = 0 \}.$$

Beweisen Sie: G ist eine Gerade mit Richtungsvektor v und Aufpunkt x_0 .

keine Angabe

c) Sei g eine Gerade mit Richtungsvektor v und Aufpunkt x_0 und d ihr Abstand zum Nullpunkt. Beweisen Sie für die euklidische Norm $\|\cdot\|$:

$$d = \frac{\|x_0 \times v\|}{\|v\|}$$

Fertigen Sie dazu eine Skizze an.

keine Angabe

a) Sei $V = \mathbb{R}$ und $K = \mathbb{R}$. Für $a, b \in V$ sei definiert:

$$a \oplus b := \max\{a - b, b - a\}.$$

Untersuchen Sie, ob V mit \oplus und der üblichen Multiplikation reeller Zahlen "·" einen Vektorraum über K bildet. Belegen Sie Ihre Aussage durch einen Beweis bzw. durch ein Gegenbeispiel.

keine Angabe

b) Sei für V und K wie oben jetzt

$$a \oplus b := \sqrt[p]{|a|^p + |b|^p}.$$

Zeigen Sie durch ein konkretes Gegenbeispiel, dass für kein $p \in \mathbb{N}$ das Tripel (V, \oplus, \cdot) mit der üblichen Multiplikation reeller Zahlen "." einen Vektorraum über K bilden kann.

keine Angabe

a) Wir betrachten den euklidischen Vektorraum P_2 der Polynome vom Höchstgrad 2 auf dem Intervall [-1,1] mit dem Skalarprodukt

$$\langle p, q \rangle = \int_{-1}^{1} p(x) \ q(x) \ dx$$

(dass es sich hierbei um ein Skalarprodukt handelt, muss nicht gezeigt werden).

Sei nun $M = \{x-1, x+1\}$. Bestimmen Sie das orthogonale Komplement M^{\perp} in P_2 , indem Sie dessen Dimension sowie eine zugehörige Basis angeben. Begründen Sie Ihre Ergebnisse.

Ergebnis:
$$M^{\perp} = \text{span}(-3x^2 + 1)$$

b) Sei $v \in M^{\perp}$ beliebig. Bestimmen Sie die orthogonale Projektion von v auf den Untervektorraum L(x-1,x+1) (mit L ist die lineare Hülle gemeint) und begründen Sie Ihr Ergebnis.

Ergebnis:
$$p(v) = 0$$