Benno Wienke, Daniel Weinholz, Leo Kerojoki

Aachen

Übungsblatt 2

12.10.2022

Selbstlernaufgaben

Aufgabe 1

Welche der folgenden Gleichungen bzw. Aussagen sind für beliebige Vektoren und beliebige Skalarprodukte richtig? Begründen Sie jeweils Ihre Antwort.

(a)
$$a \cdot \langle a, c \rangle = a^2 \cdot c$$

(b)
$$b = \sqrt{b^2}$$

(c)
$$\langle a + b, a - b \rangle = a^2 - b^2$$

(d)
$$\frac{\langle a, b \rangle}{\langle b, b \rangle} \cdot b = a$$

(e)
$$\langle a, b \rangle = 0 \Leftrightarrow a = 0 \text{ oder } b = 0$$

(f)
$$a = \begin{pmatrix} 2 \\ 3 \\ -1 \end{pmatrix}$$
, $a \cdot x = 3 \Rightarrow x = \frac{3}{a} = \begin{pmatrix} 3/2 \\ 1 \\ -3 \end{pmatrix}$

Aufgabe 2

Berechnen Sie den Abstand der Punkte von

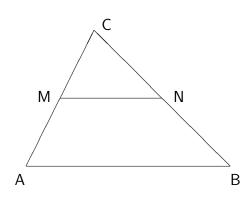
(a)
$$A = (-1, 2)$$
 und $B = (3, 4)$

(b)
$$C = (1, 2, 3)$$
 und $D = (3, -3, 5)$

voneinander.

Aufgabe 3

Weisen sie nach, ob es sich bei den angegebenen Abbildungen $< x,y>: \mathbb{R}^3 \times \mathbb{R}^3 \to \mathbb{R}$ um Skalarprodukte handelt?


(a)
$$\langle x, y \rangle = x_1y_1 + x_2y_3 + x_3y_1$$

(b)
$$\langle x, y \rangle = \sum_{i=1}^{3} e^{x_i y_i}$$

(c)
$$\langle x, y \rangle = 2x_1y_1 + x_2y_2 + x_3y_3$$

Aufgabe 4

In einem Dreieck ABC sind M und N die Mittelpunkte der Seiten \overline{AC} und \overline{BC} (siehe Zeichnung). Zeigen Sie: Die Strecke \overline{MN} ist parallel zur Dreiecksseite \overline{AB} und halb so lang wie diese.

Hausaufgaben

Aufgabe 5

Zeigen Sie, dass für beliebige Vektoren a und b gilt:

(a)
$$||a+b||^2 = ||a||^2 + ||b||^2 + 2\langle a, b \rangle$$

(b)
$$||a+b||^2 + ||a-b||^2 = 2||a||^2 + 2||b||^2$$

(c)
$$||a+b||^2 - ||a-b||^2 = 4\langle a,b\rangle$$

Aufgabe 6

Welcher Punkt hat von den Punkten A=(0,1), B=(0,7) und C=(4,9) den gleichen Abstand? Tipp: P sei der gesuchte Punkt. Es muss für die zugehörigen Ortsvektoren gelten:

$$||p - a|| = ||p - b|| = ||p - c||$$

Aufgabe 7

Zeigen Sie, dass durch $\langle u,v\rangle=u_1v_1+u_2v_3-u_3v_2+u_4v_4$ für

$$u = \begin{pmatrix} u_1 \\ u_2 \\ u_3 \\ u_4 \end{pmatrix} \quad \text{und} \quad v = \begin{pmatrix} v_1 \\ v_2 \\ v_3 \\ v_4 \end{pmatrix}$$

kein Skalarprodukt definiert wird

Aufgabe 8

Bestimmen Sie die Lösungsmenge des LGS.

$$1x_1 - 4x_2 + 9 x_3 = 1$$

$$2x_1 + 4x_2 - 12x_3 = 2$$

$$-3x_1 + 3x_2 - 3 x_3 = 3$$

Aufgabe 9 (Keine Abgabe!)

Schauen Sie sich das Video zu Kapitel 1.2 des Skriptes an. Sie finden das Video im ILIAS unter "Vorlesungsvideos \rightarrow Kapitel 1 - Motivation und Vorbereitung". Kapitel 1.2 ist Bestandteil des Videos "Kap_1.1.mp4" und beginnt dort ab Zeitpunkt 14:20 min.

3