
Parallel ProgrammingITC: Jens Hollmann Folie 5

Introduction
Computer Architectures, Parallelization at a Glance

Parallel ProgrammingITC: Jens Hollmann Folie 6

 Computer Architectures
 Basic Computer Architectures

 Shared-Memory Parallel Systems

 Distributed-Memory Parallel Systems

 Parallelization at a Glance
 Basic Concepts

 Parallelization Strategies

 Prominent Issues

Introduction - Contents

Parallel ProgrammingITC: Jens Hollmann Folie 7

 Processor
 Fetch program from memory

 Execute program instructions

 Load data from memory

 Process data

 Write results back to memory

 Main Memory
 Store program

 Store data

 Input / Output is not covered here!

Single Processor Systems (1 / 2)

core

memory

Parallel ProgrammingITC: Jens Hollmann Folie 8

 CPU
 Fast (order of 3.0 GHz)

 Main Memory
 Slow (order of 0.3 GHz)

 Large (order of GB)

 Caches
 Fast, but expensive

 Small (order of MB)

 Usage of Cache is mandatory for good performance on parallel
applications.

Single Processor Systems (1 / 2)

core

off-chip cache

on-chip cache L1

L2

memory

Parallel ProgrammingITC: Jens Hollmann Folie 9

 The CPU would get too hot!

Why aren’t CPUs getting faster anymore?

Fast clock cycles make
processor chips more

expensive, hotter and more
power consuming.

Parallel ProgrammingITC: Jens Hollmann Folie 10

 Since 2005/2006 dual-core processors
are produced for the home user.

 Number of cores per chip increases
since then
 Today: up to 8 cores per chip for a

standard CPU

 Any recently bought PC or Laptop
is a multi-core system already.

Multi-Core Processor Systems

Core

off-chip cache

memory

Core

on-chip cache

Parallel ProgrammingITC: Jens Hollmann Folie 11

 Computer Architectures
 Basic Computer Architectures

 Shared-Memory Parallel Systems

 Distributed-Memory Parallel Systems

 Parallelization at a Glance
 Basic Concepts

 Parallelization Strategies

 Prominent Issues

Introduction - Contents

Parallel ProgrammingITC: Jens Hollmann Folie 12

 Implicit data distribution

 Implicit communication

 Different types of shared-memory architectures

 Programming via …
 OpenMP

 Java-Threads

Shared-Memory Parallel Systems

Process Process Process

interconnect

Memory

Parallel ProgrammingITC: Jens Hollmann Folie 13

 Abbr. for Symmetric Multi Processing

 Memory access time is uniform on
all cores

 Limited scalability

 Example: Intel Woodcrest
 Two cores per chip, 3.0 GHz

 Each chip has 4 MB of L2 cache on-chip,

shared by both cores

 No off-chip cache

 Bus: Frontsidebus

SMP

Core

memory

Core

on-chip cache

Core Core

on-chip cache

bus

on-chip cache

Parallel ProgrammingITC: Jens Hollmann Folie 14

 Abbr. for cache-coherent Non-Uniform
Memory Architecture

 Memory access time is non-uniform

 Scalable

 Example: AMD Opteron
 Two cores per chip, 2.4 GHz

 Each core has separate 1 MB of L2-

cache on-chip

 No off-chip cache

 Interconnect: Hypertransport

ccNUMA

Core

memory

Core

on-chip
cache

Core

memory

on-
chip

cache

on-
chip

cache

Core

interconnect

on-chip
cache

on-chip
cache

on-chip
cache

Parallel ProgrammingITC: Jens Hollmann Folie 15

 If there are multiple caches not shared by all cores in the system,
the system takes care of the cache coherence.

 Example:
int a[some_number]; //shared by all threads
thread 1: a[0] = 23; thread 2: a[1] = 42;
--- thread + memory synchronization (barrier) ---
thread 1: x = a[1]; thread 2: y = a[0];

 Both a[0] and a[1] are stored in caches of thread 1 and 2

 Changes to data in the cache is at first only visible for the CPU that modified

its cache

 After synchronization point all threads need to have the

same view of (shared) main memory

Cache Coherence (cc)

Parallel ProgrammingITC: Jens Hollmann Folie 16

 Computer Architectures
 Basic Computer Architectures

 Shared-Memory Parallel Systems

 Distributed-Memory Parallel Systems

 Parallelization at a Glance
 Basic Concepts

 Parallelization Strategies

 Prominent Issues

Introduction - Contents

Parallel ProgrammingITC: Jens Hollmann Folie 17

 Explicit data distribution

 Explicit communication

 Scalable

 Programming via MPI

Distributed-memory Parallel Systems

Process

Memory Memory Memory

Process Process

interconnect

Parallel ProgrammingITC: Jens Hollmann Folie 18

 Various independent computers are connected to each other over a
non-cache-coherent second level interconnect
 Infiniband

 Latency: <= 5 µs
 Bandwidth: >= 1200 MB/s

 GigaBit Ethernet

 Latency: <= 60 µs
 Bandwidth: >= 100 MB/s

Clusters

Latency:
Time required to send a message of
size zero
(time to setup the communication)

Bandwidth:
Rate at which large messages (>= 2
MB) are transferred

2nd level interconnect (network)

Parallel ProgrammingITC: Jens Hollmann Folie 19

 Computer Architectures
 Basic Computer Architectures

 Shared-Memory Parallel Systems

 Distributed-Memory Parallel Systems

 Parallelization at a Glance
 Basic Concepts

 Parallelization Strategies

 Prominent Issues

Introduction - Contents

Parallel ProgrammingITC: Jens Hollmann Folie 20

 A process is the abstraction of a program in execution

 It can be in different states
 Running

 Waiting

 Ready

 Each process has its own address-space
 No common variables between processes

Processes

Parallel ProgrammingITC: Jens Hollmann Folie 21

 A thread is a lightweight process

 In difference to a process, a thread shares the address-space with
all other threads of the process it belongs to, but has its own stack.
 Common variables between threads

Threads

Parallel ProgrammingITC: Jens Hollmann Folie 22

 Even on a multi-socket / multi-core system you should not make any
assumption which process / thread is executed when an where!

 Two threads on one core:

 Two threads on two cores:

Process and Thread Scheduling by the OS

Thread1 Thread 2 System thread

thread migration

“pinned” threads

Parallel ProgrammingITC: Jens Hollmann Folie 23

 Memory can be accessed by several threads running on different
cores in a multi-socket / multi-core system

Shared-memory Parallelization

a=4

CPU1

a
c=3+a

CPU2

Parallel ProgrammingITC: Jens Hollmann Folie 24

 Each process has its own distinct memory
 Communication via Message Passing

Distributed-memory Parallelization

send a

CPU1 CPU2

areceive a a

local memory

transfer

Parallel ProgrammingITC: Jens Hollmann Folie 25

 Computer Architectures
 Basic Computer Architectures

 Shared-Memory Parallel Systems

 Distributed-Memory Parallel Systems

 Parallelization at a Glance
 Basic Concepts

 Parallelization Strategies

 Prominent Issues

Introduction - Contents

Parallel ProgrammingITC: Jens Hollmann Folie 26

 Time using 1 CPU:

 Time using CPUs:

 Speedup : 	 	

 Measures how much fast the parallel computation is

 Efficiency : 	 	

Speedup and Efficiency (1 / 2)

Parallel ProgrammingITC: Jens Hollmann Folie 27

 Example:
 1 6 , 2 4

 2 1.5

 2 . 0.75

 Ideal case: /

 1.0

Speedup and Efficiency (2 / 2)

Parallel ProgrammingITC: Jens Hollmann Folie 28

 Describes the influence of the serial part onto scalability (without
taking any overhead into account).

∗ 	 ∗

 : serial part (0 1)

 1 : time using 1 CPU

 : time using p CPUs

 : speedup;

 : efficiency;

 It is rather easy to scale to a small number of cores, but any
parallelization is limited by the serial part of the program!

Amdahl’s Law

Parallel ProgrammingITC: Jens Hollmann Folie 29

 If 80% (measured in program runtime) of your work can be
parallelized and “just” 20% are still running sequential, then your
speedup will be:

Amdahl’s Law illustrated

1 processor:
time: 100%
speedup: 1

2 processors:
time: 60%
speedup: 1.7

4 processors:
time: 40%
speedup: 2.5

 processors:
time: 20%
speedup: 5

Parallel ProgrammingITC: Jens Hollmann Folie 30

 After the initial parallelization of a program, you will typically see
speedup curves like this:

Speedup in Practice

sp
ee
du

p

1 2 3 4 5 6 7 8 . . .

1

2

3

4

5

6

7

8

p

Speedup according to Amdahl’s law

Parallel ProgrammingITC: Jens Hollmann Folie 31

 Chances for concurrent execution:
 Look for tasks that can be executed simultaneously

(task decomposition)

 Decompose data into distinct chunks to be processed independently

(data decomposition)

Finding Concurrency

Parallel ProgrammingITC: Jens Hollmann Folie 32

 Parallelization on a High Level (low granularity)
 Chances of low synchronization / communication cost

 Danger of load balancing issues

 Parallelization on a Low Level (high granularity)
 Danger of high synchro-

nization / communication cost

 Chances of avoiding load

balancing issues

 Compute intensive programs may employ multiple levels of
parallelization, maybe even with multiple parallelization paradigms
(hybrid parallelization).

Granularity

Parallel ProgrammingITC: Jens Hollmann Folie 33

 Computer Architectures
 Basic Computer Architectures

 Shared-Memory Parallel Systems

 Distributed-Memory Parallel Systems

 Parallelization at a Glance
 Basic Concepts

 Parallelization Strategies

 Prominent Issues

Introduction - Contents

Parallel ProgrammingITC: Jens Hollmann Folie 34

 You can still run into all issues of Serial Programming !

 Additional issues:
 Is your parallelization correct?

 It is harder to debug parallel code than serial code!

 Specific issues of Parallel Programming:
 Introduction of overhead by parallelization

 Data Races / Race Conditions

 Deadlocks

 Load Balancing

 Serialization

 Irreproducibility / Different numerical results

Issues in Parallel Programming: Overview

Parallel ProgrammingITC: Jens Hollmann Folie 35

 Overhead introduced by the parallelization:
 Time to start / end / manage threads

 Time to send / exchange data

 Time spent in synchronization of threads / processes

 With parallelization:
 The total CPU time increases,

 The Wall time decreases,

 The System time stays the same.

 Efficient parallelization is about minimizing the overhead introduced
by the parallelization itself!

Parallelization Overhead

Parallel ProgrammingITC: Jens Hollmann Folie 36

 Data Race: Concurrent access of the same memory location by
multiple threads without proper synchronization
 Let x be initialized with 1

 Depending on which thread is faster, you will see either 1 or 5

 Result is nondeterministic (i.e. depends on OS scheduling)

 Data Races (and how to detect and avoid them) will be covered in
more detail later!

Data Races / Race Conditions

x=5; printf(x);

Parallel ProgrammingITC: Jens Hollmann Folie 37

 When two or more threads / processes are waiting for another to
release a resource in a circular chain, the program appears to
„hang“:

Deadlock

I want to write!

Give me
the

paper!

Give me
the pen!

Parallel ProgrammingITC: Jens Hollmann Folie 38

 All threads / processes finish at the same time

 Some threads / processes take longer than others

 But: All threads / processes have to wait for the slowest thread /

process, which is thus limiting

the scalability

Load Balancing

perfect load balancing
tim

e

load imbalance

tim
e

Parallel ProgrammingITC: Jens Hollmann Folie 39

 Serialization: When threads / processes wait „too much“
 Limited scalability, if at all

 Simple (and stupid) example:

Serialization

Send Recv
Data

Transfer

SendRecv
Data

Transfer

Send Recv
Data

Transfer

Calc

Calc

Wait

Wait

