
Parallel ProgrammingITC: Jens Hollmann Folie 41

Java-Threads
Thread-Parallelization in Java

Parallel ProgrammingITC: Jens Hollmann Folie 42

 A Thread is in either on of the following states
 New

 Runnable

 Active

 Blocked

 Waiting (Timed-Waiting)

 Terminated

State of Java Threads

Parallel ProgrammingITC: Jens Hollmann Folie 43

State of Java Threads

New

Runnable

Active

Blocked
Waiting

Timed_Waiting

new Thread()

start()

acquire lock

Lock released

Terminated

yield()

wait()
join()
sleep()

Time elapsed
notify()
notifyAll()
interrupt()

Methoden von
Thread (static)
Object

Parallel ProgrammingITC: Jens Hollmann Folie 44

 A thread has to know in which line of code it starts

 Idea
 The new thread calls a method

 The thread is destroyed after the method has ended

 Problem
 A function pointer would be good, but since Java has no function pointers,

there is another method:

 Calling the native Thread-class with an own object, implementing the

Runnable-Interface

Starting a Thread in Java

Parallel ProgrammingITC: Jens Hollmann Folie 45

public class MyRunnable implements Runnable
{

public void run()
{
// do something useful

}
}

[...]

Thread t = new Thread(new MyRunnable());
t.start();

[...]

Starting a Thread in Java - Runnables

Parallel ProgrammingITC: Jens Hollmann Folie 46

 ThreadBasics - startingThreads

Starting a Thread in Java – Live Demo

Parallel ProgrammingITC: Jens Hollmann Folie 47

 A thread will destroy itself when the method, that it was executing, is
over

 Question
 Is there a way to wait unless a thread finishes?

 Answer
 Yes!

Thread t = new Thread (new MyRunnable());

t.start();

// do something useful

[...]

t.join(); // wait for thread

Ending a Thread in Java

Parallel ProgrammingITC: Jens Hollmann Folie 48

 ThreadBasics - endingThreads

Ending a Thread in Java – Live Demo

Parallel ProgrammingITC: Jens Hollmann Folie 49

 To avoid race conditions, it’s sometimes necessary to synchronize
threads
 Synchronization means to actively effect the order of the threads execution

 There are several methods to realize a synchronization
 Atomic operations / atomic data types

 Mutex locks

 Barriers

 …

Motivation for synchronizing Threads

Parallel ProgrammingITC: Jens Hollmann Folie 50

 ThreadSynchronisation1 - withoutSynchronisation

Race Conditions – Live Demo

Parallel ProgrammingITC: Jens Hollmann Folie 51

 An atomic operation is a non-interruptible operations
 No other thread or process can perform an operation, while the atomic

operation is executed

 An atomic data type is a data type which operations are atomic
 For example AtomicInteger in Java

 Example
AtomicInteger atomic = new AtomicInteger(5);

int nonAtomic = atomic.addAndGet(10);

// nonAtomic is now 15

Atomic operation / Atomic data type

Parallel ProgrammingITC: Jens Hollmann Folie 52

 ThreadSynchronisation1 - atomicDatatypes

Atomic data type – Live Demo

Parallel ProgrammingITC: Jens Hollmann Folie 53

 A mutex lock (abbr. for mutual exclusion) takes care for only one
thread entering a certain part of the code (critical region) at a time

 Example
ReentrantLock mutex = new ReentrantLock();

mutex.lock();

// do something useful }

mutex.unlock();

 The code between lock() and unlock() is executed by only one
thread at a time

Mutex Lock (1)

Parallel ProgrammingITC: Jens Hollmann Folie 54

 ThreadSynchronisation1 – mutexLock – reentrantLock

Mutex Lock – Live Demo

Parallel ProgrammingITC: Jens Hollmann Folie 55

 A mutex can also be used with a synchronized-block.
 A synchronized-Block needs an object as mutex

 Also the this-object can server as mutex

 All synchronized-Blocks, that share the same object, thus the object with

the same memory address, belong together

 Example
SomeObject mutex = new SomeObject();

synchronized(mutex);

{

// do something useful }

}

Mutex Lock (2)

Parallel ProgrammingITC: Jens Hollmann Folie 56

public synchronized void func()
{

// do something useful }
}

is the same as

public void func()
{

synchronized(this)
{

// do something useful
}

}

Mutex Lock (3)

Parallel ProgrammingITC: Jens Hollmann Folie 57

 ThreadSynchronisation1 – mutexLock – synchronizedBlock

Mutex Lock – Live Demo

Parallel ProgrammingITC: Jens Hollmann Folie 58

 A pipe (also called queue) is an uni- or bidirectional datastream, that
works with the FIFO (first in, first out) principle

 Example
LinkedBlockingQueue < Integer > queue =

new LinkedBlockingQueue < Integer >();

// Thread a

int t = queue.take (); // blocks if queue is empty

// Thread b

int p = 5;

queue.put(p)

Pipe

Parallel ProgrammingITC: Jens Hollmann Folie 59

 ThreadSynchronisation2 – pipe

Pipe – Live Demo

Parallel ProgrammingITC: Jens Hollmann Folie 60

 A barrier blocks all threads arriving at the barrier until a certain
number of threads has reached the barrier
 The number of waiting threads is adjustable

 When the last thread reaches the barrier, all threads are released

 The barriers “breaks”.

 Example
int n = 4;

CyclicBarrier barrier = new CyclicBarrier(n);

try

{

barrier.await();

}

catch(Exception e) { /* do something /* }

Barrier (1)

Parallel ProgrammingITC: Jens Hollmann Folie 61

Barrier (2)

Parallel ProgrammingITC: Jens Hollmann Folie 62

 ThreadSynchronisation2 – barrier

Barrier – Live Demo

Parallel ProgrammingITC: Jens Hollmann Folie 63

 A future is an object which acts as placeholder for data, that will be
available in the future

 Example
ExecutorService pool =

Executors.newFixedThreadPool(5);

Callable <String > task = new TaskImplementation();

Future <String > f = pool.submit(task);

// Do something useful…

String result = f.get (); // blocks if necessary

Threadpool

Parallel ProgrammingITC: Jens Hollmann Folie 64

 ThreadSynchronisation2 – threadPool – runnables

Threadpool – Live Demo

Parallel ProgrammingITC: Jens Hollmann Folie 65

 A threadpool is a group of threads
 Each thread in the pool sleeps, until it gets a task

 After finishing a task a thread returns to the pool

 New tasks are queued if all threads are busy

 Example
ExecutorService pool =

Executors.newFixedThreadPool (5);

Runnable task = new TaskImplementation();

pool.execute(task);

Future

Parallel ProgrammingITC: Jens Hollmann Folie 66

 ThreadSynchronisation2 – threadPool – futures

Future – Live Demo

