
Parallel ProgrammingITC: Jens Hollmann Folie 41

Java-Threads
Thread-Parallelization in Java

Parallel ProgrammingITC: Jens Hollmann Folie 42

 A Thread is in either on of the following states
 New

 Runnable

 Active

 Blocked

 Waiting (Timed-Waiting)

 Terminated

State of Java Threads

Parallel ProgrammingITC: Jens Hollmann Folie 43

State of Java Threads

New

Runnable

Active

Blocked
Waiting

Timed_Waiting

new Thread()

start()

acquire lock

Lock released

Terminated

yield()

wait()
join()
sleep()

Time elapsed
notify()
notifyAll()
interrupt()

Methoden von
Thread (static)
Object

Parallel ProgrammingITC: Jens Hollmann Folie 44

 A thread has to know in which line of code it starts

 Idea
 The new thread calls a method

 The thread is destroyed after the method has ended

 Problem
 A function pointer would be good, but since Java has no function pointers,

there is another method:

 Calling the native Thread-class with an own object, implementing the

Runnable-Interface

Starting a Thread in Java

Parallel ProgrammingITC: Jens Hollmann Folie 45

public class MyRunnable implements Runnable
{

public void run()
{
// do something useful

}
}

[...]

Thread t = new Thread(new MyRunnable());
t.start();

[...]

Starting a Thread in Java - Runnables

Parallel ProgrammingITC: Jens Hollmann Folie 46

 ThreadBasics - startingThreads

Starting a Thread in Java – Live Demo

Parallel ProgrammingITC: Jens Hollmann Folie 47

 A thread will destroy itself when the method, that it was executing, is
over

 Question
 Is there a way to wait unless a thread finishes?

 Answer
 Yes!

Thread t = new Thread (new MyRunnable());

t.start();

// do something useful

[...]

t.join(); // wait for thread

Ending a Thread in Java

Parallel ProgrammingITC: Jens Hollmann Folie 48

 ThreadBasics - endingThreads

Ending a Thread in Java – Live Demo

Parallel ProgrammingITC: Jens Hollmann Folie 49

 To avoid race conditions, it’s sometimes necessary to synchronize
threads
 Synchronization means to actively effect the order of the threads execution

 There are several methods to realize a synchronization
 Atomic operations / atomic data types

 Mutex locks

 Barriers

 …

Motivation for synchronizing Threads

Parallel ProgrammingITC: Jens Hollmann Folie 50

 ThreadSynchronisation1 - withoutSynchronisation

Race Conditions – Live Demo

Parallel ProgrammingITC: Jens Hollmann Folie 51

 An atomic operation is a non-interruptible operations
 No other thread or process can perform an operation, while the atomic

operation is executed

 An atomic data type is a data type which operations are atomic
 For example AtomicInteger in Java

 Example
AtomicInteger atomic = new AtomicInteger(5);

int nonAtomic = atomic.addAndGet(10);

// nonAtomic is now 15

Atomic operation / Atomic data type

Parallel ProgrammingITC: Jens Hollmann Folie 52

 ThreadSynchronisation1 - atomicDatatypes

Atomic data type – Live Demo

Parallel ProgrammingITC: Jens Hollmann Folie 53

 A mutex lock (abbr. for mutual exclusion) takes care for only one
thread entering a certain part of the code (critical region) at a time

 Example
ReentrantLock mutex = new ReentrantLock();

mutex.lock();

// do something useful }

mutex.unlock();

 The code between lock() and unlock() is executed by only one
thread at a time

Mutex Lock (1)

Parallel ProgrammingITC: Jens Hollmann Folie 54

 ThreadSynchronisation1 – mutexLock – reentrantLock

Mutex Lock – Live Demo

Parallel ProgrammingITC: Jens Hollmann Folie 55

 A mutex can also be used with a synchronized-block.
 A synchronized-Block needs an object as mutex

 Also the this-object can server as mutex

 All synchronized-Blocks, that share the same object, thus the object with

the same memory address, belong together

 Example
SomeObject mutex = new SomeObject();

synchronized(mutex);

{

// do something useful }

}

Mutex Lock (2)

Parallel ProgrammingITC: Jens Hollmann Folie 56

public synchronized void func()
{

// do something useful }
}

is the same as

public void func()
{

synchronized(this)
{

// do something useful
}

}

Mutex Lock (3)

Parallel ProgrammingITC: Jens Hollmann Folie 57

 ThreadSynchronisation1 – mutexLock – synchronizedBlock

Mutex Lock – Live Demo

Parallel ProgrammingITC: Jens Hollmann Folie 58

 A pipe (also called queue) is an uni- or bidirectional datastream, that
works with the FIFO (first in, first out) principle

 Example
LinkedBlockingQueue < Integer > queue =

new LinkedBlockingQueue < Integer >();

// Thread a

int t = queue.take (); // blocks if queue is empty

// Thread b

int p = 5;

queue.put(p)

Pipe

Parallel ProgrammingITC: Jens Hollmann Folie 59

 ThreadSynchronisation2 – pipe

Pipe – Live Demo

Parallel ProgrammingITC: Jens Hollmann Folie 60

 A barrier blocks all threads arriving at the barrier until a certain
number of threads has reached the barrier
 The number of waiting threads is adjustable

 When the last thread reaches the barrier, all threads are released

 The barriers “breaks”.

 Example
int n = 4;

CyclicBarrier barrier = new CyclicBarrier(n);

try

{

barrier.await();

}

catch(Exception e) { /* do something /* }

Barrier (1)

Parallel ProgrammingITC: Jens Hollmann Folie 61

Barrier (2)

Parallel ProgrammingITC: Jens Hollmann Folie 62

 ThreadSynchronisation2 – barrier

Barrier – Live Demo

Parallel ProgrammingITC: Jens Hollmann Folie 63

 A future is an object which acts as placeholder for data, that will be
available in the future

 Example
ExecutorService pool =

Executors.newFixedThreadPool(5);

Callable <String > task = new TaskImplementation();

Future <String > f = pool.submit(task);

// Do something useful…

String result = f.get (); // blocks if necessary

Threadpool

Parallel ProgrammingITC: Jens Hollmann Folie 64

 ThreadSynchronisation2 – threadPool – runnables

Threadpool – Live Demo

Parallel ProgrammingITC: Jens Hollmann Folie 65

 A threadpool is a group of threads
 Each thread in the pool sleeps, until it gets a task

 After finishing a task a thread returns to the pool

 New tasks are queued if all threads are busy

 Example
ExecutorService pool =

Executors.newFixedThreadPool (5);

Runnable task = new TaskImplementation();

pool.execute(task);

Future

Parallel ProgrammingITC: Jens Hollmann Folie 66

 ThreadSynchronisation2 – threadPool – futures

Future – Live Demo

