
IT Center der RWTH Aachen University

Introduction to OpenMP

Dirk Schmidl

IT Center, RWTH Aachen University

Member of the HPC Group

schmidl@itc.rwth-aachen.de

Introduction to OpenMP

Dirk Schmidl | IT Center der RWTH Aachen University
2

History

 De-facto standard for Shared-Memory Parallelization.

 1997: OpenMP 1.0 for FORTRAN

 1998: OpenMP 1.0 for C and C++

 1999: OpenMP 1.1 for FORTRAN

(errata)

 2000: OpenMP 2.0 for FORTRAN

 2002: OpenMP 2.0 for C and C++

 2005: OpenMP 2.5 now includes

both programming languages.

 05/2008: OpenMP 3.0 release

 07/2011: OpenMP 3.1 release

 07/2013: OpenMP 4.0 release

http://www.OpenMP.org

RWTH Aachen University is
a member of the OpenMP
Architecture Review Board
(ARB) since 2006.

Introduction to OpenMP

Dirk Schmidl | IT Center der RWTH Aachen University
3

OpenMP Overview

&

Parallel Region

Introduction to OpenMP

Dirk Schmidl | IT Center der RWTH Aachen University
4

 OpenMP: Shared-Memory Parallel Programming Model.

All processors/cores access

a shared main memory.

Real architectures are

more complex, as we

will see later / as we

have seen.

Parallelization in OpenMP

employs multiple threads.

OpenMP‘s machine model

Memory

Cache Cache Cache Cache

Proc Proc Proc Proc

Crossbar / Bus

Introduction to OpenMP

Dirk Schmidl | IT Center der RWTH Aachen University
5

 OpenMP programs start with

just one thread: The Master.

 Worker threads are spawned

at Parallel Regions, together

with the Master they form the

Team of threads.

 In between Parallel Regions the

Worker threads are put to sleep.

The OpenMP Runtime takes care

of all thread management work.

 Concept: Fork-Join.

 Allows for an incremental parallelization!

OpenMP Execution Model

Master Thread Serial Part

Parallel
RegionSlave

ThreadsSlave
ThreadsWorker
Threads

Parallel
Region

Serial Part

Introduction to OpenMP

Dirk Schmidl | IT Center der RWTH Aachen University
6

 The parallelism has to be expressed explicitly.

 Structured Block

 Exactly one entry point at the top

 Exactly one exit point at the bottom

 Branching in or out is not allowed

 Terminating the program is allowed

(abort / exit)

Parallel Region and Structured
Blocks

C/C++

#pragma omp parallel

{

...

structured block

...

}

 Specification of number of threads:

 Environment variable:

OMP_NUM_THREADS=…

 Or: Via num_threads clause:

add num_threads(num) to the

parallel construct

Fortran

!$omp parallel

...

structured block

...

$!omp end parallel

Introduction to OpenMP

Dirk Schmidl | IT Center der RWTH Aachen University
7

Hello OpenMP World

Demo

Introduction to OpenMP

Dirk Schmidl | IT Center der RWTH Aachen University
8

Hello orphaned OpenMP World

Demo

Introduction to OpenMP

Dirk Schmidl | IT Center der RWTH Aachen University
9

 From within a shell, global setting of the number of threads:

export OMP_NUM_THREADS=4

./program

 From within a shell, one-time setting of the number of threads:

OMP_NUM_THREADS=4 ./program

Starting OpenMP Programs on Linux

Introduction to OpenMP

Dirk Schmidl | IT Center der RWTH Aachen University
10

For Worksharing Construct

Introduction to OpenMP

Dirk Schmidl | IT Center der RWTH Aachen University
11

 If only the parallel construct is used, each thread executes the

Structured Block.

 Program Speedup: Worksharing

 OpenMP‘s most common Worksharing construct: for

 Distribution of loop iterations over all threads in a Team.

 Scheduling of the distribution can be influenced.

 Loops often account for most of a program‘s runtime!

For Worksharing

C/C++

int i;

#pragma omp for

for (i = 0; i < 100; i++)

{

a[i] = b[i] + c[i];

}

Fortran

INTEGER :: i

!$omp do

DO i = 0, 99

a[i] = b[i] + c[i];

END DO

Introduction to OpenMP

Dirk Schmidl | IT Center der RWTH Aachen University
12

Worksharing illustrated

do i = 0, 99

a(i) = b(i) + c(i)

end do

do i = 0, 24

a(i) = b(i) + c(i)

end do

do i = 25, 49

a(i) = b(i) + c(i)

end do

do i = 50, 74

a(i) = b(i) + c(i)

end do

do i = 75, 99

a(i) = b(i) + c(i)

end do

MemoryPseudo-Code
Here: 4 Threads

Thread 1

Thread 2

Thread 3

Thread 4

Serial

A(0)
.
.
.

A(99)

B(0)
.
.
.

B(99)

C(0)
.
.
.

C(99)

Introduction to OpenMP

Dirk Schmidl | IT Center der RWTH Aachen University
13

Summing up Vector Elements

Demo

Introduction to OpenMP

Dirk Schmidl | IT Center der RWTH Aachen University
14

 Can all loops be parallelized with for-constructs? No!

 Simple test: If the results differ when the code is executed backwards, the

loop iterations are not independent. BUT: This test alone is not sufficient:

 Data Race: If between two synchronization points at least one thread

writes to a memory location from which at least one other thread

reads, the result is not deterministic (race condition).

Synchronization Overview

C/C++

int i;

#pragma omp parallel for

for (i = 0; i < 100; i++)

{

s = s + a[i];

}

Introduction to OpenMP

Dirk Schmidl | IT Center der RWTH Aachen University
15

 A Critical Region is executed by all threads, but by only one thread

simultaneously (Mutual Exclusion).

 Do you think this solution scales well?

Synchronization: Critical Region

C/C++

#pragma omp critical (name)

{

... structured block ...

}

C/C++

int i;

#pragma omp parallel for

for (i = 0; i < 100; i++)

{

#pragma omp critical

{ s = s + a[i]; }

}

Introduction to OpenMP

Dirk Schmidl | IT Center der RWTH Aachen University
16

Data Scoping

Introduction to OpenMP

Dirk Schmidl | IT Center der RWTH Aachen University
17

 Managing the Data Environment is the challenge of OpenMP.

 Scoping in OpenMP: Dividing variables in shared and private:

 private-list and shared-list on Parallel Region

 private-list and shared-list on Worksharing constructs

 General default is shared for Parallel Region, firstprivate for Tasks.

 Loop control variables on for-constructs are private

 Non-static variables local to Parallel Regions are private

 private: A new uninitialized instance is created for each thread

firstprivate: Initialization with Master‘s value

lastprivate: Value of last loop iteration is written back to Master

 Static variables are shared

Scoping Rules

Introduction to OpenMP

Dirk Schmidl | IT Center der RWTH Aachen University
18

 Global / static variables can be privatized with the threadprivate

directive

 One instance is created for each thread

Before the first parallel region is encountered

Instance exists until the program ends

Does not work (well) with nested Parallel Region

 Based on thread-local storage (TLS)

TlsAlloc (Win32-Threads), pthread_key_create (Posix-Threads), keyword

__thread (GNU extension)

Privatization of Global/Static Variables

C/C++

static int i;

#pragma omp threadprivate(i)

Fortran

SAVE INTEGER :: i

!$omp threadprivate(i)

Introduction to OpenMP

Dirk Schmidl | IT Center der RWTH Aachen University
19

The Barrier Construct

Introduction to OpenMP

Dirk Schmidl | IT Center der RWTH Aachen University
20

 OpenMP barrier (implicit or explicit)

 Threads wait until all threads of the current Team have reached the barrier

 All worksharing constructs contain an implicit barrier at the end

The Barrier Construct

C/C++

#pragma omp barrier

Introduction to OpenMP

Dirk Schmidl | IT Center der RWTH Aachen University
21

Back to our bad

scaling example
C/C++

int i;

#pragma omp parallel for

for (i = 0; i < 100; i++)

{

#pragma omp critical

{ s = s + a[i]; }

}

Introduction to OpenMP

Dirk Schmidl | IT Center der RWTH Aachen University
22

#pragma omp parallel

{

#pragma omp for

for (i = 0; i < 99; i++)

{

s = s + a[i];

}

} // end parallel

It‘s your turn: Make It Scale!

do i = 0, 99

s = s + a(i)

end do

do i = 0, 24
s = s + a(i)

end do

do i = 25, 49
s = s + a(i)

end do

do i = 50, 74
s = s + a(i)

end do

do i = 75, 99
s = s + a(i)

end do

Introduction to OpenMP

Dirk Schmidl | IT Center der RWTH Aachen University
23

 In a reduction-operation the operator is applied to all variables in the
list. The variables have to be shared.

reduction(operator:list)

 The result is provided in the associated reduction variable

 Possible reduction operators with initialization value:

+ (0), * (1), - (0),

& (~0), | (0), && (1), || (0),

^ (0), min (least number), max (largest number)

The Reduction Clause

C/C++

#pragma omp parallel for reduction(+:s)

for(i = 0; i < 99; i++)

{

s = s + a[i];

}

Introduction to OpenMP

Dirk Schmidl | IT Center der RWTH Aachen University
24

PI

Example

Introduction to OpenMP

Dirk Schmidl | IT Center der RWTH Aachen University
25

Example: Pi (1/2)

double f(double x)

{

return (4.0 / (1.0 + x*x));

}

double CalcPi (int n)

{

const double fH = 1.0 / (double) n;

double fSum = 0.0;

double fX;

int i;

#pragma omp parallel for

for (i = 0; i < n; i++)

{

fX = fH * ((double)i + 0.5);

fSum += f(fX);

}

return fH * fSum;

}

𝜋 =

0

1
4

1 + 𝑥2

Introduction to OpenMP

Dirk Schmidl | IT Center der RWTH Aachen University
26

Example: Pi (1/2)

double f(double x)

{

return (4.0 / (1.0 + x*x));

}

double CalcPi (int n)

{

const double fH = 1.0 / (double) n;

double fSum = 0.0;

double fX;

int i;

#pragma omp parallel for private(fX,i) reduction(+:fSum)

for (i = 0; i < n; i++)

{

fX = fH * ((double)i + 0.5);

fSum += f(fX);

}

return fH * fSum;

}

𝜋 =

0

1
4

1 + 𝑥2

Introduction to OpenMP

Dirk Schmidl | IT Center der RWTH Aachen University
27

Example: Pi (2/2)

Threads Runtime [sec.] Speedup

1 1.11 1.00

2

4

8 0.14 7.93

 Results:

 Scalability is pretty good:

 About 100% of the runtime has been parallelized.

 As there is just one parallel region, there is virtually no overhead introduced

by the parallelization.

 Problem is parallelizable in a trivial fashion ...

Introduction to OpenMP

Dirk Schmidl | IT Center der RWTH Aachen University
28

Correctness Checking Tools

Introduction to OpenMP

Dirk Schmidl | IT Center der RWTH Aachen University
29

Race Condition

 Data Race: the typical OpenMP programming error, when:

 two or more threads access the same memory location, and

 at least one of these accesses is a write, and

 the accesses are not protected by locks or critical regions, and

 the accesses are not synchronized, e.g. by a barrier.

 Non-deterministic occurrence: e.g. the sequence of the execution of

parallel loop iterations is non-deterministic and may change from

run to run

 In many cases private clauses, barriers or critical regions are

missing

 Data races are hard to find using a traditional debugger

 Use the Intel Inspector XE

Introduction to OpenMP

Dirk Schmidl | IT Center der RWTH Aachen University
30

Intel Inspector XE

 Detection of

 Memory Errors

 Dead Locks

 Data Races

 Support for

 Linux (32bit and 64bit) and Windows (32bit and 64bit)

 WIN32-Threads, Posix-Threads, Intel Threading Building Blocks and OpenMP

Introduction to OpenMP

Dirk Schmidl | IT Center der RWTH Aachen University
31

PI Example Code

double f(double x)

{

return (4.0 / (1.0 + x*x));

}

double CalcPi (int n)

{

const double fH = 1.0 / (double) n;

double fSum = 0.0;

double fX;

int i;

#pragma omp parallel for private(fX,i) reduction(+:fSum)

for (i = 0; i < n; i++)

{

fX = fH * ((double)i + 0.5);

fSum += f(fX);

}

return fH * fSum;

}

𝜋 =

0

1
4

1 + 𝑥2

Introduction to OpenMP

Dirk Schmidl | IT Center der RWTH Aachen University
32

PI Example Code

double f(double x)

{

return (4.0 / (1.0 + x*x));

}

double CalcPi (int n)

{

const double fH = 1.0 / (double) n;

double fSum = 0.0;

double fX;

int i;

#pragma omp parallel for private(fX,i) reduction(+:fSum)

for (i = 0; i < n; i++)

{

fX = fH * ((double)i + 0.5);

fSum += f(fX);

}

return fH * fSum;

}

What if we
would have

forgotten this?

Introduction to OpenMP

Dirk Schmidl | IT Center der RWTH Aachen University
33

Inspector XE – Configure Analysis

Threading Error Analysis Modes
1. Detect Deadlocks
2. Detect Deadlocks and Data Races
3. Locate Deadlocks and Data Races

more details,
more overhead

Introduction to OpenMP

Dirk Schmidl | IT Center der RWTH Aachen University
34

Inspector XE – Results

1

1

23

2

3

detected problems
filters
code location

The missing reduction
is detected.

Introduction to OpenMP

Dirk Schmidl | IT Center der RWTH Aachen University
35

PI Example Code

double f(double x)

{

return (4.0 / (1.0 + x*x));

}

double CalcPi (int n)

{

const double fH = 1.0 / (double) n;

double fSum = 0.0;

double fX;

int i;

#pragma omp parallel for private(fX,i,fSum)

for (i = 0; i < n; i++)

{

fX = fH * ((double)i + 0.5);

fSum += f(fX);

}

return fH * fSum;

}

What if we just
made the

variable private?

Introduction to OpenMP

Dirk Schmidl | IT Center der RWTH Aachen University
36

Inspector XE – Static Security Analysis

 At runtime no Error is detected!

 Compiling with the argument “-diag-enable sc-full” delivers:

 At compile-time this error can be found!

Introduction to OpenMP

Dirk Schmidl | IT Center der RWTH Aachen University
37

Single and Master Construct

Introduction to OpenMP

Dirk Schmidl | IT Center der RWTH Aachen University
38

 The single construct specifies that the enclosed structured block is

executed by only on thread of the team.

 It is up to the runtime which thread that is.

 Useful for:

 I/O

 Memory allocation and deallocation, etc. (in general: setup work)

 Implementation of the single-creator parallel-executor pattern as we will see

now…

The Single Construct

C/C++

#pragma omp single [clause]

... structured block ...

Fortran

!$omp single [clause]

... structured block ...

!$omp end single

Introduction to OpenMP

Dirk Schmidl | IT Center der RWTH Aachen University
39

 The master construct specifies that the enclosed structured block is

executed only by the master thread of a team.

 Note: The master construct is no worksharing construct and does

not contain an implicit barrier at the end.

The Master Construct

C/C++

#pragma omp master[clause]

... structured block ...

Fortran

!$omp master[clause]

... structured block ...

!$omp end master

Introduction to OpenMP

Dirk Schmidl | IT Center der RWTH Aachen University
40

Section and Ordered Construct

Introduction to OpenMP

Dirk Schmidl | IT Center der RWTH Aachen University
41

 How would you parallelize this code?

void traverse (Tree *tree)

{

if (tree->left) traverse(tree->left);

if (tree->right) traverse(tree->right);

process(tree);

}

 One option: Use OpenMP‘s parallel sections.

How to parallelize a Tree Traversal?

Introduction to OpenMP

Dirk Schmidl | IT Center der RWTH Aachen University
42

 The sections construct contains a set of structured blocks that are

to be distributed among and executed by the team of threads.

The Sections Construct

C/C++

#pragma omp sections [clause]

{

#pragma omp section

... structured block ...

#pragma omp section

... structured block ...

...

}

Fortran

!$omp sections [clause]

!$omp section

... structured block ...

!$ omp section

... structured block ...

...

!$omp end sections

Introduction to OpenMP

Dirk Schmidl | IT Center der RWTH Aachen University
43

 How would you parallelize this code?

void traverse (Tree *tree)

{

#pragma omp parallel sections

{

#pragma omp section

if (tree->left) traverse(tree->left);

#pragma omp section

if (tree->right) traverse(tree->right);

} // end omp parallel

process(tree);

}

 Downsides of this option:

 Unneccessary overhead and synchronization points

 Not always well supported (how many threads to be used?)

How to parallelize a Tree Traversal?!

Nested Parallel Regions

Barrier here!

We will later see how this can be done with tasks in a
better way.

Introduction to OpenMP

Dirk Schmidl | IT Center der RWTH Aachen University
44

 Allows to execute a structured block within a parallel loop in sequential
order

 In addition, an ordered clause has to be added to the for construct which any

ordered construct may occur

 Use Cases:

 Can be used e.g. to enforce ordering on printing of data

 May help to determine whether there is a data race

The ordered Construct

#pragma omp parallel for ordered

for (i=0 ; i<10 ; i++){

...

#pragma omp ordered

{

...

}

...

}

Introduction to OpenMP

Dirk Schmidl | IT Center der RWTH Aachen University
45

Runtime Library

Introduction to OpenMP

Dirk Schmidl | IT Center der RWTH Aachen University
46

 C and C++:

 If OpenMP is enabled during compilation, the preprocessor symbol _OPENMP

is defined. To use the OpenMP runtime library, the header omp.h has to

be included.

omp_set_num_threads(int): The specified number of threads will be

used for the parallel region encountered next.

int omp_get_num_threads: Returns the number of threads in the

current team.

int omp_get_thread_num(): Returns the number of the calling thread

in the team, the Master has always the id 0.

 Additional functions are available, e.g. to provide locking

functionality.

Runtime Library

Introduction to OpenMP

Dirk Schmidl | IT Center der RWTH Aachen University
47

Tasking

Introduction to OpenMP

Dirk Schmidl | IT Center der RWTH Aachen University
48

 On the following slides we will discuss three approaches to

parallelize this recursive code with Tasking.

Recursive approach to compute
Fibonacci

int main(int argc,

char* argv[])

{

[...]

fib(input);

[...]

}

int fib(int n) {

if (n < 2) return n;

int x = fib(n - 1);

int y = fib(n - 2);

return x+y;

}

Introduction to OpenMP

Dirk Schmidl | IT Center der RWTH Aachen University
49

 Each encountering thread/task creates a new Task

 Code and data is being packaged up

 Tasks can be nested

Into another Task directive

Into a Worksharing construct

 Data scoping clauses:

shared(list)

private(list) firstprivate(list)

default(shared | none)

The Task Construct

C/C++

#pragma omp task [clause]

... structured block ...

Fortran

!$omp task [clause]

... structured block ...

!$omp end task

Introduction to OpenMP

Dirk Schmidl | IT Center der RWTH Aachen University
50

 Some rules from Parallel Regions apply:

 Static and Global variables are shared

 Automatic Storage (local) variables are private

 If shared scoping is not derived by default:

 Orphaned Task variables are firstprivate by default!

 Non-Orphaned Task variables inherit the shared attribute!

 Variables are firstprivate unless shared in the enclosing context

Tasks in OpenMP: Data Scoping

Introduction to OpenMP

Dirk Schmidl | IT Center der RWTH Aachen University
51

o Only one Task / Thread enters fib() from main(), it is responsable for
creating the two initial work tasks

o Taskwait is required, as otherwise x and y would be lost

First version parallelized with Tasking
(omp-v1)

int main(int argc,

char* argv[])

{

[...]

#pragma omp parallel

{

#pragma omp single

{

fib(input);

}

}

[...]

}

int fib(int n) {

if (n < 2) return n;

int x, y;

#pragma omp task shared(x)

{

x = fib(n - 1);

}

#pragma omp task shared(y)

{

y = fib(n - 2);

}

#pragma omp taskwait

return x+y;

}

Introduction to OpenMP

Dirk Schmidl | IT Center der RWTH Aachen University
52

Fibonacci Illustration

 T1 enters fib(4)

fib(4)
 T1 creates tasks for

fib(3) and fib(2)

Task Queue

fib(3) fib(2)

 T1 and T2 execute tasks

from the queue

fib(3) fib(2) T1 and T2 create 4 new

tasks

fib(2) fib(1) fib(1) fib(0)

 T1 - T4 execute tasks

fib(2) fib(1) fib(1) fib(0)

Introduction to OpenMP

Dirk Schmidl | IT Center der RWTH Aachen University
53

Fibonacci Illustration

 T1 enters fib(4)

fib(4)
 T1 creates tasks for

fib(3) and fib(2)

 T1 and T2 execute tasks

from the queue

fib(3) fib(2) T1 and T2 create 4 new

tasks

 T1 - T4 execute tasks

fib(2) fib(1) fib(1) fib(0) …

fib(1) fib(0)

Introduction to OpenMP

Dirk Schmidl | IT Center der RWTH Aachen University
54

 Overhead of task creation prevents better scalability!

Scalability measurements (1/3)

0

1

2

3

4

5

6

7

8

9

1 2 4 8

Sp
e

e
d

u
p

#Threads

Speedup of Fibonacci with Tasks

optimal

omp-v1

Introduction to OpenMP

Dirk Schmidl | IT Center der RWTH Aachen University
55

 Improvement: Don‘t create yet another task once a certain (small
enough) n is reached

Improved parallelization with Tasking
(omp-v2)

int main(int argc,

char* argv[])

{

[...]

#pragma omp parallel

{

#pragma omp single

{

fib(input);

}

}

[...]

}

int fib(int n) {

if (n < 2) return n;

int x, y;

#pragma omp task shared(x) \

if(n > 30)

{

x = fib(n - 1);

}

#pragma omp task shared(y) \

if(n > 30)

{

y = fib(n - 2);

}

#pragma omp taskwait

return x+y;

}

Introduction to OpenMP

Dirk Schmidl | IT Center der RWTH Aachen University
56

 Speedup is ok, but we still have some overhead when running with 4

or 8 threads

Scalability measurements (2/3)

0

1

2

3

4

5

6

7

8

9

1 2 4 8

Sp
e

e
d

u
p

#Threads

Speedup of Fibonacci with Tasks

optimal

omp-v1

omp-v2

Introduction to OpenMP

Dirk Schmidl | IT Center der RWTH Aachen University
57

 Improvement: Skip the OpenMP overhead once a certain n

is reached (no issue w/ production compilers)

Improved parallelization with Tasking
(omp-v3)

int main(int argc,

char* argv[])

{

[...]

#pragma omp parallel

{

#pragma omp single

{

fib(input);

}

}

[...]

}

int fib(int n) {

if (n < 2) return n;

if (n <= 30)

return serfib(n);

int x, y;

#pragma omp task shared(x)

{

x = fib(n - 1);

}

#pragma omp task shared(y)

{

y = fib(n - 2);

}

#pragma omp taskwait

return x+y;

}

Introduction to OpenMP

Dirk Schmidl | IT Center der RWTH Aachen University
58

 Everything ok now

Scalability measurements (3/3)

0

1

2

3

4

5

6

7

8

9

1 2 4 8

Sp
e

e
d

u
p

#Threads

Speedup of Fibonacci with Tasks

optimal

omp-v1

omp-v2

omp-v3

Introduction to OpenMP

Dirk Schmidl | IT Center der RWTH Aachen University
59

int a = 1;

void foo()

{

int b = 2, c = 3;

#pragma omp parallel shared(b)

#pragma omp parallel private(b)

{

int d = 4;

#pragma omp task

{

int e = 5;

// Scope of a:

// Scope of b:

// Scope of c:

// Scope of d:

// Scope of e:

} } }

Data Scoping Example (1/7)

Introduction to OpenMP

Dirk Schmidl | IT Center der RWTH Aachen University
60

int a = 1;

void foo()

{

int b = 2, c = 3;

#pragma omp parallel shared(b)

#pragma omp parallel private(b)

{

int d = 4;

#pragma omp task

{

int e = 5;

// Scope of a: shared

// Scope of b:

// Scope of c:

// Scope of d:

// Scope of e:

} } }

Data Scoping Example (2/7)

Introduction to OpenMP

Dirk Schmidl | IT Center der RWTH Aachen University
61

int a = 1;

void foo()

{

int b = 2, c = 3;

#pragma omp parallel shared(b)

#pragma omp parallel private(b)

{

int d = 4;

#pragma omp task

{

int e = 5;

// Scope of a: shared

// Scope of b: firstprivate

// Scope of c:

// Scope of d:

// Scope of e:

} } }

Data Scoping Example (3/7)

Introduction to OpenMP

Dirk Schmidl | IT Center der RWTH Aachen University
62

int a = 1;

void foo()

{

int b = 2, c = 3;

#pragma omp parallel shared(b)

#pragma omp parallel private(b)

{

int d = 4;

#pragma omp task

{

int e = 5;

// Scope of a: shared

// Scope of b: firstprivate

// Scope of c: shared

// Scope of d:

// Scope of e:

} } }

Data Scoping Example (4/7)

Introduction to OpenMP

Dirk Schmidl | IT Center der RWTH Aachen University
63

int a = 1;

void foo()

{

int b = 2, c = 3;

#pragma omp parallel shared(b)

#pragma omp parallel private(b)

{

int d = 4;

#pragma omp task

{

int e = 5;

// Scope of a: shared

// Scope of b: firstprivate

// Scope of c: shared

// Scope of d: firstprivate

// Scope of e:

} } }

Data Scoping Example (5/7)

Introduction to OpenMP

Dirk Schmidl | IT Center der RWTH Aachen University
64

int a = 1;

void foo()

{

int b = 2, c = 3;

#pragma omp parallel shared(b)

#pragma omp parallel private(b)

{

int d = 4;

#pragma omp task

{

int e = 5;

// Scope of a: shared

// Scope of b: firstprivate

// Scope of c: shared

// Scope of d: firstprivate

// Scope of e: private

} } }

Data Scoping Example (6/7)

Hint: Use default(none) to be
forced to think about every

variable if you do not see clear.

Introduction to OpenMP

Dirk Schmidl | IT Center der RWTH Aachen University
65

int a = 1;

void foo()

{

int b = 2, c = 3;

#pragma omp parallel shared(b)

#pragma omp parallel private(b)

{

int d = 4;

#pragma omp task

{

int e = 5;

// Scope of a: shared, value of a: 1

// Scope of b: firstprivate, value of b: 0 / undefined

// Scope of c: shared, value of c: 3

// Scope of d: firstprivate, value of d: 4

// Scope of e: private, value of e: 5

} } }

Data Scoping Example (7/7)

Introduction to OpenMP

Dirk Schmidl | IT Center der RWTH Aachen University
66

 OpenMP barrier (implicit or explicit)

 All tasks created by any thread of the current Team are guaranteed to be

completed at barrier exit

 Task barrier: taskwait

 Encountering Task suspends until child tasks are complete

Only direct childs, not descendants!

The Barrier and Taskwait Constructs

C/C++

#pragma omp taskwait

C/C++

#pragma omp barrier

Introduction to OpenMP

Dirk Schmidl | IT Center der RWTH Aachen University
67

 Task Synchronization explained:

#pragma omp parallel num_threads(np)

{

#pragma omp task

function_A();

#pragma omp barrier

#pragma omp single

{

#pragma omp task

function_B();

}

}

Task Synchronization

np Tasks created here, one for each thread

All Tasks guaranteed to be completed here

1 Task created here

B-Task guaranteed to be completed here

Introduction to OpenMP

Dirk Schmidl | IT Center der RWTH Aachen University
68

More Environment Variables

Introduction to OpenMP

Dirk Schmidl | IT Center der RWTH Aachen University
69

 OMP_NUM_THREADS: Controls how many threads will be used to

execute the program.

 OMP_SCHEDULE: If the schedule-type runtime is specified in a

schedule clause, the value specified in this environment variable will

be used.

 OMP_DYNAMIC: The OpenMP runtime is allowed to smartly guess

how many threads might deliver the best performance. If you want

full control, set this variable to false.

 OMP_NESTED: Most OpenMP implementations require this to be set

to true in order to enabled nested Parallel Regions. Remember:

Nesting Worksharing constructs is not possible.

OpenMP Environment Variables (1/2)

Introduction to OpenMP

Dirk Schmidl | IT Center der RWTH Aachen University
70

 Define interaction with system environment:

 Env. Var. OMP_MAX_NESTED_LEVEL + API functions

Controls the maximum number of active parallel regions

 Env. Var. OMP_THREAD_LIMIT + API functions

Controls the maximum number of OpenMP threads

 Env. Var. OMP_STACKSIZE

Controls the stack size of child threads

 Env. Var. OMP_WAIT_POLICY

Control the thread idle policy:

active: Good for dedicated systems (e.g. in batch mode)

passive: Good for shared systems

OpenMP Environment Variables (2/2)

Introduction to OpenMP

Dirk Schmidl | IT Center der RWTH Aachen University
71

Questions?

