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History

 De-facto standard for Shared-Memory Parallelization.

 1997: OpenMP 1.0 for FORTRAN

 1998: OpenMP 1.0 for C and C++

 1999: OpenMP 1.1 for FORTRAN

(errata)

 2000: OpenMP 2.0 for FORTRAN

 2002: OpenMP 2.0 for C and C++

 2005: OpenMP 2.5 now includes

both programming languages.

 05/2008: OpenMP 3.0 release

 07/2011: OpenMP 3.1 release

 07/2013: OpenMP 4.0 release

http://www.OpenMP.org

RWTH Aachen University is
a member of the OpenMP
Architecture Review Board
(ARB) since 2006.
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OpenMP Overview

&

Parallel Region
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 OpenMP: Shared-Memory Parallel Programming Model.

All processors/cores access

a shared main memory.

Real architectures are

more complex, as we

will see later / as we

have seen.

Parallelization in OpenMP

employs multiple threads.

OpenMP‘s machine model

Memory

Cache Cache Cache Cache

Proc Proc Proc Proc

Crossbar / Bus
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 OpenMP programs start with

just one thread: The Master.

 Worker threads are spawned

at Parallel Regions, together

with the Master they form the

Team of threads.

 In between Parallel Regions the

Worker threads are put to sleep.

The OpenMP Runtime takes care

of all thread management work.

 Concept: Fork-Join.

 Allows for an incremental parallelization!

OpenMP Execution Model

Master Thread Serial Part

Parallel
RegionSlave 

ThreadsSlave 
ThreadsWorker
Threads

Parallel
Region

Serial Part
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 The parallelism has to be expressed explicitly.

 Structured Block

 Exactly one entry point at the top

 Exactly one exit point at the bottom

 Branching in or out is not allowed

 Terminating the program is allowed

(abort / exit)

Parallel Region and Structured 
Blocks

C/C++

#pragma omp parallel

{

...

structured block

...

}

 Specification of number of threads:

 Environment variable: 

OMP_NUM_THREADS=…

 Or: Via num_threads clause:

add num_threads(num) to the

parallel construct

Fortran

!$omp parallel

...

structured block

...

$!omp end parallel
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Hello OpenMP World

Demo
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Hello orphaned OpenMP World

Demo
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 From within a shell, global setting of the number of threads:

export OMP_NUM_THREADS=4

./program

 From within a shell, one-time setting of the number of threads:

OMP_NUM_THREADS=4   ./program

Starting OpenMP Programs on Linux
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For Worksharing Construct
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 If only the parallel construct is used, each thread executes the 

Structured Block.

 Program Speedup: Worksharing

 OpenMP‘s most common Worksharing construct: for

 Distribution of loop iterations over all threads in a Team.

 Scheduling of the distribution can be influenced.

 Loops often account for most of a program‘s runtime!

For Worksharing

C/C++

int i;

#pragma omp for

for (i = 0; i < 100; i++)

{

a[i] = b[i] + c[i];

}

Fortran

INTEGER :: i

!$omp do

DO i = 0, 99

a[i] = b[i] + c[i];

END DO
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Worksharing illustrated

do i = 0, 99

a(i) = b(i) + c(i)

end do

do i = 0, 24

a(i) = b(i) + c(i)

end do

do i = 25, 49

a(i) = b(i) + c(i)

end do

do i = 50, 74

a(i) = b(i) + c(i)

end do

do i = 75, 99

a(i) = b(i) + c(i)

end do

MemoryPseudo-Code
Here: 4 Threads

Thread 1

Thread 2

Thread 3

Thread 4

Serial

A(0)
.
.
.

A(99)

B(0)
.
.
.

B(99)

C(0)
.
.
.

C(99)
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Summing up Vector Elements

Demo
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 Can all loops be parallelized with for-constructs? No!

 Simple test: If the results differ when the code is executed backwards, the 

loop iterations are not independent. BUT: This test alone is not sufficient:

 Data Race: If between two synchronization points at least one thread 

writes to a memory location from which at least one other thread 

reads, the result is not deterministic (race condition).

Synchronization Overview

C/C++

int i;

#pragma omp parallel for

for (i = 0; i < 100; i++)

{

s = s + a[i];

}
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 A Critical Region is executed by all threads, but by only one thread 

simultaneously (Mutual Exclusion).

 Do you think this solution scales well?

Synchronization: Critical Region

C/C++

#pragma omp critical (name)

{

... structured block ...

}

C/C++

int i;

#pragma omp parallel for

for (i = 0; i < 100; i++)

{

#pragma omp critical

{ s = s + a[i];  }

}
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Data Scoping
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 Managing the Data Environment is the challenge of OpenMP.

 Scoping in OpenMP: Dividing variables in shared and private:

 private-list and shared-list on Parallel Region

 private-list and shared-list on Worksharing constructs

 General default is shared for Parallel Region, firstprivate for Tasks.

 Loop control variables on for-constructs are private

 Non-static variables local to Parallel Regions are private

 private: A new uninitialized instance is created for each thread

firstprivate: Initialization with Master‘s value

lastprivate: Value of last loop iteration is written back to Master

 Static variables are shared

Scoping Rules
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 Global / static variables can be privatized with the threadprivate

directive

 One instance is created for each thread

Before the first parallel region is encountered

Instance exists until the program ends

Does not work (well) with nested Parallel Region

 Based on thread-local storage (TLS)

TlsAlloc (Win32-Threads), pthread_key_create (Posix-Threads), keyword 

__thread (GNU extension)

Privatization of Global/Static Variables

C/C++

static int i;

#pragma omp threadprivate(i)

Fortran

SAVE INTEGER :: i

!$omp threadprivate(i)
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The Barrier Construct
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 OpenMP barrier (implicit or explicit)

 Threads wait until all threads of the current Team have reached the barrier

 All worksharing constructs contain an implicit barrier at the end

The Barrier Construct

C/C++

#pragma omp barrier
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Back to our bad               

scaling example
C/C++

int i;

#pragma omp parallel for

for (i = 0; i < 100; i++)

{

#pragma omp critical

{ s = s + a[i];  }

}
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#pragma omp parallel              

{

#pragma omp for

for (i = 0; i < 99; i++)

{   

s  = s   + a[i];

}

} // end parallel

It‘s your turn: Make It Scale!

do i = 0, 99

s = s + a(i)

end do

do i = 0, 24
s = s + a(i)

end do

do i = 25, 49
s = s + a(i)

end do

do i = 50, 74
s = s + a(i)

end do

do i = 75, 99
s = s + a(i)

end do
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 In a reduction-operation the operator is applied to all variables in the 
list. The variables have to be shared.

reduction(operator:list)

 The result is provided in the associated reduction variable

 Possible reduction operators with initialization value:

+ (0), * (1), - (0),

& (~0), | (0), && (1), || (0),

^ (0), min (least number), max (largest number)

The Reduction Clause

C/C++

#pragma omp parallel for reduction(+:s)

for(i = 0; i < 99; i++)

{

s = s + a[i];

}
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PI

Example
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Example: Pi (1/2)

double f(double x)

{

return (4.0 / (1.0 + x*x));

}

double CalcPi (int n)

{

const double fH = 1.0 / (double) n;

double fSum = 0.0;

double fX;

int i;

#pragma omp parallel for

for (i = 0; i < n; i++)

{

fX = fH * ((double)i + 0.5);

fSum += f(fX);

}

return fH * fSum;

}

𝜋 =  

0

1
4

1 + 𝑥2
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Example: Pi (1/2)

double f(double x)

{

return (4.0 / (1.0 + x*x));

}

double CalcPi (int n)

{

const double fH = 1.0 / (double) n;

double fSum = 0.0;

double fX;

int i;

#pragma omp parallel for private(fX,i) reduction(+:fSum)

for (i = 0; i < n; i++)

{

fX = fH * ((double)i + 0.5);

fSum += f(fX);

}

return fH * fSum;

}

𝜋 =  

0

1
4

1 + 𝑥2
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Example: Pi (2/2)

# Threads Runtime [sec.] Speedup

1 1.11 1.00

2

4

8 0.14 7.93

 Results:

 Scalability is pretty good:

 About 100% of the runtime has been parallelized.

 As there is just one parallel region, there is virtually no overhead introduced 

by the parallelization.

 Problem is parallelizable in a trivial fashion ...
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Correctness Checking Tools
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Race Condition

 Data Race: the typical OpenMP programming error, when:

 two or more threads access the same memory location, and

 at least one of these accesses is a write, and

 the accesses are not protected by locks or critical regions, and

 the accesses are not synchronized, e.g. by a barrier.

 Non-deterministic occurrence: e.g. the sequence of the execution of 

parallel loop iterations is non-deterministic and may change from 

run to run

 In many cases private clauses, barriers or critical regions are 

missing

 Data races are hard to find using a traditional debugger

 Use the Intel Inspector XE
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Intel Inspector XE

 Detection of

 Memory Errors

 Dead Locks

 Data Races

 Support for

 Linux (32bit and 64bit) and Windows (32bit and 64bit)

 WIN32-Threads, Posix-Threads, Intel Threading Building Blocks and OpenMP
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PI Example Code

double f(double x)

{

return (4.0 / (1.0 + x*x));

}

double CalcPi (int n)

{

const double fH = 1.0 / (double) n;

double fSum = 0.0;

double fX;

int i;

#pragma omp parallel for private(fX,i) reduction(+:fSum)

for (i = 0; i < n; i++)

{

fX = fH * ((double)i + 0.5);

fSum += f(fX);

}

return fH * fSum;

}

𝜋 =  

0

1
4

1 + 𝑥2
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PI Example Code

double f(double x)

{

return (4.0 / (1.0 + x*x));

}

double CalcPi (int n)

{

const double fH = 1.0 / (double) n;

double fSum = 0.0;

double fX;

int i;

#pragma omp parallel for private(fX,i) reduction(+:fSum)

for (i = 0; i < n; i++)

{

fX = fH * ((double)i + 0.5);

fSum += f(fX);

}

return fH * fSum;

}

What if we 
would have 

forgotten this?
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Inspector XE – Configure Analysis

Threading Error Analysis Modes
1. Detect Deadlocks
2. Detect Deadlocks and Data Races
3. Locate Deadlocks and Data Races

more details,
more overhead
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Inspector XE – Results

1

1

23

2

3

detected problems
filters 
code location

The missing reduction 
is detected.
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PI Example Code

double f(double x)

{

return (4.0 / (1.0 + x*x));

}

double CalcPi (int n)

{

const double fH = 1.0 / (double) n;

double fSum = 0.0;

double fX;

int i;

#pragma omp parallel for private(fX,i,fSum)

for (i = 0; i < n; i++)

{

fX = fH * ((double)i + 0.5);

fSum += f(fX);

}

return fH * fSum;

}

What if we just 
made the 

variable private?
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Inspector XE – Static Security Analysis

 At runtime no Error is detected!

 Compiling with the argument “-diag-enable sc-full” delivers:

 At compile-time this error can be found!



Introduction to OpenMP

Dirk Schmidl | IT Center der RWTH Aachen University
37

Single and Master Construct
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 The single construct specifies that the enclosed structured block is

executed by only on thread of the team.

 It is up to the runtime which thread that is.

 Useful for:

 I/O

 Memory allocation and deallocation, etc. (in general: setup work)

 Implementation of the single-creator parallel-executor pattern as we will see

now…

The Single Construct

C/C++

#pragma omp single [clause]

... structured block ...

Fortran

!$omp single [clause]

... structured block ...

!$omp end single
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 The master construct specifies that the enclosed structured block is

executed only by the master thread of a team.

 Note: The master construct is no worksharing construct and does

not contain an implicit barrier at the end.

The Master Construct

C/C++

#pragma omp master[clause]

... structured block ...

Fortran

!$omp master[clause]

... structured block ...

!$omp end master
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Section and Ordered Construct
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 How would you parallelize this code?

void traverse (Tree *tree)

{

if (tree->left)   traverse(tree->left);

if (tree->right)   traverse(tree->right);

process(tree);

}

 One option: Use OpenMP‘s parallel sections.

How to parallelize a Tree Traversal?
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 The sections construct contains a set of structured blocks that are

to be distributed among and executed by the team of threads.

The Sections Construct

C/C++

#pragma omp sections [clause]

{

#pragma omp section

... structured block ...

#pragma omp section

... structured block ...

...

}

Fortran

!$omp sections [clause]

!$omp section

... structured block ...

!$ omp section

... structured block ...

...

!$omp end sections
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 How would you parallelize this code?

void traverse (Tree *tree)

{

#pragma omp parallel sections

{

#pragma omp section

if (tree->left)   traverse(tree->left);

#pragma omp section

if (tree->right)   traverse(tree->right);

} // end omp parallel

process(tree);

}

 Downsides of this option:

 Unneccessary overhead and synchronization points

 Not always well supported (how many threads to be used?)

How to parallelize a Tree Traversal?!

Nested Parallel Regions

Barrier here!

We will later see how this can be done with tasks in a 
better way.
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 Allows to execute a structured block within a parallel loop in sequential
order

 In addition, an ordered clause has to be added to the for construct which any

ordered construct may occur

 Use Cases:

 Can be used e.g. to enforce ordering on printing of data

 May help to determine whether there is a data race

The ordered Construct

#pragma omp parallel for ordered

for (i=0 ; i<10 ; i++){

...

#pragma omp ordered

{

...

}

...

}
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Runtime Library
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 C and C++:

 If OpenMP is enabled during compilation, the preprocessor symbol _OPENMP

is defined. To use the OpenMP runtime library, the header omp.h has to

be included.

omp_set_num_threads(int): The specified number of threads will be

used for the parallel region encountered next.

int omp_get_num_threads: Returns the number of threads in the

current team.

int omp_get_thread_num(): Returns the number of the calling thread

in the team, the Master has always the id 0.

 Additional functions are available, e.g. to provide locking

functionality.

Runtime Library
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Tasking
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 On the following slides we will discuss three approaches to

parallelize this recursive code with Tasking.

Recursive approach to compute
Fibonacci

int main(int argc,

char* argv[])

{

[...]

fib(input);

[...]

}

int fib(int n)   {

if (n < 2) return n;

int x = fib(n - 1);

int y = fib(n - 2);

return x+y;

}
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 Each encountering thread/task creates a new Task

 Code and data is being packaged up

 Tasks can be nested

Into another Task directive

Into a Worksharing construct

 Data scoping clauses:

shared(list)

private(list) firstprivate(list)

default(shared | none)

The Task Construct

C/C++

#pragma omp task [clause]

... structured block ...

Fortran

!$omp task [clause]

... structured block ...

!$omp end task
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 Some rules from Parallel Regions apply:

 Static and Global variables are shared

 Automatic Storage (local) variables are private

 If shared scoping is not derived by default:

 Orphaned Task variables are firstprivate by default!

 Non-Orphaned Task variables inherit the shared attribute!

 Variables are firstprivate unless shared in the enclosing context

Tasks in OpenMP: Data Scoping
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o Only one Task / Thread enters fib() from main(), it is responsable for
creating the two initial work tasks

o Taskwait is required, as otherwise x and y would be lost

First version parallelized with Tasking
(omp-v1)

int main(int argc,

char* argv[])

{

[...]

#pragma omp parallel

{

#pragma omp single

{

fib(input);

}

}

[...]

}

int fib(int n)   {

if (n < 2) return n;

int x, y;

#pragma omp task shared(x)

{

x = fib(n - 1);

}

#pragma omp task shared(y)

{

y = fib(n - 2);

}

#pragma omp taskwait

return x+y;

}
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Fibonacci Illustration

 T1 enters fib(4)

fib(4)
 T1 creates tasks for 

fib(3) and fib(2)

Task Queue

fib(3) fib(2)

 T1 and T2 execute tasks 

from the queue

fib(3) fib(2) T1 and T2 create 4 new 

tasks

fib(2) fib(1) fib(1) fib(0)

 T1 - T4 execute tasks

fib(2) fib(1) fib(1) fib(0)
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Fibonacci Illustration

 T1 enters fib(4)

fib(4)
 T1 creates tasks for 

fib(3) and fib(2)

 T1 and T2 execute tasks 

from the queue

fib(3) fib(2) T1 and T2 create 4 new 

tasks

 T1 - T4 execute tasks

fib(2) fib(1) fib(1) fib(0) …

fib(1) fib(0)
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 Overhead of task creation prevents better scalability!

Scalability measurements (1/3)

0

1

2
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4

5

6
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1 2 4 8
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u
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Speedup of Fibonacci with Tasks

optimal

omp-v1
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 Improvement: Don‘t create yet another task once a certain (small
enough) n is reached

Improved parallelization with Tasking
(omp-v2)

int main(int argc,

char* argv[])

{

[...]

#pragma omp parallel

{

#pragma omp single

{

fib(input);

}

}

[...]

}

int fib(int n)   {

if (n < 2) return n;

int x, y;

#pragma omp task shared(x) \

if(n > 30)

{

x = fib(n - 1);

}

#pragma omp task shared(y) \

if(n > 30)

{

y = fib(n - 2);

}

#pragma omp taskwait

return x+y;

}
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 Speedup is ok, but we still have some overhead when running with 4 

or 8 threads

Scalability measurements (2/3)
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 Improvement: Skip the OpenMP overhead once a certain n

is reached (no issue w/ production compilers) 

Improved parallelization with Tasking
(omp-v3)

int main(int argc,

char* argv[])

{

[...]

#pragma omp parallel

{

#pragma omp single

{

fib(input);

}

}

[...]

}

int fib(int n)   {

if (n < 2) return n;

if (n <= 30)

return serfib(n);

int x, y;

#pragma omp task shared(x)

{

x = fib(n - 1);

}

#pragma omp task shared(y)

{

y = fib(n - 2);

}

#pragma omp taskwait

return x+y;

}
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 Everything ok now 

Scalability measurements (3/3)
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int a = 1;

void foo()

{

int b = 2, c = 3;

#pragma omp parallel shared(b)

#pragma omp parallel private(b)

{

int d = 4;

#pragma omp task

{

int e = 5;

// Scope of a:

// Scope of b:

// Scope of c:

// Scope of d:

// Scope of e:

} } }

Data Scoping Example (1/7)
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int a = 1;

void foo()

{

int b = 2, c = 3;

#pragma omp parallel shared(b)

#pragma omp parallel private(b)

{

int d = 4;

#pragma omp task

{

int e = 5;

// Scope of a: shared

// Scope of b:

// Scope of c:

// Scope of d:

// Scope of e:

} } }

Data Scoping Example (2/7)
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int a = 1;

void foo()

{

int b = 2, c = 3;

#pragma omp parallel shared(b)

#pragma omp parallel private(b)

{

int d = 4;

#pragma omp task

{

int e = 5;

// Scope of a: shared

// Scope of b: firstprivate

// Scope of c:

// Scope of d:

// Scope of e:

} } }

Data Scoping Example (3/7)
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int a = 1;

void foo()

{

int b = 2, c = 3;

#pragma omp parallel shared(b)

#pragma omp parallel private(b)

{

int d = 4;

#pragma omp task

{

int e = 5;

// Scope of a: shared

// Scope of b: firstprivate

// Scope of c: shared

// Scope of d:

// Scope of e:

} } }

Data Scoping Example (4/7)
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int a = 1;

void foo()

{

int b = 2, c = 3;

#pragma omp parallel shared(b)

#pragma omp parallel private(b)

{

int d = 4;

#pragma omp task

{

int e = 5;

// Scope of a: shared

// Scope of b: firstprivate

// Scope of c: shared

// Scope of d: firstprivate

// Scope of e:

} } }

Data Scoping Example (5/7)
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int a = 1;

void foo()

{

int b = 2, c = 3;

#pragma omp parallel shared(b)

#pragma omp parallel private(b)

{

int d = 4;

#pragma omp task

{

int e = 5;

// Scope of a: shared

// Scope of b: firstprivate

// Scope of c: shared

// Scope of d: firstprivate

// Scope of e: private

} } }

Data Scoping Example (6/7)

Hint: Use default(none) to be 
forced to think about every 

variable if you do not see clear.
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int a = 1;

void foo()

{

int b = 2, c = 3;

#pragma omp parallel shared(b)

#pragma omp parallel private(b)

{

int d = 4;

#pragma omp task

{

int e = 5;

// Scope of a: shared, value of a: 1

// Scope of b: firstprivate, value of b: 0 / undefined

// Scope of c: shared, value of c: 3

// Scope of d: firstprivate, value of d: 4

// Scope of e: private, value of e: 5

} } }

Data Scoping Example (7/7)
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 OpenMP barrier (implicit or explicit)

 All tasks created by any thread of the current Team are guaranteed to be

completed at barrier exit

 Task barrier: taskwait

 Encountering Task suspends until child tasks are complete

Only direct childs, not descendants!

The Barrier and Taskwait Constructs

C/C++

#pragma omp taskwait

C/C++

#pragma omp barrier
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 Task Synchronization explained:

#pragma omp parallel num_threads(np)

{

#pragma omp task

function_A();

#pragma omp barrier

#pragma omp single

{

#pragma omp task

function_B();

}

}

Task Synchronization

np Tasks created here, one for each thread

All Tasks guaranteed to be completed here

1 Task created here

B-Task guaranteed to be completed here
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More Environment Variables
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 OMP_NUM_THREADS: Controls how many threads will be used to

execute the program.

 OMP_SCHEDULE: If the schedule-type runtime is specified in a 

schedule clause, the value specified in this environment variable will 

be used.

 OMP_DYNAMIC: The OpenMP runtime is allowed to smartly guess

how many threads might deliver the best performance. If you want

full control, set this variable to false.

 OMP_NESTED: Most OpenMP implementations require this to be set

to true in order to enabled nested Parallel Regions. Remember: 

Nesting Worksharing constructs is not possible.

OpenMP Environment Variables (1/2)
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 Define interaction with system environment:

 Env. Var. OMP_MAX_NESTED_LEVEL + API functions

Controls the maximum number of active parallel regions

 Env. Var. OMP_THREAD_LIMIT + API functions

Controls the maximum number of OpenMP threads

 Env. Var. OMP_STACKSIZE

Controls the stack size of child threads

 Env. Var. OMP_WAIT_POLICY

Control the thread idle policy:

active: Good for dedicated systems (e.g. in batch mode)

passive: Good for shared systems

OpenMP Environment Variables (2/2)
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Questions?


