Fachhochschule Aachen

Fachbereich 9
Medizintechnik und Technomathematik

UNIVERSITY OF APPLIED SCIENCES

FH AACHEN

Studiengang Scientific Programming

Methoden zur Teilmigration von RPG nach JAVA

Seminararbeit

Lennart Kiippers
Matr.-Nr. 3160603

Betreuer 1: Prof. Dr. Alexander Vof§
Betreuer 2: Daniela Ophey

20. Dezember 2019

Eidesstattliche Erklirung

Hiermit versichere ich, dass ich die Seminararbeit mit dem Thema

7

N A e Al o TR T o s ~ o, T~ \ A
[Y1etNoc [(—: M &Y [€200/ G e C1O)) VEen

Ur'l Ej C—’ N iv) j /) \//)

selbststéndig verfasst und keine anderen als die angegebenen Quellen und
Hilfsmittel benutzt habe, alle Ausfithrungen, die anderen Schriften
wortlich oder sinngeméf entnommen wurden, kenntlich gemacht sind und
die Arbeit in gleicher oder &hnlicher Fassung noch nicht Bestandteil einer
Studien- oder Priifungsleistung war.

Ich verpflichte mich, ein Exemplar der Seminararbeit fiinf Jahre aufzu-
bewahren und auf Verlangen dem Priifungsamt des Fachbereiches

Medizintechnik und Technomathematik auszuhéindigen.

Name: Lennart KuppPers

; N\ = 7 ¢
Aachen,den A0 1A . Q0-7¢

]
/‘j g 7 A /_ { / 7 N /"‘7 C
At UAopers

Unterschrift der Studentin / des Studenten

Inhaltsverzeichnis

. Einleitung

1.1. Abstract
1.2. Hintergriinde
1.3. Problemstellung
1.4. Losungsansatz

. Allgemeines

21. RPG

2.2. Griinde fiir einen Umstieg . .
2.2.1. Datenbanken
22200 ...
2.2.3. Businesslogik

. Methoden

3.1. Java Abstract Syntax Tree . .
3.1.1. Struktur
3.1.2. ASTVisitor
3.1.3. Vorteile
3.1.4. Nachteile.

. Ergebnisse

4.1. Problemstellen und Vision . .

4.2. Strukturierung

4.3. Angewendete Regeln/Besucher
4.3.1. RenameRule.
4.3.2. ExtendRule
4.3.3. JavaTypeRule
4.3.4. GetterSetterRule . . .
4.3.5. OOlInvocationRule . .
4.3.6. INIndicatorsRule . . .

4.4. Finaler Code

. Fazit und Ausblick

. Literatur

B. Abbildungsverzeichnis

C. Tabellenverzeichnis

29

1. Einleitung

1.1. Abstract

Im Rahmen dieser Seminararbeit werden Grundlagen iiber die RPG(Report Program Ge-
nerator) Programmierung vermittelt und Methoden angewendet, um bereits von RPG
nach Java migrierten Code strukturierter, lesbarer und wartbarer, in einem objektori-
entierten Stil darzustellen. Hierbei wird im Besonderen auf verschiedene Probleme in
RPG hingewiesen und wie man sie mit der Anwendung von Programmierparadigmen®
verbessern kann.

Im weiteren Verlauf der Arbeit werden die Hintergriinde zu diesem Thema, sowie die
Anwendungsstruktur und Produktlinie bei VEDA kurz erldutert. Voraussetzungen und
benotigte Kenntnisse fiir diese Arbeit sind ein Grundverstindnis der Programmierspra-
che Java und objektorientierter Programmierung.

1.2. Hintergriinde

Unsere Anwendung VEDA HR FEntgelt 1auft auf der ,,System i“, einer Computerbaurei-
he von IBM'. Besonders die Optimierungen fiir kaufminnische Anwendungen wie eine
eigene integrierte Datenbank, machten das System attraktiv fiir unsere Software.

Bis heute machen die zahlreichen Vorteile des Systems, wie beispielsweise kaum vorhan-
dene Sicherheitsliicken oder einheitlicher/einfacher Betrieb(Fischer 2016), VEDA GmbH
zu einem Marktfiihrer in Sachen Personal- und Entgeltverwaltung. Mit RPG als eine der
Hauptsprachen der OS/400%, entwickelte VEDA GmbH in den vergangenen 40 Jahren
eine performante und moderne Anwendung. Aufgrund der stdndig wachsenden Anfor-
derungen an die Software und einer stirkeren Dominanz anderer Programmiersprachen
entschied sich das Unternehmen als zukiinftige Programmiersprache Java zu nutzen.
Die neuen Moglichkeiten und Wiinsche nach modernen und benutzerfreundlichen An-
wendungen liefen sich teilweise nicht mehr in RPG realisieren. Fiir eine automatisierte
Ubertragung des RPG Codes nach Java entwickelte VEDA GmbH das Produkt VEDA
JUMP. Dieses Produkt migriert jede in RPG III geschriebene Software nach Java.

*

Ein Programmierparadigma ist ein bestimmter Stil in dem ein Programm entworfen wird. Sie

dienen nicht nur als Richtlinien fiir ,schénen Code, sondern kénnen auch in speziellen Situationen

eine Herangehensweise fiir Softwareprobleme bereitstellen(Programmierparadigma 2019).

f Die International Business Machines Corporation“(IBM) ist ein weltweit fiihrendes Unternehmen
fiir Hardware, Software und Dienstleistungen in der IT-Branche(Rouse 2016).

¥ Das Operating System(OS), also Betriebssystem der System i.

1.3. Problemstellung

Der Nachwuchs an RPG-Programmierern ist sehr gering, Kosten und Wartung von RPG
Programmen dementsprechend sehr hoch. Nicht nur die Popularitit der Sprache ist laut
Tiobe-Popularitdtsindex™® fiir Programmiersprachen sehr gering, auch die Online Prisenz
beziiglich Dokumentation und Support ist beschriankt. Mit Platz 92 von 100 liegt RPG
in 2019 sehr weit unten(TIOBE-Indez: Die aktuellen Top-Programmiersprachen im Ran-
king 2019). Auch Universitdten unterrichten eher die heutzutage modernen und beliebten
Programmiersprachen, wie Java, C-++, C oder Pascal(Schlosser 2019). Einschrankungen
und fehlende Funktionalitdten im Gegensatz zu moderneren Programmiersprachen, wie
beispielsweise Java, brachten die VEDA GmbH dazu, all ihre RPG Programme nach
Java zu migrieren.

Mit VEDA JUMP gelingt es VEDA GmbH eine 100-prozentige Migration nach Java
zu schaffen. Der resultierende Code ist vollstdndig kompilierbar und lauffahig, ohne die
Funktionalititen der Programme negativ zu beeintriachtigen. Somit wurde die Software
nicht nur plattformunabhiingig, auch die Bindung an die integrierte Datenbank(DB2T)
konnte aufgelost werden.

Durch die Eigenarten und Besonderheiten von RPG ist der Code von VEDA JUMP
jedoch lediglich auf die pure Migration fokussiert, anstatt auf eine java-nahe und struk-
turierte Codestruktur. Einige Stellen des migrierten Codes bendtigen fiir das Verstindnis
weiterhin RPG Fachwissen, was fiir reine Java Entwickler ein Problem darstellen kann.
Wird zum Beispiel ein neues Feld in der Anwendung benétigt, dann muss dieses in den
RPG Programmen eingetragen und hinzugefiigt werden. Daher miissen viele Codese-
quenzen bis heute in RPG zuerst angepasst und anschliefend neu migriert werden.

In solch einem Fall bietet die Migration keinen Vorteil und stellt eher Zusatzarbeit dar.
Genau hier setzt das Thema dieser Arbeit an. Der Code soll anhand von Analysen,
Machbarkeitsstudien, Konventionen und Programmierparadigmen optimiert werden.

1.4. Losungsansatz

Damit auch zukiinftig Java Entwickler unseren Code warten kénnen und um eine Ab-
grenzung zu RPG zu schaffen, muss der derzeitige Code optimiert werden. Ein Haupt-
bestandteil von RPG sind Funktionen, welche ausschlieflich mit den iibergebenen Pa-
rametern arbeiten. Wahrend man in Java Methoden auf Objekten und Feldern aufruft,
werden in RPG diese Funktionen statisch aufgerufen und erhalten alle beteiligten Objek-
te und Felder als Parameter. Dies widerspricht dem objektorientierten Ansatz von Java.
Im Rahmen dieser Arbeit soll dieses Kernproblem analysiert und mit Hilfe verschiedener
Methoden, Programmierparadigmen und Software Mustern? behoben werden.

Der Tiobe-Popularititsindex ist eine Ranking Liste fiir 100 Programmiersprachen

t Database 2(DB2) ist ein kommerzielles relationales Datenbankmanagementsystem, dass von IBM
entwickelt wurde. Es ist in der System i integriert(Db2 2019).

I Software Muster(-Pattern) sind bewihrte Methoden zur Entwicklung effizienter Software.

2. Allgemeines

Dieses Kapitel behandelt die Programmiersprache RPG (Report Program Generator).
Aufserdem werden Probleme der damaligen Zeit und resultierende Griinde fiir einen Um-
stieg nach Java aufgezeigt.

2.1. RPG

In den Anfingen der Datenverarbeitung, als noch mit Lochkarten® gearbeitet wurde,
entwickelte das Unternehmen IBM die Hochsprache’ RPG. Diese wurde besonders im
Bereich der Grokrechner und Minirechnern der mittleren Datentechnik?, wie beispiels-
weise der AS/400 (System i) verwendet. Die Syntax der Sprache war sehr stark an die
Arbeitsweise von Tabelliermaschinen’ angelehnt, weshalb auch der Sprachaufbau spal-
tenorientiert ist(RPG (Programmiersprache) 2019).

Im Laufe der Zeit entwickelte sich RPG immer mehr zu einer problemorientiertenY Pro-
grammiersprache. Inzwischen gibt es neben den Weiterentwicklungen RPG 11, RPG III
und RPG/400, RPG IV (ILE RPG) als neuesten Stand. RPG ist eine der wenigen fiir
Lochkarten-Maschinen entwickelten Sprachen, welche bis heute aufgrund ihrer stindigen
Weiterentwicklung genutzt und gewartet wird(Rother 2015).

Das Besondere an einem RPG Programm ist, dass es in einem eigenen Programmzy-
klus lduft, welcher sich stéandig wiederholt. Zuerst werden allgemeine Informationen der
Kopfzeile verarbeitet. Danach beginnt das Programm den ersten Record! einzulesen,

Lochkarten bestehen aus hochwertigem Karton und systematisch angeordneten Lochern. Spezielle
Maschinen konnten diesen Lochcode erstellen und interpretieren(Hollerith und der Lochkartencom-
puter 2018).

' Eine Hochsprache ist eine, weit von Maschinensprache abstrahierte, Programmiersprache. Befehle
konnen nicht direkt vom Mikroprozessor interpretiert werden und miissen durch Interpreter oder
Compiler iibersetzt werden(Schiffler 2005).

i Grofirechner bezeichnen komplexe und grofe Computersysteme die meist iiber Serversysteme
hinaus gehen. Sie werden besonders in der Massendatenverarbeitung verwendet. Minirechner der
mittleren Datentechnik bezeichnen eher kleine Systeme meist bestehend aus Rechner, Software
und Support(Grofirechner und Minirechner der mittleren Datentechnik 2019).

§ Tabelliermaschinen dienen zur Auswertungen von Lochkarten.

¥ Problemorientierte Sprachen kommen der menschlichen Sprache sehr nah und sind einfacher zu
verstehen im Gegensatz zur Maschinensprache(Lagotzki 2001).

I Ein Record entspricht einem Datensatz.

verarbeitet diesen und gibt letztendlich das Resultat aus. Dies wird dann mit nachfol-
genden Datensatzen wiederholt.

Da RPG sehr intensiv mit Schaltern arbeitet, gibt es auch einen Schalter zur Beendi-
gung des Programms. Wird der ,LR“-Schalter(Last-Record) auf ON gesetzt, so fiihrt
dies zum Abbruch. Da RPG sich hier automatisch um die Datensétze kiimmert, muss
der Programmierer nicht auf den Zugriff der Datensétze achten(Finfihrung in die RP-
G /400 Programmierung 2019). Zur Veranschaulichung soll die folgende Abbildung als
Grundlage dienen.

JMPOBJDEMO/QRPGSRC
QLKU1R

YNEN' WWNNAM
*HIVAL
EXFMTQLKU1R10
IFEQ *ON
WWYNAM OREQ 'ENDE’

WWYNAM

CA 0
WWNNAM > KS 5100

WWNNAM

nz. Fll=Umschalten
F24=Weitere Tasten
GHT IBM CORP. 1981, 2013.
08/036

Abbildung 2.1.: RPG Programm in OS/400

Das obige RPG Programm besteht aus einem Vor- und einem Nachnamen Feld. Es belegt
diese jeweils mit einem Beispielnamen vor. In der Ausfiithrung wartet es auf eine Besté-
tigung des Benutzers, was hier dem Driicken von Enter entspricht. Ist dies passiert, wird
ein ,+“ an den Vornamen und ein ,.“ an den Nachnamen angehangen, insofern dieser
nicht leer ist. Driickt der Nutzer F3 oder schreibt ,ENDE®“ in das Feld Vorname, wird
das Programm beendet.

Alle folgenden Beschreibungen der verschiedenen Befehle und Funktionen sind auf der
offiziellen Seite von IBM nachzulesen(Operation Codes List 2019).

Wie in Abbildung 2.1 zu sehen beginnen die verschiedenen Zeilen mit Buchstaben. Hier
wird die Rechenbestimmung, beziehungsweise die Funktion einer Zeile festgelegt. Das
C kennzeichnet den nachfolgenden Code als ausfiihrbare Statements, wihrend beispiels-
weise ein D das Definieren von Variablen oder ein F den Verweis auf eine Datei impliziert.

Der Befehl MOVEL ist einer der ,operation codes“(,OP Codes“), welche in genau dieser
Spalte verwendet werden miissen. Sie gleichen Funktionen wie sie in Java bekannt sind.
In diesem Fall bewirkt die Funktion, dass eine Zeichenfolge ,HEINZ“ ganz nach links an
ein Feld gesetzt wird. Das Besondere hierbei ist, dass dieser Text nicht einfach an das
Feld angehangen wird. Der Befehl iiberschreibt den Inhalt des Ziels von ganz links aus-
gehend. Das bedeutet, ist die Zeichenfolge langer als das Zielfeld, werden alle zuléssigen

Stellen iiberschrieben und der Rest verworfen. Ist die Zeichenfolge jedoch kiirzer, werden
die moglichen Zeichen iiberschrieben und die restlichen Stellen des Feldes beibehalten.

Weitere Beispiele fiir OP Codes sind in der folgenden Tabelle, zusammen mit ihren
jeweiligen Bedeutungen und Java Aquivalenten aufgelistet.

Op Code Bedeutung

MOVEL Transferiert eine Zeichenfolge in ein Zielfeld, ausgehend vom links &dufsers-
ten Character. Java: Kombination aus replace() und substring() da unter-
schiedliche Langen unterschiedlich verarbeitet werden miissten

MOVE Transferiert eine Zeichenfolge in ein Zielfeld, ausgehend vom rechts dufers-
ten Character. Java: replace() und substring() Konstrukt

ADD Es wird eine Addition mit kompatiblen Objekten angewendet (Bsp. Typ
Integer oder Array Elemente). Java: z = 5-+a-+b]0];

CALL Hier wird eine parametrisierbare Funktion aufgerufen.
Java: klasse.callmethod(x,y,...);

CAT Zeichenfolgen werden hintereinander addiert (sofern die Feldlinge aus-
reicht). Java: name = HEINZ® + nachname;

Tabelle 2.1.: Operation Codes

Nun begibt sich das Programm in eine do-Schleife, beginnend mit dem Befehl EXFMT(-
QLKU1R10). Bei diesem Befehl stoppt das Programm und blockiert die weiteren Pro-
zesse, bis der Benutzer eine Eingabe gemacht und bestatigt hat. Hat der Benutzer nun
eine Eingabe getitigt, so wird der weitere Inhalt der Schleife ausgefiihrt.

In Zeile 6 und 7 gibt es noch zwei if-Abfragen, mit zwei verschiedenen Input-Feldern.
Zuerst wird {iberpriift, ob INO3 auf ON gesetzt ist. In RPG ist diesem Schalter die
F3 Taste zugeordnet. Es wird also nur gepriift ob der Benutzer diese betitigt hat, und
der Schalter auf ON gesetzt wurde. Generell gilt in der OS400 Umgebung, dass man
mit F'3 den aktuellen Meniipunkt oder das derzeitige Programm in dem man sich be-
findet, verlassen kann. Die zweite Bezeichnung ,\WWVNAM® entspricht einem Feld aus
der Oberfliche. Gleicht der Inhalt ,ENDE“ so wird ebenfalls der Code der if-Prozedur
ausgefiihrt. Dass das Programm auf dieses Feld zugreifen kann liegt daran, dass in Zei-
le 1 durch die Kennzeichnung F auf eine Datei namens ,QLKU1D* referenziert wird.
In diesem Beispiel ist das ein Displayfile, welches dazu da ist die UI* der Anwendung
zu erstellen und zu gestalten. Dort befindet sich das Feld mit dem Namen ,2WWVNAM*" .

Sobald das Programm nun in diese Abfrage kommt, wird LEAVE ausgefiihrt, was einem
,break® in Java entsprechen wiirde. Die Schleife wird verlassen und in Zeile 14 wird der
LR Schalter auf ON gesetzt, was die Beendigung des Programms zur Folge hat.

*

Das User Interface(UT) ist die Benutzerschnittstelle einer Anwendung. Uber sie kann ein Benutzer
mit einer Maschine interagieren und kommunizieren.

Bestitigt der Benutzer jedoch seine Eingabe ohne Driicken der F3 Taste oder Schrei-
ben des Wortes Ende, so wird die if-Abfrage iibersprungen, und ein Befehl CAT wird
ausgefiihrt. Dieser Befehl héngt einen Text (in diesem Fall ein ,+*) an das gewiinschte
Feld (WWVNAM*). Die 0 als weiteren Parameter definiert nur, wieviele freie Stellen
zwischen dem anzuhingenden Text und dem Feldtext bestehen sollen. Hier wird also das
1 direkt hinter den Feldtext geschrieben. Das lisst sich mit RPGs festen Feldlangen
erkldren. Da jedes Feld eine fest definierte Feldlinge haben muss, muss genau angegeben
werden an welches Byte etwas angehdngt werden soll.

Zusitzlich dazu wird in Zeile 11 mit dem Befehl CAS eine bedingte Subroutine(Methode)
namens S100 aufgerufen. NE steht fiir ,Not Equals®, wenn also das Feld ,WWNNAM*
ungleich *BLANKS(nicht leer) ist, dann wird die Subroutine aufgerufen. In der Sub-
routine gibt es einen weiteren CAT Befehl welcher dquivalent zum vorherigen einen
Punkt anstatt einem Plus an das Feld anhéngt.

Besonders fiir nicht RPG-Entwickler fiihrt die fehlende Einriickung sowie die Vertei-
lung von Parametern und Funktionen zu einer schlechten Lesbarkeit. Das nachfolgende
Ablaufdiagramm (Abbildung 2.2) soll den beschriebenen Programmfluss verdeutlichen.

Start S100()

WWVNAM +=
'HEINZ'
WWNNAM; +=
'KLEYNEN'

*INO3 ist
ON (F3 Taste
gedriickt) || WWVNAM
gleicht 'ENDE'

WWNNAM +=""

Ja

Nein

Nein

[WWVNAM += '+'] [LEAVE (break)]

WWVNAM
ungleich *BLANKS
(nicht leer)

Ja
$100()
LR Indikator auf
On setzen

Ende

Abbildung 2.2.: Ablaufiagramm zu Abbildung 2.1

1

o

2.2. Griinde fiir einen Umstieg

Besonders im Vergleich zu modernen Programmiersprachen, ist RPG in vielerlei Hinsicht
unkomfortabel und nicht sehr fortschrittlich. In diesem Kapitel werden ein paar der
Probleme und Griinde fiir den Umstieg auf Java erlautert.

Einige dieser Probleme wurden im weiteren Entwicklungsverlauf von RPG behoben, da
es zur damaligen Zeit jedoch keine Alternativen gab oder der jeweilige Aufwand grofer
als der Nutzen war, werden hier ein paar speziellen Beweggriinde aufgezeigt.

2.2.1. Datenbanken

Deutliche Nachteile der Programmiersprache lagen in den Datenbankprogrammen. Da
Speicherplatz begrenzt und rar war, gab es in RPG feste Feldlingen. Bei Anderungen wie
beispielsweise der Erweiterung von Postleitzahlen oder aber simplen Werterweiterungen
aufgrund neuer Anforderungen, wurde die vordefinierte Linge eines Feldes zum Problem.
Abseits von Datenbanken hat auch die Programmierumgebung mit diesem Problem zu
kiimpfen. Ab bestimmten Spaltennummern hat der jeweilige Code eine neue Bedeutung
und kennzeichnet beispielsweise Feld-/Variablen-Namen oder OPCode(siehe Tabelle 2.1
auf Seite 9), welche ebenfalls in ihrer Lénge beschrinkt sind.

Aufserdem, als damals die Moglichkeiten der Datenbanken eher begrenzt waren, wurde
aus Performance-Griinden auf Funktionen wie Referentielle Integritit (RI)* verzichtet.
Die Datenbanken auf der System i waren nicht immer in dritter oder héherer Normal-
form vorzufinden, was zur Folge einem schlechten Datenbankdesign entsprach(Kleutgens
2010).

2.2.2. Ul

Heutzutage sind Modell View Controller Strukturen ein fester Bestandteil von vielen
Softwarelosungen. Die strikte Trennung zwischen Modell (Daten- und Businesslogik),
View (reine Oberfliche) und Controller (Vermittler/Briicke zwischen Modell und View)
sorgt fiir eine gute, logische und unabhéngige Modularisierung des Codes. In den RPG
Anwendungen existiert jedoch kein Eventmodell und die Schichten besonders View und
Controller sind vermischt. Mehr oder weniger hart codierte Aktionsvorgaben und Ab-
laufe des Programms machten den Code unflexibel und schlecht austauschbar.

Ein Beispiel hierfiir ist beispielsweise der Job-Stack einer IBM i Anwendung. Die RPG
Programme laufen in einem Job und haben einen eigenen Stack. Ruft also ein Programm
A ein Programm B auf, so kann B nur iiber A erreicht werden und wenn man B verlésst
landet man sofort wieder in A. Man sieht, dass der Controller nicht frei ist und die Maske
aus Programm B immer eine Verarbeitung von Programm A erfordert(Kleutgens 2010).

* Referentielle Integritat(RI) ist eine Bedingung der Datenkonsistenz von Datenbanken. Fremdver-

weise in Datenbanken miissen auf existierende Datensétze verweisen(Referentielle Datenintegritit
2019).

11

2.2.3. Businesslogik

Aufgrund der generell fehlenden Objektorientierung, wurde keine strikte Trennung zwi-
schen Funktionen eingehalten. Zur Folge hatte man teils monolithische Programme, wel-
che zwar aus Performance-Sicht effizient waren, jedoch keinen zukunftstauglichen Code
darstellten. Da zwischen den Programmen viele Job-Abhéngigkeiten bestanden, war es
besonders schwierig zusammenhéngende Funktionen in isolierte Services aufzuteilen. Die
dazu benotigte dynamische Bindung von Programmen erforderte eine hohe Rechenleis-
tung. Die Konsequenz waren zu grofse und uniibersichtliche Services und eine schlechte
Modularisierung(Kleutgens 2010).

Auch Sprunganweisungen (,GOTOs“)sind ein Teil von RPG und der Software von VE-
DA GmbH. Aus Zeitgriinden boten sich diese meist gut an, jedoch wurde der Code
dadurch weiterhin unstrukturierter. Besonders seit Edsger W. Dijkstras Aufsatz ,Go
To Statement Considered Harmful® wurden diese Sprunganweisungen als kritisch an-
gesehen(Dijkstra 1968). In Java wurden diese bewusst weggelassen (Sprunganweisungen
2019).

12

3. Methoden

Im Programmierverlauf dieser Arbeit wurden bestimmte Methoden und APIs verwen-
det. Ankniipfend folgt eine Erlduterung der genutzten Hilfsmittel und angewendeten
Techniken, die zur Erfiillung des Ziels der Seminararbeit dienten.

3.1. Java Abstract Syntax Tree

Das Eclipse Java Development Tools (JDT)* Projekt beinhaltet Schnittstellen, mit de-
nen man auf Java Code zugreifen und diesen manipulieren kann. Es besteht aus den APIs
Java Model und Abstract Syntax Tree(AST). Das Java Model gleicht der Strukturierung
der Java Projekte wie man sie in Eclipse kennt. Es beinhaltet die oberflichliche Auf-
teilung der verschiedenen Elemente im Projekt Explorer. Darunter fallen beispielsweise
Projekt Ordner (IJavaProject), Pakete (IPackageFragment) oder source-Files (ICompi-
lationUnit). Hier spiegelt sich die bekannte Baumstruktur wieder(Vogel, Scholz und Pfaff
2018).

w = IMPDEMORPG IlavaProject
v i src IPackageFragmentRoot

v i comjump.appl.example java IPackageFragment
ICompilationUnit

~ [J] DelegatingProgram.java

v O DelegatingProgram IType
o javaProgramDelegates IField
@ DelegatingProgram(JavaProgram) ===IMeth od
@ main() : void IMethod

[J] Javahlpha.java
[J] Javalndicator.java
,rl-j JavaProgram.java
H# com.jump.appl.example.migration
H com.jump.appl.example.rpg
H com.jump.appl.example.rules
B, JRE System Library [J25E-1.5] =T PackageFragmentRoot

Abbildung 3.1.: Java Model und AST in Eclipse
Der Abstract Syntax Tree jedoch ist eine detaillierte Baumdarstellung des jeweiligen

Java Codes. Mit dieser API ist es moglich Code nicht nur zu erstellen, sondern auch zu
lesen und zu modifizieren.

*

JDT ist eine Sammlung von Plugins fiir Eclipse

13

3.1.1. Struktur

Code/Document

s

uses

ASTParser

CompilationUnit

ompiliert notfalls immer NaCH ——m
+newParser(int). ASTParser
+setSource(char(]):void
+createAST(IProgressMonitor): ASTNode

+getAST():AST
+accept(ASTVisitor):void

hat

ASTRewrite AST

+create(AST):ASTRewrite
+rewriteAST(IDocument, Map): TextEdit

erstellt

TextEdit (UndoEdit

+apply(IDocument):UndoEdit

Abbildung 3.2.: UML-Diagramm AST Modifizierung

Das obige UML* Diagramm visualisiert die Klassen und Methoden, welche dazu dienen
ein vorhandenes Dokument zu modifizieren. Zu Beginn wird ein ASTParser erzeugt,
welcher mit einem Dokument, bzw. dem Source Code versehen wird. Nun kann eine
ASTNode erzeugt werden. Im Grunde lisst sich je nachdem wie die Quelle aussieht,
dieser Node zu verschiedenen Unterklassen parsen, die Klasse CompilationUnit jedoch
spiegelt das gesamte Dokument wieder und kann daher immer verwendet werden.

Hat man nun einen Knoten gefunden, besitzt auch dieser einen abstrakten Syntaxbaum,
welchen man mit einer einfachen Get-Anfrage erhalten kann. Dieser AST kann jedoch
nicht direkt modifiziert werden. Er stellt das gesamte Dokument als Objekt in Java
dar, um ihn jedoch &ndern zu kénnen, muss eine weitere Klasse ASTRewrite verwendet
werden. Diese Klasse erzeugt einen Klon von dem {ibergebenen AST, auf dem gearbeitet
werden darf.

Uber sogenannte ASTVisitoren ist es moglich bestimmte Codezeilen je nach Bedeutung
zu besuchen bzw. zu durchlaufen. So kommt man genau an die Programmbereiche wo
man gegebenenfalls Anderungen durchfithren méchte. Sind nun alle Anderungen auf
diese Kopie angewendet worden, kann man den AST iiber die Methode rewrite AST()
umschreiben. Es wird ein TextEdit Objekt zuriickgegeben, welches man letztendlich noch
auf das Dokument anwenden muss um auch dieses final zu dndern(Boehr 2015).

*

Die ,,Unified Modeling Language*(UML) ist eine vereinheitlichte Modellierungssprache, mit der
Software-Teile und Systeme konstruiert und modelliert werden kénnen(Was ist ein UML Diagramm
2019).

14

3.1.2. ASTVisitor

Ein ASTNode ldsst sich mit beliebigen ASTVisitoren verkniipfen. Jede Codezeile 1dsst
sich einem anderen Knoten zuordnen.

So gibt es beispielsweise einen Visitor fiir If-Abfragen, Import Deklarierungen oder aber
Kommentaren. Akzeptiert also ein ASTNode einen If-Visitor, so werden alle Stellen im
Code besucht, wo eine If-Abfrage verwendet wird. Der besuchte Knoten, in dem Fall vom
Typ IfStatement, kann dann komponentenweise ausgelesen und abgedndert werden. So
besteht die Bedingung beispielsweise aus einer Expression und die auszufiihrenden Blocke
innerhalb der Abfrage jeweils aus Statements. Diese Aufteilung zwischen Visitoren und
Elementen lasst sich mit dem Visitor Pattern beschreiben.

ASTNode

<<interface>>
ASTVisitor

+visit(IfStatement):boolean ‘

+++++ t(LineComment):boolean +accept(ASTVisitor):void

. AN AN
' H T
! H 1
! H H
InformationGathererVisitor statement LineCommen! t
-expression:Expression
-thenStatement:Statement
+LineComment(AST)
+informationGatherer Visitor() +IfStatement(AST) +accept(ASTVisitor):void
+visit(IfStatement):boolean +accept(ASTVisitor):void
’’’’’ (LineComment):boolean +setThenStatement(Statement):void

Abbildung 3.3.: Visitor Pattern am Beispiel AST Visitor

Abbildung 3.3 veranschaulicht das Visitor Pattern am Beispiel der AST Struktur. Das
Interface ASTVisitor enthilt alle visit Methoden mit ihren jeweilig dazugehorigen Ele-
menten als Parameter. Davon abgeleitet kann man individuelle Besucherklassen erstellen,
in denen dann die eigentliche Logik implementiert wird. Die einzelnen Elemente besit-
zen die accept Methode, um bestimmte Besucher an die jeweiligen Objekte anzuhéngen.
Besonders im Compilerbau wird dieses Muster hiufig angewendet, da Anderungen grof-
tenteils in den Besucherklassen anstatt in allen konkreten Elementen getétigt werden
miissen(Visitor Pattern 2019).

3.1.3. Vorteile

e Die Besucher lassen sich sehr einfach und beliebig erweitern. Gibt es Verhaltens-
dnderungen wird ein neuer Besucher abgeleitet vom Visitor Interface als Klasse
erstellt(Visitor Pattern 2019).

e Ds gibt eine zentrale Stelle zur Anderung und Erweiterung von Funktionen. Die
Implementierung befindet sich in der Visitor Klasse und muss nicht erneut in den

15

zu besuchenden Klassen implementiert werden(Visitor Pattern 2019).

e Besucherklassen konnen Modul- und Klasseniibergreifend verwendet werden und
sind nicht an eine bestimmte Klassenhierarchie gebunden(Visitor Pattern 2019).

e Je nach Anwendungsfall kénnen so wichtige Daten und Zwischeninformationen
aus besuchten Elementen einer Struktur gesammelt und weiterverarbeitet wer-
den(Visitor Pattern 2009).

3.1.4. Nachteile

e Gibt es konkrete neue zu besuchende Klassen, so muss jeder Visitor dementspre-
chend gedndert werden(Visitor Pattern 2019).

e Je mehr konkrete Klassen es zu unterstiitzen gilt, desto mehr visit Methoden muss
es in den Visitor Klassen geben. Dies kann sehr schnell sehr uniibersichtlich wer-
den(Visitor Pattern 2019).

e Das Prinzip der Codekapselung® wird verletzt, indem der Besucher auf viele ver-
schiedene und gegebenenfalls verstreute Elemente und Objekte auberhalb der ei-
genen Klasse zugreift. Zusétzlich muss der Besucher die jeweiligen Elementklassen
kennen um mit ihnen zu interagieren wihrend, die Elemente selbst die Struktur
des Besuchers nicht kennen(Visitor Pattern 2009).

*

Datenkapselung bezeichnet den kontrollierten Zugriff auf bzw. das Verbergen von internen Da-
tenstrukturen.

16

4. Ergebnisse

Im Folgenden werden die Programmierergebnisse vorgestellt. Anhand einer héndisch
verfassten Vision, wurde die Methode aus Kapitel 3 angewendet. Vor Allem stehen der
Ausgangscode, die Vision und das letztendliche Resultat im Vergleich zueinander.

4.1. Problemstellen und Vision

Der nachfolgende Code, ist die migrierte Version des RPG Codes aus Kapitel 2. Die
roten Bereiche kennzeichnen nur ein paar der Problemstellen, die mit der Java Migration
einhergehen. Doch um eines der Kernprobleme der Objektorientierung zu beschreiben
reicht dieses Programm aus.

12 public final class QLKUIRNEU extends[RpgProgran]iq

21 public DSPF glkuld = createDSPF("QLKULD", false); // glkuld

22 public DSPFRecord glkulrld = (DSPFRecord)glkuld.getRecord("glkulrld™):
23 public RpgAlpha wwvnam = new RpgAlpha (30);)/ 0

24 |;blm RpgAlpha wwnnam = new RpgAlpha (30) :|

d glkulrlo

glkulrlo

creationInfos = "13.11.2019 15:09:53"; Transformed by lku
optimizedDO = true:

optimizedIF = true:

optimizedSELEC = true;

31 optimizedSearching = true:

32 file descl ons

setDSPF (glkuld) ;

28 public QLEULRNEU() {

a3c public void main() {

/ glkuld (WORKSTN

movel ("HEINZ", wwvnam);

movel ("KLEYNEN", wwnnam). | 3.

LOOP_4: while (true) {
exfmt (glkulrlQ):
if (eq(INO3, ON)

I eqtwavnam, "ENDE") | g
'

50 1
51 break LOOP_4:

: T
54 1f (ne (wwnnam, BLANKS))|{sl00():}
; 6.

|ss:m(1NLR, null, nall) ;|

public void s100() {

Tl

Abbildung 4.1.: Der jetzige unmodifizierte Code

e (1) Der neue Code sollte nicht direkt von einer RPG Klasse erben und auch grund-
satzlich keine sofort ersichtlichen Abhéngigkeiten zu diesen besitzen, da eine Un-

17

abhingigkeit angestrebt wird.

e (2) Der Typ RpgAlpha bietet sich einerseits nicht nur vom Namen schlecht an,
die Klasse verhindert auch einen objektorientierten Zugriff auf die Variable, da sie
nicht dafiir vorhergesehen ist.

e (3)(5)(8). Hier werden typische RPG Funktionen aufgerufen. Im Endeffekt han-
delt es sich hierbei um simple Wertveridnderungen von Feldern. Anstatt statische
Funktionen aufzurufen, sollten Methoden hinzugefiigt werden mit denen man iiber
das jeweilige Objekt die Wertdnderung erzielt (getText(), setText(), etc.).

e (4)(7) Auch hier werden RPG Funktionen statisch aufgerufen. Zusétzlich ist die
Abfrage ob der Schalter INO3 lediglich auf ON gesetzt ist, zu umsténdlich. Eine
intuitivere Abfrage wie iSON() auf dem Schalter-Objekt wére eine typische Heran-
gehensweise in Java.

e (6) Die RPG-Funktion ,ne* steht fiir ,not Equals‘. In Java wird fiir alle vernein-
'((

ten Abfragen ein ,)“ verwendet. So miisste nicht fiir jede Funktion eine verneinte
Implementierung existieren.

3 public final class QLEULIR_ formatted extends |[JavaProgram|{

5 public DSPF glkuld = createDSPF("QLEULD", false); // glkuld

public DSPFRecord glkulrlO = (DSPFRecord)glkuld.getRecord("glkulrlQ" qlkulrlo
ki public Javaklpha wwvnam = new Javadlpha (30);|// gl d gl 0

public JavaRlpha wwnnam = new Javadlpha (30);:|/

public QLEKUIR formatted() {

creationInfos = "13.11.2015% 15:11:13"; // Transformed by lku

setOptimizedDO (true) ;

4 setOptimizedIF (true);

5 setOptimizedSELEC (true);
setOptimizedSearching (true) ;

f/ file declarations

setDSPF (glkuld) ;

432 public void mai

3 glkuld
34 wwvnam. setText ("H
wwnnam. setText ("K

LOCP_4:
while (true) {
exfmt (glkulrld) ;
if (INO3().isCn() || wwvnam.isEmptyv()){
break LCOCF_4;

wwWvnam.concat ("+", 0);

4 if (!wwnnam.egquals (BLANKS)) {
5 5100() ;

INLE().setCn(mull, numll);

public void s100() {
wwnnam.concat (".", 0);

Abbildung 4.2.: Handgefertigte Vision

Diese Vision gibt eine erste Vorstellung, wie ein optimierter Code in dieser Form aussehen
konnte. Die griinen Bereiche stellen hier die verdnderten Codesequenzen dar.

18

(1) Als Basisklasse verwendet das Programm nun eine fiir Java optimierte Klasse.

(2) Die Objekttypen der Felder wurden angepasst. Die neuen Klassen sollten vor
allem auf einen objektorientierten Zugriff ausgelegt sein und genau die jeweiligen
Methoden enthalten, welche bisher statisch iiber die Basisklasse aufgerufen wurden.

e (3) Wichtige Schalter welche gegebenenfalls iiber einen groken Teil des Programm-
flusses entscheiden konnen, sollten nicht direkt modifizierbar sein. Es sollten Getter-
und Setter- Methoden zum Lesen und Setzen dieser existieren.

e (4)(6)(8)(9) Wertemanipulationen wie das Setzen eines Feldtextes sollten auch
genauso iiber entsprechende Methoden erfolgen.

e (5)(7) Equals-Abfragen sollten grundsitzlich auf genau dem Objekt aufgerufen
werden, welches auch verglichen werden soll. Ob es ein String Objekt oder ein Feld
selbst ist. Auferdem wie in (7) ersichtlich, sollten verneinte Abfragen mit einem ,})“

gekennzeichnet sein. Das verbessert nicht nur die Lesbarkeit, sondern spart auch

zusatzlichen Code.

4.2. Strukturierung

Java Klassen und ihre
RPG Aquivalenten

JavaAlpha RpgAlpha

<<interface>>
+rpgAlpha:RpgAlpha BiFunction<T, U, R>
-1pgProgram:RpgProgram

+apply(T, UYR
+JavaAlpha(int, RpgProgram) L)
+add(String):void AN A
+concat(Object, int):void H i
+equals(Object):boolean H 1

L) :
H
<<interface>> Migration Refactorer<String,
SimpleRule<AST, ASTRewrite, SimpleRule, String>
. ASTVisitor> _—
Javalndicator Rpgindicator : +main(Strin):void "
+getClassName(Path):Strin
+buildAlRules().List<SimpleRule> EEEE——
+applyRule(Siring +apply(String, SimpleRule):String
J { 7) L J L]
+se(On(Javalndicator, Javaindicator, H
g i
RpgProgram):void | fest ein
Code/Document J
JavaProgram RpgProgram ‘
#pgProgram:RpgProgram || implementse--mz - xmxnnnns
|
smain(List):void RenameRule 1 { ExtendRule | | OOInvocationRule | Weitere Rules: '
#closeProgram()-void JavaTypeRule
| GeterSetterRule
+setOptimizedDO(boolean):void | INIndicatorRule
TeetOptimizadii(booleanywoid +apply(AST, ASTRewrite):ASTVisitor +apply(AST, ASTRewite):ASTVisitor +apply(AST, ASTRewrite):ASTVisitor i
+INOL():Javaindicator
HINLR():Javalndicator
+createDSPF(String,boolean):DSPF
+extmi(DSPFRecord):void

Abbildung 4.3.: Struktur des Migrator Codes

19

Die Hauptlogik des Migrators befindet sich in der Klasse ,Migration“. Hier wird zualler-
erst der Programmecode aus den Startparametern eingelesen und als String abgespeichert.

Danach wird der eigentliche Refactorer erzeugt. Diese Klasse implementiert das Interface
,BiFunction<T,U,R>“. Dabei sind die Typen T und U Eingabeparameter und R der
Riickgabewert einer Funktion ,apply“. Auf den Code sollen viele verschiedene Funktio-
nen und Regeln angewendet werden. Als Konsequenz muss auch die Implementierung
und generelle Klassenstruktur flexibel und erweiterbar sein. Als Parameter erhilt der
Refactorer nur den Code als String und eine anzuwendende Regel/Funktion. Mit einem
String als Riickgabeparameter soll so nach Anwendung jeder Regel der Code Stiick fiir
Stiick optimiert werden.

In der apply-Methode selbst, wird der ASTRewrite Prozess (beschrieben in Abbildung 3.2
auf Seite 14) ausgefiihrt. Der Refactorer erzeugt einen ASTParser und parst den Quell-
code in eine CompilationUnit. Nun werden ein dazugehoriger AST und ASTRewrite
erstellt. Nachdem die Regel dann auf den Rewrite angewendet wurde, wird auch der
urspriingliche Ast verdndert und dementsprechend aktualisiert.

Im Anschluss an die Erzeugung des Refactorers, werden in der Migration Klasse die ein-
zelnen Regeln iiber eine Methode ,buildAllRules()“ gebaut. In dieser Methode lassen sich
neue Regeln und Funktionen flexibel hinzufiigen. Manchmal miissen bestimmte Funktio-
nen jedoch hintereinander angewendet werden, da sie bedingt auf der Ausfiihrung und
den Anderungen der vorherigen Regeln agieren. Beruht eine Regel beispielsweise darauf,
dass eine Methode objektorientiert auf einem Objekt aufgerufen wird, obwohl die dafiir
verantwortliche Regel noch nicht aktiv gewesen ist, so werden die neuen Modifikationen
gegebenenfalls nicht beachtet. Es kann sogar zu Kompilierfehlern kommen.

Die Regeln implementieren ein Interface ,SimpleRule, welches wie der Refactorer von
der Klasse BiFunction abhéngig ist. Anstatt einem String und einer SimpleRule als Pa-
rameter, werden hier ein AST und ein ASTRewrite {ibergeben. Dadurch kann in den
einzelnen Regeln der Code effizient modifiziert werden. Der Riickgabewert ist vom Typ
ASTVisitor, damit der Refactorer die Regeln spéter an den Code anhéngen kann. Die
Besucher erhalten somit in den Regel-Klassen ihre jeweiligen Funktionen und die zu
besuchende Elemente. Die folgende Abbildung zeigt wie solch eine Funktion zu imple-
mentieren ware.

20

public ASTVisitor apply(final AST ast, final ASTRewrite rewrite) {
return new ASTVisitor() {

public boolean visit(Assignment nods) {
String methodname = node.getlLeftHandSide () .toString():
if(indicators.contains (methodname)) {
MethodInvocation setter = ast.newMethodInvocation() !
setter.setName (ast.newSimpleName ("set" 4+ methodname));
if (node.getRightHandSide () instanceof BooleanlLiteral){
BooleanLiteral parameter = (BooleanLiteral) node.getRightHandSide ()
setter.arguments () .add(ast.newBooleanliteral (parameter.booleanValue ()))

rewrite.replace (node, setter, noll):;

retaorn true;

Abbildung 4.4.: Beispielmethode

Wurden alle Regeln gebaut, werden diese in einer Liste abgespeichert. Mit einer For-
Schleife wird iiber diese Liste iteriert und jede Regel wird auf den Refactorer iiber die
apply-Methode angewendet.

Ist auch dieser Schritt abgeschlossen, wird der entstandene Code als String, in eine neue
Datei geschrieben. Abseits der eigentlichen Migration, mussten auch neue Java Klassen
erstellt werden(siche linker Block in Abbildung 4.3 auf Seite 19). Diese Klassen machen
im Grunde nichts anderes als ihre RPG Aquivalenten, legen jedoch eine Art Maske iiber
den Code, dass es so aussieht als wiirde man in einem ganz normalen Java-Programm
arbeiten. So ist zum Beispiel die Klasse , JavaAlpha“ das Gegenstiick zu der RPG-Klasse
~RpgAlpha“. Sie enthédlt Methoden wie ,equals® oder ,concat“, welche zwar das Gleiche
tun wie die statischen Funktionsaufrufe von RPG, jedoch auf dem konkrete Objekt
aufgerufen werden. So entsteht der Schein von Objektorientierung.

4.3. Angewendete Regeln/Besucher

Hier werden die unterschiedlichen Regeln/Besucher erldutert. Dabei wird eine kurze
Erklarung iiber die zugehdrige Funktion und die Umsetzung gegeben.

4.3.1. RenameRule

Nach der ersten Migration ohne irgendeine Regel auf den Code anzuwenden, gab es einen
Kompilierfehler in dem entstandenen Programm. Da der neue Code mit dem Namens-
zusatz ,, refactored.java“ abgespeichert wurde, widersprach dies dem noch unberiihrten
Klassen- und Konstruktornamen im Quellcode selbst. Fiir den Klassennamen besucht der
Besucher eine ASTNode ,,TypeDeclaration®. Hier wird lediglich der Namenszusatz mit
an den Klassennamen angehangen, damit dieser mit dem Dateinamen iibereinstimmt.
Fiir die Konstruktoren wird nach ,MethodDeclarations“ gefiltert. Wenn dann zusétzlich
der Riickgabewert null entspricht, dann bedeutet das, dass ein Konstruktor vorliegt.

21

4.3.2. ExtendRule

Auch fiir den Extend wird ,,TypeDeclaration“ verwendet. Anstatt jedoch den Namen der
Klasse zu dndern, benennt man die Basisklasse nach ,JavaProgram® um. Diese Klasse
kann nun wie eine Java Klasse behandelt und weiterentwickelt werden.

4.3.3. JavaTypeRule

Damit die Objektorientierung funktioniert, musste wie oben beschrieben ein neuer Java-
Typ fiir die Felder hinzugefiigt werden. Hierzu muss man beim Migrieren die Deklaration,
also die linke Seite, sowie die eigentliche Instanziierung, also die rechte Seite anpassen.
Dabei mussten Name und Erzeuger-/Konstruktoraufruf aktualisiert werden.

Gespeichert in einer HashMap™*, konnen beliebig viele neuen Datentypen hinzugefiigt
werden. Diese werden mit dem RPG-Typen als Key und dem Java Aquivalent als Value
abgespeichert, damit der Migrator die Datentypen einfach und flexibel austauschen kann.

4.3.4. GetterSetterRule

Zuweisungen, zum Beispiel von boolean Variablen, werden mit der ASTNode ,Assi-
gnment“ beschrieben. Weiterhin werden hier alle unterstiitzten Variablen mit ihrem Na-
men in einer Liste abgespeichert. Wenn also der Besucher an einer dieser Variablen
vorbeikommt, wird eine neue ,MethodInvocation“ erzeugt. Dieser Methodenaufruf be-
steht aus einem ,set“+ den jeweiligen Variablennamen. Auf der rechten Seite wird der
gleiche Zuweisungswert verwendet.

4.3.5. OOInvocationRule

Mit dieser grofleren Regel wird das eigentliche Problem der fehlenden Objektorientierung
korrigiert. Der Besucher iteriert dabei iiber alle ,MethodInvocations®, also Methoden-
aufrufe. Sobald eine Funktion gefunden wird, welche auch wie bei der ,JavaTypeRule*
in einer HashMap gespeichert wurde, setzt der Anderungsprozess ein.

Das jeweilige Feld oder die jeweilige Variable wird als ,Expression” an den Anfang ge-
setzt. Dahinter wird der ebenfalls in der HashMap gespeicherte neue Methodenname
gehangen, also {iber das Feld aufgerufen. Die Parameter werden kopiert und der Metho-
de mitgegeben.

Ein Problem in der fachspezifischen Logik von RPG ist hier jedoch, dass die Reihenfolge
der Funktionsparameter variieren kann. So kann es sein dass das Ursprungsfeld, also das
Feld auf das die Funktion letztendlich angewendet wird, der erste oder der letzte Para-
meter ist. Daher musste eine neue innere Klasse ,JavaMethod“ erstellt werden, welche
anstatt eines Namens in der HashMap abgespeichert wird. Ein Objekt dieser Klasse be-
sitzt nun zusétzlich ein Attribut ,sourceVarlsFirstParameter”. Damit wird wie der Name
bereits verrit angegeben ob das Ursprungsfeld der erste Parameter ist oder nicht.

*

Eine HashMap ist eine Struktur welche {iber einen Key einen schnellen Zugriff auf den zugehorigen
Datensatz(value) erlaubt.

22

4.3.6. INIndicatorsRule

Diese Regel sorgt dafiir, dass man die verschiedenen Indikatoren {iber eine Methode
aufrufen kann. Dabei wurde der neue Typ ,Javalndicator” hinzugefiigt. Er erlaubt die
Abfrage auf einem Indikator-Objekt anstatt {iber eine Funktion.

An diesem Beispiel kann man gut die jeweiligen Beeinflussungen der Regeln aufeinander
erkldren. Ohne diese Regel wiirde es Kompilierfehler geben. Das liegt daran, dass die
Indikatoren weiterhin RPG-Variablen bleiben wiirden und diese nicht die erforderten
Methoden der OOInvocationRule enthalten. Daher miissen beide Regeln in Kombination
angewendet werden, um ein kompilierbares Programm zu bilden.

23

4.4. Finaler Code

1% puoblic final class Q]'_Z{UlRNEU_refac:tDred extends JavaProgram {

21 public DSPF glkuld = createDSPF("QLEULID", false): [/ glkuald
22 public DSPFRecord glkulrl0 = (DSPFRecord)glkuld.getBRecord("glkulrlo™): /
23 public Javalllpha wwvnam = new Javahlpha (30, rpgProgram):; lkuld

24 public Javalillpha wwnnam = new Javahlpha (30, rpgProgram);

26 public QLEULRNEU refactored() {
2 creationInfos = "13.11.201% 15:09:53"; // Transformed by lku
28 getOprtimizedDO (true) ;
29 setOptimizedIF (true) ;
setCptimizedSELEC (true) ;
31 setCptimizedSearching (true) ;
32 f{ file declarations

setDSPF (glkuld) ;

&a3g public void main{) {

43 // glkuld (WORESTH

4 wwvnam.add ("HEINZ™) ;
45 wwnnam. add {"KLEYNEN") ;

46 LOOFP 4: while (true) {

47 exfmt (glkulrl0) ;

48 if (INO3().equals (ON)

49 || wwvnam.egquals ("ENDE")
50 [

1 break LOOF_4:

wWwvnam.concat ("+", 0):
4 if (wwnnam.notEquals (BLANKS)) {s100({).;}

INLE() .setOn(nmll, nmll, rpgProgram):

BT

6l public woid s100() {

wwnnam.concat (".", 0):

Abbildung 4.5.: Das Resultat des Migrators

Wie man in Abbildung 4.5 sehen kann, konnten die meisten Verbesserungen aus der
Vision angewendet werden. Das grundsatzliche Ziel der Objektorientierung wurde durch
das Anwenden der verschiedenen Regeln erfiillt. Jedoch gab es Anderungen bei ein paar
Methodenaufrufen. Da bisher die Funktionen immer auf Seiten des RPG Programms
aufgerufen wurden, konnten die Funktionen ohne Weiteres ausgefiihrt werden. Da aber
mit der Abkopplung vom diesem und dem Einfiihren von Objekten neue Methoden
dazukamen, mussten bei einigen als Parameter das RPG Programm mitgegeben werden.
Dies ist eine weitere Problemstelle die es zu 16sen gilt.

24

5. Fazit und Ausblick

In dieser Arbeit wurden Grundlagen iiber die Programmstruktur der VEDA GmbH und
die Programmiersprache RPG vermittelt. Es wurden Hintergriinde erliutert warum eine
Migration zu der damaligen Zeit unumgénglich war. Anhand eines Beispielprogramims
wurde ein Prototyp eines Migrators entwickelt, welcher sich an ein Kernproblem der
Objektorientierung richtet.

Bei der Programmierung war es besonders entscheidend eine flexible und erweiterbare
Losung zu erstellen, da die behandelten Probleme nur einen Bruchteil der noch vor-
handenen Arbeit symbolisieren. Besonders schwierig war es, die einzelnen Probleme in
eigenen Rule-Klassen zu sammeln. Denn immer wieder kam es vor, dass eine Funktion
ein wenig anders als die anderen funktionierte. So musste man abwégen, ob eine neue
Klasse eingefiigt, oder die bisherige um die Neuerung erweitert werden musste.

Gerade unverzichtbare Features wie beispielsweise Nullpointer-Safety haben es, dem zeit-
lichen Rahmen der Seminararbeit geschuldet, nicht in den Prototypen geschafft. Trotz-
dem sollten diese aber standardméfig in Java Programmen zu finden sein.

Zukiinftig soll das vermittelte Wissen weiterhin ausgebaut und auf grofere und signi-

fikantere Probleme angewendet werden. Dabei soll ein bereits vorhandener Prototyp
weiterentwickelt werden.

25

A. Literatur

Boehr, Dirk (2015). AUTOMATISCHE REFACTORINGS MIT ECLIPSE JDT. URL:
https ://www.openknowledge . de /automatische-refactorings-mit-eclipse-
jdt/ (besucht am 18.12.2019).

Db2 (2019). URL: https://de.wikipedia.org/wiki/Db2 (besucht am 20.12.2019).

Dijkstra, Edsger W. (1968). Go To Statement Considered Harmful. URL: http://www.
u.arizona.edu/ rubinson/copyright_violations/Go_To_Considered_Harmful.
html (besucht am 18.12.2019).

Finfihrung in die RPG/400 Programmierung (2019). URL: http://harl3kin.tripod.
com/einf_rpg.htm (besucht am 17.12.2019).

Fischer, René (Dez 2016). DIE ZUKUNFT DER PERSONALABRECHNUNG - AS/400
und die Alternativen. URL: https://midrange.de/as400-und-die-alternativen/
(besucht am 16.12.2019).

Grofrechner und Minirechner der mittleren Datentechnik (Nov. 2019). URL: https :
//de.wikipedia.org/wiki/Minirechner (besucht am 17.12.2019).

Hempel, Tino (2006). Programmiersprachen. URL: https://www.tinohempel.de/info/
info/sprachen/paradigmen.htm (besucht am 17.12.2019).

Hollerith und der Lochkartencomputer (Jan. 2018). URL: https://www.planet-wissen.
de/technik/computer _und_roboter/geschichte_des_computers/%5Cnewline?
20pwiehollerithundderlochkartencomputer100.html (besucht am 17.12.2019).

Kleutgens, Harald (Nov. 2010). Software Development Strategie VEDA GmbH 2010 -
Klassische IBM i Anwendungen. (Besucht am 17.12.2019).

Lagotzki, Stefan (2001). Die dritte Generation: Problemorientierte Sprachen. URL: http:
//waw .lagotzki.de/scripte/vba/sprachen.html (besucht am 17.12.2019).

Operation Codes List (2019). URL: https://www.ibm.com/support/knowledgecenter/
en/SSAE4W_9.6.0/com.ibm.etools.iseries.langref.doc/evferlsh259.htm#
HDROPERXCD (besucht am 17.12.2019).

Programmierparadigma (Aug. 2019). URL: https://de.wikipedia.org/wiki/Programmierparadigma
(besucht am 19.12.2019).

Referentielle Datenintegritat (2019). URL: https://www.datenbanken-verstehen.de/
datenmodellierung/referentielle-integritaet/ (besucht am 19.12.2019).

Rother, Dr. Wolfgang (Mai 2015). NACHWUCHSMANGEL - Sind RPG-Programmierer
vom Aussterben bedroht? URL: https://www.it-zoom.de/dv-dialog/e/sind-rpg-
programmierer-vom-aussterben-bedroht-10672/ (besucht am 18.12.2019).

Rouse, Margaret (Apr. 2016). IBM (International Business Machines). URL: https :
/ /whatis . techtarget . com/de/definition/IBM- International - Business -
Machines (besucht am 19.12.2019).

26

RPG (Programmiersprache) (Jan. 2019). URL: https://de.wikipedia.org/wiki/RPG_
(Programmiersprache) (besucht am 18.12.2019).

Schiffler, Ansgar (2005). Grundbegriffe zu Programmiersprachen. URL: http://fbmathe.
bbs-bingen.de/Informatik/C_plusplus/grundbegriffe.htm (besucht am 16.12.2019).

Schlosser, Hartmut (2019). Programmiersprachen an US-Unis: Python vor Java. URL:
https://jaxenter.de/programmiersprachen-an-us-unis-python-vor-java-845
(besucht am 20.12.2019).

Sprunganweisungen (Okt 2019). URL: https://de.wikipedia.org/wiki/Sprunganweisung
(besucht am 20.12.2019).

TIOBE-Index: Die aktuellen Top-Programmiersprachen im Ranking (Jan. 2019). URL:
https : //www . informatik - aktuell . de /aktuelle - meldungen /2019 / januar /
tiobe - index - die - aktuellen - top - programmiersprachen - im - ranking . html
(besucht am 16.12.2019).

Visitor Pattern (Okt 2009). URL: https://wiki.thm.de/Visitor_Pattern (besucht
am 18.12.2019).

Visitor Pattern (2019). URL: https://deacademic.com/dic.nsf/dewiki/ 1468938
(besucht am 18.12.2019).

Vogel, Lars, Simon Scholz und Fabian Pfaff (2018). FEclipse JDT - Abstract Syntax
Tree (AST) and the Java Model. URL: https ://www .vogella . com/tutorials/
EclipseJDT/article.html (besucht am 18.12.2019).

Was ist ein UML Diagramm (2019). URL: https://www.lucidchart.com/pages/de/
was-ist-ein-uml-diagramm (besucht am 19.12.2019).

27

B. Abbildungsverzeichnis

2.1.
2.2.

3.1
3.2.
3.3.

4.1.
4.2.
4.3.
4.4.
4.5.

RPG Programm in OS/400, 8
Ablaufiagramm zu Abbildung 2.1 Lo 10
Java Model und AST in Eclipse 13
UML-Diagramm AST Modifizierung 14
Visitor Pattern am Beispiel ASTVisitor 15
Der jetzige unmodifizierte Code 17
Handgefertigte Vision 18
Struktur des Migrator Codes 19
Beispielmethode 21
Das Resultat des Migrators 24

28

C. Tabellenverzeichnis

2.1. Operation Codes e

29

