
Fachhochschule Aachen

Fachbereich 9

Medizintechnik und Technomathematik

Studiengang Scienti�c Programming

Methoden zur Teilmigration von RPG nach JAVA

Seminararbeit

Lennart Küppers
Matr.-Nr. 3160603

Betreuer 1: Prof. Dr. Alexander Voÿ
Betreuer 2: Daniela Ophey

20. Dezember 2019

Inhaltsverzeichnis

1. Einleitung 5

1.1. Abstract . 5
1.2. Hintergründe . 5
1.3. Problemstellung . 6
1.4. Lösungsansatz . 6

2. Allgemeines 7

2.1. RPG . 7
2.2. Gründe für einen Umstieg . 11

2.2.1. Datenbanken . 11
2.2.2. UI . 11
2.2.3. Businesslogik . 12

3. Methoden 13

3.1. Java Abstract Syntax Tree . 13
3.1.1. Struktur . 14
3.1.2. ASTVisitor . 15
3.1.3. Vorteile . 15
3.1.4. Nachteile . 16

4. Ergebnisse 17

4.1. Problemstellen und Vision . 17
4.2. Strukturierung . 19
4.3. Angewendete Regeln/Besucher . 21

4.3.1. RenameRule . 21
4.3.2. ExtendRule . 22
4.3.3. JavaTypeRule . 22
4.3.4. GetterSetterRule . 22
4.3.5. OOInvocationRule . 22
4.3.6. INIndicatorsRule . 23

4.4. Finaler Code . 24

5. Fazit und Ausblick 25

A. Literatur 26

B. Abbildungsverzeichnis 28

3

C. Tabellenverzeichnis 29

4

1. Einleitung

1.1. Abstract

Im Rahmen dieser Seminararbeit werden Grundlagen über die RPG(Report Program Ge-
nerator) Programmierung vermittelt und Methoden angewendet, um bereits von RPG
nach Java migrierten Code strukturierter, lesbarer und wartbarer, in einem objektori-
entierten Stil darzustellen. Hierbei wird im Besonderen auf verschiedene Probleme in
RPG hingewiesen und wie man sie mit der Anwendung von Programmierparadigmen∗

verbessern kann.
Im weiteren Verlauf der Arbeit werden die Hintergründe zu diesem Thema, sowie die
Anwendungsstruktur und Produktlinie bei VEDA kurz erläutert. Voraussetzungen und
benötigte Kenntnisse für diese Arbeit sind ein Grundverständnis der Programmierspra-
che Java und objektorientierter Programmierung.

1.2. Hintergründe

Unsere Anwendung VEDA HR Entgelt läuft auf der �System i�, einer Computerbaurei-
he von IBM†. Besonders die Optimierungen für kaufmännische Anwendungen wie eine
eigene integrierte Datenbank, machten das System attraktiv für unsere Software.

Bis heute machen die zahlreichen Vorteile des Systems, wie beispielsweise kaum vorhan-
dene Sicherheitslücken oder einheitlicher/einfacher Betrieb(Fischer 2016), VEDA GmbH
zu einem Marktführer in Sachen Personal- und Entgeltverwaltung. Mit RPG als eine der
Hauptsprachen der OS/400‡, entwickelte VEDA GmbH in den vergangenen 40 Jahren
eine performante und moderne Anwendung. Aufgrund der ständig wachsenden Anfor-
derungen an die Software und einer stärkeren Dominanz anderer Programmiersprachen
entschied sich das Unternehmen als zukünftige Programmiersprache Java zu nutzen.
Die neuen Möglichkeiten und Wünsche nach modernen und benutzerfreundlichen An-
wendungen lieÿen sich teilweise nicht mehr in RPG realisieren. Für eine automatisierte
Übertragung des RPG Codes nach Java entwickelte VEDA GmbH das Produkt VEDA
JUMP . Dieses Produkt migriert jede in RPG III geschriebene Software nach Java.

∗ Ein Programmierparadigma ist ein bestimmter Stil in dem ein Programm entworfen wird. Sie
dienen nicht nur als Richtlinien für �schönen Code�, sondern können auch in speziellen Situationen
eine Herangehensweise für Softwareprobleme bereitstellen(Programmierparadigma 2019).

† Die �International Business Machines Corporation�(IBM) ist ein weltweit führendes Unternehmen
für Hardware, Software und Dienstleistungen in der IT-Branche(Rouse 2016).

‡ Das Operating System(OS), also Betriebssystem der System i.

5

1.3. Problemstellung

Der Nachwuchs an RPG-Programmierern ist sehr gering, Kosten und Wartung von RPG
Programmen dementsprechend sehr hoch. Nicht nur die Popularität der Sprache ist laut
Tiobe-Popularitätsindex∗ für Programmiersprachen sehr gering, auch die Online Präsenz
bezüglich Dokumentation und Support ist beschränkt. Mit Platz 92 von 100 liegt RPG
in 2019 sehr weit unten(TIOBE-Index: Die aktuellen Top-Programmiersprachen im Ran-
king 2019). Auch Universitäten unterrichten eher die heutzutage modernen und beliebten
Programmiersprachen, wie Java, C++, C oder Pascal(Schlosser 2019). Einschränkungen
und fehlende Funktionalitäten im Gegensatz zu moderneren Programmiersprachen, wie
beispielsweise Java, brachten die VEDA GmbH dazu, all ihre RPG Programme nach
Java zu migrieren.
Mit VEDA JUMP gelingt es VEDA GmbH eine 100-prozentige Migration nach Java
zu scha�en. Der resultierende Code ist vollständig kompilierbar und lau�ähig, ohne die
Funktionalitäten der Programme negativ zu beeinträchtigen. Somit wurde die Software
nicht nur plattformunabhängig, auch die Bindung an die integrierte Datenbank(DB2†)
konnte aufgelöst werden.
Durch die Eigenarten und Besonderheiten von RPG ist der Code von VEDA JUMP
jedoch lediglich auf die pure Migration fokussiert, anstatt auf eine java-nahe und struk-
turierte Codestruktur. Einige Stellen des migrierten Codes benötigen für das Verständnis
weiterhin RPG Fachwissen, was für reine Java Entwickler ein Problem darstellen kann.
Wird zum Beispiel ein neues Feld in der Anwendung benötigt, dann muss dieses in den
RPG Programmen eingetragen und hinzugefügt werden. Daher müssen viele Codese-
quenzen bis heute in RPG zuerst angepasst und anschlieÿend neu migriert werden.
In solch einem Fall bietet die Migration keinen Vorteil und stellt eher Zusatzarbeit dar.
Genau hier setzt das Thema dieser Arbeit an. Der Code soll anhand von Analysen,
Machbarkeitsstudien, Konventionen und Programmierparadigmen optimiert werden.

1.4. Lösungsansatz

Damit auch zukünftig Java Entwickler unseren Code warten können und um eine Ab-
grenzung zu RPG zu scha�en, muss der derzeitige Code optimiert werden. Ein Haupt-
bestandteil von RPG sind Funktionen, welche ausschlieÿlich mit den übergebenen Pa-
rametern arbeiten. Während man in Java Methoden auf Objekten und Feldern aufruft,
werden in RPG diese Funktionen statisch aufgerufen und erhalten alle beteiligten Objek-
te und Felder als Parameter. Dies widerspricht dem objektorientierten Ansatz von Java.
Im Rahmen dieser Arbeit soll dieses Kernproblem analysiert und mit Hilfe verschiedener
Methoden, Programmierparadigmen und Software Mustern‡ behoben werden.

∗ Der Tiobe-Popularitätsindex ist eine Ranking Liste für 100 Programmiersprachen
† Database 2(DB2) ist ein kommerzielles relationales Datenbankmanagementsystem, dass von IBM

entwickelt wurde. Es ist in der System i integriert(Db2 2019).
‡ Software Muster(-Pattern) sind bewährte Methoden zur Entwicklung e�zienter Software.

6

2. Allgemeines

Dieses Kapitel behandelt die Programmiersprache RPG (Report Program Generator).
Auÿerdem werden Probleme der damaligen Zeit und resultierende Gründe für einen Um-
stieg nach Java aufgezeigt.

2.1. RPG

In den Anfängen der Datenverarbeitung, als noch mit Lochkarten∗ gearbeitet wurde,
entwickelte das Unternehmen IBM die Hochsprache† RPG. Diese wurde besonders im
Bereich der Groÿrechner und Minirechnern der mittleren Datentechnik‡, wie beispiels-
weise der AS/400 (System i) verwendet. Die Syntax der Sprache war sehr stark an die
Arbeitsweise von Tabelliermaschinen� angelehnt, weshalb auch der Sprachaufbau spal-
tenorientiert ist(RPG (Programmiersprache) 2019).

Im Laufe der Zeit entwickelte sich RPG immer mehr zu einer problemorientierten¶ Pro-
grammiersprache. Inzwischen gibt es neben den Weiterentwicklungen RPG II, RPG III
und RPG/400, RPG IV (ILE RPG) als neuesten Stand. RPG ist eine der wenigen für
Lochkarten-Maschinen entwickelten Sprachen, welche bis heute aufgrund ihrer ständigen
Weiterentwicklung genutzt und gewartet wird(Rother 2015).

Das Besondere an einem RPG Programm ist, dass es in einem eigenen Programmzy-
klus läuft, welcher sich ständig wiederholt. Zuerst werden allgemeine Informationen der
Kopfzeile verarbeitet. Danach beginnt das Programm den ersten Record‖ einzulesen,

∗ Lochkarten bestehen aus hochwertigem Karton und systematisch angeordneten Löchern. Spezielle
Maschinen konnten diesen Lochcode erstellen und interpretieren(Hollerith und der Lochkartencom-
puter 2018).

† EineHochsprache ist eine, weit von Maschinensprache abstrahierte, Programmiersprache. Befehle
können nicht direkt vom Mikroprozessor interpretiert werden und müssen durch Interpreter oder
Compiler übersetzt werden(Schi�er 2005).

‡ Groÿrechner bezeichnen komplexe und groÿe Computersysteme die meist über Serversysteme
hinaus gehen. Sie werden besonders in der Massendatenverarbeitung verwendet.Minirechner der

mittleren Datentechnik bezeichnen eher kleine Systeme meist bestehend aus Rechner, Software
und Support(Groÿrechner und Minirechner der mittleren Datentechnik 2019).

� Tabelliermaschinen dienen zur Auswertungen von Lochkarten.
¶ Problemorientierte Sprachen kommen der menschlichen Sprache sehr nah und sind einfacher zu

verstehen im Gegensatz zur Maschinensprache(Lagotzki 2001).
‖ Ein Record entspricht einem Datensatz.

7

verarbeitet diesen und gibt letztendlich das Resultat aus. Dies wird dann mit nachfol-
genden Datensätzen wiederholt.
Da RPG sehr intensiv mit Schaltern arbeitet, gibt es auch einen Schalter zur Beendi-
gung des Programms. Wird der �LR�-Schalter(Last-Record) auf ON gesetzt, so führt
dies zum Abbruch. Da RPG sich hier automatisch um die Datensätze kümmert, muss
der Programmierer nicht auf den Zugri� der Datensätze achten(Einführung in die RP-
G/400 Programmierung 2019). Zur Veranschaulichung soll die folgende Abbildung als
Grundlage dienen.

Abbildung 2.1.: RPG Programm in OS/400

Das obige RPG Programm besteht aus einem Vor- und einem Nachnamen Feld. Es belegt
diese jeweils mit einem Beispielnamen vor. In der Ausführung wartet es auf eine Bestä-
tigung des Benutzers, was hier dem Drücken von Enter entspricht. Ist dies passiert, wird
ein �+� an den Vornamen und ein �.� an den Nachnamen angehangen, insofern dieser
nicht leer ist. Drückt der Nutzer F3 oder schreibt �ENDE� in das Feld Vorname, wird
das Programm beendet.

Alle folgenden Beschreibungen der verschiedenen Befehle und Funktionen sind auf der
o�ziellen Seite von IBM nachzulesen(Operation Codes List 2019).
Wie in Abbildung 2.1 zu sehen beginnen die verschiedenen Zeilen mit Buchstaben. Hier
wird die Rechenbestimmung, beziehungsweise die Funktion einer Zeile festgelegt. Das
C kennzeichnet den nachfolgenden Code als ausführbare Statements, während beispiels-
weise einD das De�nieren von Variablen oder ein F den Verweis auf eine Datei impliziert.

Der BefehlMOVEL ist einer der �operation codes�(�OP Codes�), welche in genau dieser
Spalte verwendet werden müssen. Sie gleichen Funktionen wie sie in Java bekannt sind.
In diesem Fall bewirkt die Funktion, dass eine Zeichenfolge �HEINZ� ganz nach links an
ein Feld gesetzt wird. Das Besondere hierbei ist, dass dieser Text nicht einfach an das
Feld angehangen wird. Der Befehl überschreibt den Inhalt des Ziels von ganz links aus-
gehend. Das bedeutet, ist die Zeichenfolge länger als das Zielfeld, werden alle zulässigen

8

Stellen überschrieben und der Rest verworfen. Ist die Zeichenfolge jedoch kürzer, werden
die möglichen Zeichen überschrieben und die restlichen Stellen des Feldes beibehalten.

Weitere Beispiele für OP Codes sind in der folgenden Tabelle, zusammen mit ihren
jeweiligen Bedeutungen und Java Äquivalenten aufgelistet.

Op Code Bedeutung

MOVEL Transferiert eine Zeichenfolge in ein Zielfeld, ausgehend vom links äuÿers-
ten Character. Java: Kombination aus replace() und substring() da unter-
schiedliche Längen unterschiedlich verarbeitet werden müssten

MOVE Transferiert eine Zeichenfolge in ein Zielfeld, ausgehend vom rechts äuÿers-
ten Character. Java: replace() und substring() Konstrukt

ADD Es wird eine Addition mit kompatiblen Objekten angewendet (Bsp. Typ
Integer oder Array Elemente). Java: z = 5+a+b[0];

CALL Hier wird eine parametrisierbare Funktion aufgerufen.
Java: klasse.callmethod(x,y,...);

CAT Zeichenfolgen werden hintereinander addiert (sofern die Feldlänge aus-
reicht). Java: name = �HEINZ� + nachname;

Tabelle 2.1.: Operation Codes

Nun begibt sich das Programm in eine do-Schleife, beginnend mit dem Befehl EXFMT(-
QLKU1R10). Bei diesem Befehl stoppt das Programm und blockiert die weiteren Pro-
zesse, bis der Benutzer eine Eingabe gemacht und bestätigt hat. Hat der Benutzer nun
eine Eingabe getätigt, so wird der weitere Inhalt der Schleife ausgeführt.

In Zeile 6 und 7 gibt es noch zwei if-Abfragen, mit zwei verschiedenen Input-Feldern.
Zuerst wird überprüft, ob IN03 auf ON gesetzt ist. In RPG ist diesem Schalter die
F3 Taste zugeordnet. Es wird also nur geprüft ob der Benutzer diese betätigt hat, und
der Schalter auf ON gesetzt wurde. Generell gilt in der OS400 Umgebung, dass man
mit F3 den aktuellen Menüpunkt oder das derzeitige Programm in dem man sich be-
�ndet, verlassen kann. Die zweite Bezeichnung �WWVNAM� entspricht einem Feld aus
der Ober�äche. Gleicht der Inhalt �ENDE� so wird ebenfalls der Code der if-Prozedur
ausgeführt. Dass das Programm auf dieses Feld zugreifen kann liegt daran, dass in Zei-
le 1 durch die Kennzeichnung F auf eine Datei namens �QLKU1D� referenziert wird.
In diesem Beispiel ist das ein Display�le, welches dazu da ist die UI∗ der Anwendung
zu erstellen und zu gestalten. Dort be�ndet sich das Feld mit dem Namen �WWVNAM� .

Sobald das Programm nun in diese Abfrage kommt, wird LEAVE ausgeführt, was einem
�break� in Java entsprechen würde. Die Schleife wird verlassen und in Zeile 14 wird der
LR Schalter auf ON gesetzt, was die Beendigung des Programms zur Folge hat.

∗ Das User Interface(UI) ist die Benutzerschnittstelle einer Anwendung. Über sie kann ein Benutzer
mit einer Maschine interagieren und kommunizieren.

9

Bestätigt der Benutzer jedoch seine Eingabe ohne Drücken der F3 Taste oder Schrei-
ben des Wortes Ende, so wird die if-Abfrage übersprungen, und ein Befehl CAT wird
ausgeführt. Dieser Befehl hängt einen Text (in diesem Fall ein �+�) an das gewünschte
Feld (�WWVNAM�). Die 0 als weiteren Parameter de�niert nur, wieviele freie Stellen
zwischen dem anzuhängenden Text und dem Feldtext bestehen sollen. Hier wird also das
�+� direkt hinter den Feldtext geschrieben. Das lässt sich mit RPGs festen Feldlängen
erklären. Da jedes Feld eine fest de�nierte Feldlänge haben muss, muss genau angegeben
werden an welches Byte etwas angehängt werden soll.
Zusätzlich dazu wird in Zeile 11 mit dem BefehlCAS eine bedingte Subroutine(Methode)
namens S100 aufgerufen. NE steht für �Not Equals�, wenn also das Feld �WWNNAM�
ungleich *BLANKS(nicht leer) ist, dann wird die Subroutine aufgerufen. In der Sub-
routine gibt es einen weiteren CAT Befehl welcher äquivalent zum vorherigen einen
Punkt anstatt einem Plus an das Feld anhängt.
Besonders für nicht RPG-Entwickler führt die fehlende Einrückung sowie die Vertei-
lung von Parametern und Funktionen zu einer schlechten Lesbarkeit. Das nachfolgende
Ablaufdiagramm (Abbildung 2.2) soll den beschriebenen Programm�uss verdeutlichen.

Abbildung 2.2.: Ablau�agramm zu Abbildung 2.1

10

2.2. Gründe für einen Umstieg

Besonders im Vergleich zu modernen Programmiersprachen, ist RPG in vielerlei Hinsicht
unkomfortabel und nicht sehr fortschrittlich. In diesem Kapitel werden ein paar der
Probleme und Gründe für den Umstieg auf Java erläutert.
Einige dieser Probleme wurden im weiteren Entwicklungsverlauf von RPG behoben, da
es zur damaligen Zeit jedoch keine Alternativen gab oder der jeweilige Aufwand gröÿer
als der Nutzen war, werden hier ein paar speziellen Beweggründe aufgezeigt.

2.2.1. Datenbanken

Deutliche Nachteile der Programmiersprache lagen in den Datenbankprogrammen. Da
Speicherplatz begrenzt und rar war, gab es in RPG feste Feldlängen. Bei Änderungen wie
beispielsweise der Erweiterung von Postleitzahlen oder aber simplen Werterweiterungen
aufgrund neuer Anforderungen, wurde die vorde�nierte Länge eines Feldes zum Problem.
Abseits von Datenbanken hat auch die Programmierumgebung mit diesem Problem zu
kämpfen. Ab bestimmten Spaltennummern hat der jeweilige Code eine neue Bedeutung
und kennzeichnet beispielsweise Feld-/Variablen-Namen oder OPCode(siehe Tabelle 2.1
auf Seite 9), welche ebenfalls in ihrer Länge beschränkt sind.

Auÿerdem, als damals die Möglichkeiten der Datenbanken eher begrenzt waren, wurde
aus Performance-Gründen auf Funktionen wie Referentielle Integrität (RI)∗ verzichtet.
Die Datenbanken auf der System i waren nicht immer in dritter oder höherer Normal-
form vorzu�nden, was zur Folge einem schlechten Datenbankdesign entsprach(Kleutgens
2010).

2.2.2. UI

Heutzutage sind Modell View Controller Strukturen ein fester Bestandteil von vielen
Softwarelösungen. Die strikte Trennung zwischen Modell (Daten- und Businesslogik),
View (reine Ober�äche) und Controller (Vermittler/Brücke zwischen Modell und View)
sorgt für eine gute, logische und unabhängige Modularisierung des Codes. In den RPG
Anwendungen existiert jedoch kein Eventmodell und die Schichten besonders View und
Controller sind vermischt. Mehr oder weniger hart codierte Aktionsvorgaben und Ab-
läufe des Programms machten den Code un�exibel und schlecht austauschbar.

Ein Beispiel hierfür ist beispielsweise der Job-Stack einer IBM i Anwendung. Die RPG
Programme laufen in einem Job und haben einen eigenen Stack. Ruft also ein Programm
A ein Programm B auf, so kann B nur über A erreicht werden und wenn man B verlässt
landet man sofort wieder in A. Man sieht, dass der Controller nicht frei ist und die Maske
aus Programm B immer eine Verarbeitung von Programm A erfordert(Kleutgens 2010).

∗ Referentielle Integrität(RI) ist eine Bedingung der Datenkonsistenz von Datenbanken. Fremdver-
weise in Datenbanken müssen auf existierende Datensätze verweisen(Referentielle Datenintegrität

2019).

11

2.2.3. Businesslogik

Aufgrund der generell fehlenden Objektorientierung, wurde keine strikte Trennung zwi-
schen Funktionen eingehalten. Zur Folge hatte man teils monolithische Programme, wel-
che zwar aus Performance-Sicht e�zient waren, jedoch keinen zukunftstauglichen Code
darstellten. Da zwischen den Programmen viele Job-Abhängigkeiten bestanden, war es
besonders schwierig zusammenhängende Funktionen in isolierte Services aufzuteilen. Die
dazu benötigte dynamische Bindung von Programmen erforderte eine hohe Rechenleis-
tung. Die Konsequenz waren zu groÿe und unübersichtliche Services und eine schlechte
Modularisierung(Kleutgens 2010).
Auch Sprunganweisungen (�GOTOs�)sind ein Teil von RPG und der Software von VE-
DA GmbH. Aus Zeitgründen boten sich diese meist gut an, jedoch wurde der Code
dadurch weiterhin unstrukturierter. Besonders seit Edsger W. Dijkstras Aufsatz �Go
To Statement Considered Harmful� wurden diese Sprunganweisungen als kritisch an-
gesehen(Dijkstra 1968). In Java wurden diese bewusst weggelassen(Sprunganweisungen
2019).

12

3. Methoden

Im Programmierverlauf dieser Arbeit wurden bestimmte Methoden und APIs verwen-
det. Anknüpfend folgt eine Erläuterung der genutzten Hilfsmittel und angewendeten
Techniken, die zur Erfüllung des Ziels der Seminararbeit dienten.

3.1. Java Abstract Syntax Tree

Das Eclipse Java Development Tools (JDT)∗ Projekt beinhaltet Schnittstellen, mit de-
nen man auf Java Code zugreifen und diesen manipulieren kann. Es besteht aus den APIs
Java Model und Abstract Syntax Tree(AST). Das Java Model gleicht der Strukturierung
der Java Projekte wie man sie in Eclipse kennt. Es beinhaltet die ober�ächliche Auf-
teilung der verschiedenen Elemente im Projekt Explorer. Darunter fallen beispielsweise
Projekt Ordner (IJavaProject), Pakete (IPackageFragment) oder source-Files (ICompi-
lationUnit). Hier spiegelt sich die bekannte Baumstruktur wieder(Vogel, Scholz und Pfa�
2018).

Abbildung 3.1.: Java Model und AST in Eclipse

Der Abstract Syntax Tree jedoch ist eine detaillierte Baumdarstellung des jeweiligen
Java Codes. Mit dieser API ist es möglich Code nicht nur zu erstellen, sondern auch zu
lesen und zu modi�zieren.
∗ JDT ist eine Sammlung von Plugins für Eclipse

13

3.1.1. Struktur

Abbildung 3.2.: UML-Diagramm AST Modi�zierung

Das obige UML∗ Diagramm visualisiert die Klassen und Methoden, welche dazu dienen
ein vorhandenes Dokument zu modi�zieren. Zu Beginn wird ein ASTParser erzeugt,
welcher mit einem Dokument, bzw. dem Source Code versehen wird. Nun kann eine
ASTNode erzeugt werden. Im Grunde lässt sich je nachdem wie die Quelle aussieht,
dieser Node zu verschiedenen Unterklassen parsen, die Klasse CompilationUnit jedoch
spiegelt das gesamte Dokument wieder und kann daher immer verwendet werden.
Hat man nun einen Knoten gefunden, besitzt auch dieser einen abstrakten Syntaxbaum,
welchen man mit einer einfachen Get-Anfrage erhalten kann. Dieser AST kann jedoch
nicht direkt modi�ziert werden. Er stellt das gesamte Dokument als Objekt in Java
dar, um ihn jedoch ändern zu können, muss eine weitere Klasse ASTRewrite verwendet
werden. Diese Klasse erzeugt einen Klon von dem übergebenen AST, auf dem gearbeitet
werden darf.
Über sogenannte ASTVisitoren ist es möglich bestimmte Codezeilen je nach Bedeutung
zu besuchen bzw. zu durchlaufen. So kommt man genau an die Programmbereiche wo
man gegebenenfalls Änderungen durchführen möchte. Sind nun alle Änderungen auf
diese Kopie angewendet worden, kann man den AST über die Methode rewriteAST()
umschreiben. Es wird ein TextEdit Objekt zurückgegeben, welches man letztendlich noch
auf das Dokument anwenden muss um auch dieses �nal zu ändern(Boehr 2015).

∗ Die �Uni�ed Modeling Language�(UML) ist eine vereinheitlichte Modellierungssprache, mit der
Software-Teile und Systeme konstruiert und modelliert werden können(Was ist ein UML Diagramm

2019).

14

3.1.2. ASTVisitor

Ein ASTNode lässt sich mit beliebigen ASTVisitoren verknüpfen. Jede Codezeile lässt
sich einem anderen Knoten zuordnen.
So gibt es beispielsweise einen Visitor für If-Abfragen, Import Deklarierungen oder aber
Kommentaren. Akzeptiert also ein ASTNode einen If-Visitor, so werden alle Stellen im
Code besucht, wo eine If-Abfrage verwendet wird. Der besuchte Knoten, in dem Fall vom
Typ IfStatement, kann dann komponentenweise ausgelesen und abgeändert werden. So
besteht die Bedingung beispielsweise aus einer Expression und die auszuführenden Blöcke
innerhalb der Abfrage jeweils aus Statements. Diese Aufteilung zwischen Visitoren und
Elementen lässt sich mit dem Visitor Pattern beschreiben.

Abbildung 3.3.: Visitor Pattern am Beispiel ASTVisitor

Abbildung 3.3 veranschaulicht das Visitor Pattern am Beispiel der AST Struktur. Das
Interface ASTVisitor enthält alle visit Methoden mit ihren jeweilig dazugehörigen Ele-
menten als Parameter. Davon abgeleitet kann man individuelle Besucherklassen erstellen,
in denen dann die eigentliche Logik implementiert wird. Die einzelnen Elemente besit-
zen die accept Methode, um bestimmte Besucher an die jeweiligen Objekte anzuhängen.
Besonders im Compilerbau wird dieses Muster häu�g angewendet, da Änderungen gröÿ-
tenteils in den Besucherklassen anstatt in allen konkreten Elementen getätigt werden
müssen(Visitor Pattern 2019).

3.1.3. Vorteile

• Die Besucher lassen sich sehr einfach und beliebig erweitern. Gibt es Verhaltens-
änderungen wird ein neuer Besucher abgeleitet vom Visitor Interface als Klasse
erstellt(Visitor Pattern 2019).

• Es gibt eine zentrale Stelle zur Änderung und Erweiterung von Funktionen. Die
Implementierung be�ndet sich in der Visitor Klasse und muss nicht erneut in den

15

zu besuchenden Klassen implementiert werden(Visitor Pattern 2019).

• Besucherklassen können Modul- und Klassenübergreifend verwendet werden und
sind nicht an eine bestimmte Klassenhierarchie gebunden(Visitor Pattern 2019).

• Je nach Anwendungsfall können so wichtige Daten und Zwischeninformationen
aus besuchten Elementen einer Struktur gesammelt und weiterverarbeitet wer-
den(Visitor Pattern 2009).

3.1.4. Nachteile

• Gibt es konkrete neue zu besuchende Klassen, so muss jeder Visitor dementspre-
chend geändert werden(Visitor Pattern 2019).

• Je mehr konkrete Klassen es zu unterstützen gilt, desto mehr visit Methoden muss
es in den Visitor Klassen geben. Dies kann sehr schnell sehr unübersichtlich wer-
den(Visitor Pattern 2019).

• Das Prinzip der Codekapselung∗ wird verletzt, indem der Besucher auf viele ver-
schiedene und gegebenenfalls verstreute Elemente und Objekte auÿerhalb der ei-
genen Klasse zugreift. Zusätzlich muss der Besucher die jeweiligen Elementklassen
kennen um mit ihnen zu interagieren während, die Elemente selbst die Struktur
des Besuchers nicht kennen(Visitor Pattern 2009).

∗ Datenkapselung bezeichnet den kontrollierten Zugri� auf bzw. das Verbergen von internen Da-
tenstrukturen.

16

4. Ergebnisse

Im Folgenden werden die Programmierergebnisse vorgestellt. Anhand einer händisch
verfassten Vision, wurde die Methode aus Kapitel 3 angewendet. Vor Allem stehen der
Ausgangscode, die Vision und das letztendliche Resultat im Vergleich zueinander.

4.1. Problemstellen und Vision

Der nachfolgende Code, ist die migrierte Version des RPG Codes aus Kapitel 2. Die
roten Bereiche kennzeichnen nur ein paar der Problemstellen, die mit der Java Migration
einhergehen. Doch um eines der Kernprobleme der Objektorientierung zu beschreiben
reicht dieses Programm aus.

Abbildung 4.1.: Der jetzige unmodi�zierte Code

• (1) Der neue Code sollte nicht direkt von einer RPG Klasse erben und auch grund-
sätzlich keine sofort ersichtlichen Abhängigkeiten zu diesen besitzen, da eine Un-

17

abhängigkeit angestrebt wird.

• (2) Der Typ RpgAlpha bietet sich einerseits nicht nur vom Namen schlecht an,
die Klasse verhindert auch einen objektorientierten Zugri� auf die Variable, da sie
nicht dafür vorhergesehen ist.

• (3)(5)(8). Hier werden typische RPG Funktionen aufgerufen. Im Ende�ekt han-
delt es sich hierbei um simple Wertveränderungen von Feldern. Anstatt statische
Funktionen aufzurufen, sollten Methoden hinzugefügt werden mit denen man über
das jeweilige Objekt die Wertänderung erzielt (getText(), setText(), etc.).

• (4)(7) Auch hier werden RPG Funktionen statisch aufgerufen. Zusätzlich ist die
Abfrage ob der Schalter IN03 lediglich auf ON gesetzt ist, zu umständlich. Eine
intuitivere Abfrage wie isON() auf dem Schalter-Objekt wäre eine typische Heran-
gehensweise in Java.

• (6) Die RPG-Funktion �ne� steht für �not Equals�. In Java wird für alle vernein-
ten Abfragen ein �!� verwendet. So müsste nicht für jede Funktion eine verneinte
Implementierung existieren.

Abbildung 4.2.: Handgefertigte Vision

Diese Vision gibt eine erste Vorstellung, wie ein optimierter Code in dieser Form aussehen
könnte. Die grünen Bereiche stellen hier die veränderten Codesequenzen dar.

18

• (1) Als Basisklasse verwendet das Programm nun eine für Java optimierte Klasse.

• (2) Die Objekttypen der Felder wurden angepasst. Die neuen Klassen sollten vor
allem auf einen objektorientierten Zugri� ausgelegt sein und genau die jeweiligen
Methoden enthalten, welche bisher statisch über die Basisklasse aufgerufen wurden.

• (3) Wichtige Schalter welche gegebenenfalls über einen groÿen Teil des Programm-
�usses entscheiden können, sollten nicht direkt modi�zierbar sein. Es sollten Getter-
und Setter- Methoden zum Lesen und Setzen dieser existieren.

• (4)(6)(8)(9) Wertemanipulationen wie das Setzen eines Feldtextes sollten auch
genauso über entsprechende Methoden erfolgen.

• (5)(7) Equals-Abfragen sollten grundsätzlich auf genau dem Objekt aufgerufen
werden, welches auch verglichen werden soll. Ob es ein String Objekt oder ein Feld
selbst ist. Auÿerdem wie in (7) ersichtlich, sollten verneinte Abfragen mit einem �!�
gekennzeichnet sein. Das verbessert nicht nur die Lesbarkeit, sondern spart auch
zusätzlichen Code.

4.2. Strukturierung

Abbildung 4.3.: Struktur des Migrator Codes

19

Die Hauptlogik des Migrators be�ndet sich in der Klasse �Migration�. Hier wird zualler-
erst der Programmcode aus den Startparametern eingelesen und als String abgespeichert.

Danach wird der eigentliche Refactorer erzeugt. Diese Klasse implementiert das Interface
�BiFunction<T,U,R>�. Dabei sind die Typen T und U Eingabeparameter und R der
Rückgabewert einer Funktion �apply�. Auf den Code sollen viele verschiedene Funktio-
nen und Regeln angewendet werden. Als Konsequenz muss auch die Implementierung
und generelle Klassenstruktur �exibel und erweiterbar sein. Als Parameter erhält der
Refactorer nur den Code als String und eine anzuwendende Regel/Funktion. Mit einem
String als Rückgabeparameter soll so nach Anwendung jeder Regel der Code Stück für
Stück optimiert werden.
In der apply-Methode selbst, wird der ASTRewrite Prozess (beschrieben in Abbildung 3.2
auf Seite 14) ausgeführt. Der Refactorer erzeugt einen ASTParser und parst den Quell-
code in eine CompilationUnit. Nun werden ein dazugehöriger AST und ASTRewrite
erstellt. Nachdem die Regel dann auf den Rewrite angewendet wurde, wird auch der
ursprüngliche Ast verändert und dementsprechend aktualisiert.

Im Anschluss an die Erzeugung des Refactorers, werden in der Migration Klasse die ein-
zelnen Regeln über eine Methode �buildAllRules()� gebaut. In dieser Methode lassen sich
neue Regeln und Funktionen �exibel hinzufügen. Manchmal müssen bestimmte Funktio-
nen jedoch hintereinander angewendet werden, da sie bedingt auf der Ausführung und
den Änderungen der vorherigen Regeln agieren. Beruht eine Regel beispielsweise darauf,
dass eine Methode objektorientiert auf einem Objekt aufgerufen wird, obwohl die dafür
verantwortliche Regel noch nicht aktiv gewesen ist, so werden die neuen Modi�kationen
gegebenenfalls nicht beachtet. Es kann sogar zu Kompilierfehlern kommen.

Die Regeln implementieren ein Interface �SimpleRule�, welches wie der Refactorer von
der Klasse BiFunction abhängig ist. Anstatt einem String und einer SimpleRule als Pa-
rameter, werden hier ein AST und ein ASTRewrite übergeben. Dadurch kann in den
einzelnen Regeln der Code e�zient modi�ziert werden. Der Rückgabewert ist vom Typ
ASTVisitor, damit der Refactorer die Regeln später an den Code anhängen kann. Die
Besucher erhalten somit in den Regel-Klassen ihre jeweiligen Funktionen und die zu
besuchende Elemente. Die folgende Abbildung zeigt wie solch eine Funktion zu imple-
mentieren wäre.

20

Abbildung 4.4.: Beispielmethode

Wurden alle Regeln gebaut, werden diese in einer Liste abgespeichert. Mit einer For-
Schleife wird über diese Liste iteriert und jede Regel wird auf den Refactorer über die
apply-Methode angewendet.
Ist auch dieser Schritt abgeschlossen, wird der entstandene Code als String, in eine neue
Datei geschrieben. Abseits der eigentlichen Migration, mussten auch neue Java Klassen
erstellt werden(siehe linker Block in Abbildung 4.3 auf Seite 19). Diese Klassen machen
im Grunde nichts anderes als ihre RPG Äquivalenten, legen jedoch eine Art Maske über
den Code, dass es so aussieht als würde man in einem ganz normalen Java-Programm
arbeiten. So ist zum Beispiel die Klasse �JavaAlpha� das Gegenstück zu der RPG-Klasse
�RpgAlpha�. Sie enthält Methoden wie �equals� oder �concat�, welche zwar das Gleiche
tun wie die statischen Funktionsaufrufe von RPG, jedoch auf dem konkrete Objekt
aufgerufen werden. So entsteht der Schein von Objektorientierung.

4.3. Angewendete Regeln/Besucher

Hier werden die unterschiedlichen Regeln/Besucher erläutert. Dabei wird eine kurze
Erklärung über die zugehörige Funktion und die Umsetzung gegeben.

4.3.1. RenameRule

Nach der ersten Migration ohne irgendeine Regel auf den Code anzuwenden, gab es einen
Kompilierfehler in dem entstandenen Programm. Da der neue Code mit dem Namens-
zusatz �_refactored.java� abgespeichert wurde, widersprach dies dem noch unberührten
Klassen- und Konstruktornamen im Quellcode selbst. Für den Klassennamen besucht der
Besucher eine ASTNode �TypeDeclaration�. Hier wird lediglich der Namenszusatz mit
an den Klassennamen angehangen, damit dieser mit dem Dateinamen übereinstimmt.
Für die Konstruktoren wird nach �MethodDeclarations� ge�ltert. Wenn dann zusätzlich
der Rückgabewert null entspricht, dann bedeutet das, dass ein Konstruktor vorliegt.

21

4.3.2. ExtendRule

Auch für den Extend wird �TypeDeclaration� verwendet. Anstatt jedoch den Namen der
Klasse zu ändern, benennt man die Basisklasse nach �JavaProgram� um. Diese Klasse
kann nun wie eine Java Klasse behandelt und weiterentwickelt werden.

4.3.3. JavaTypeRule

Damit die Objektorientierung funktioniert, musste wie oben beschrieben ein neuer Java-
Typ für die Felder hinzugefügt werden. Hierzu muss man beim Migrieren die Deklaration,
also die linke Seite, sowie die eigentliche Instanziierung, also die rechte Seite anpassen.
Dabei mussten Name und Erzeuger-/Konstruktoraufruf aktualisiert werden.
Gespeichert in einer HashMap∗, können beliebig viele neuen Datentypen hinzugefügt
werden. Diese werden mit dem RPG-Typen als Key und dem Java Äquivalent als Value
abgespeichert, damit der Migrator die Datentypen einfach und �exibel austauschen kann.

4.3.4. GetterSetterRule

Zuweisungen, zum Beispiel von boolean Variablen, werden mit der ASTNode �Assi-
gnment� beschrieben. Weiterhin werden hier alle unterstützten Variablen mit ihrem Na-
men in einer Liste abgespeichert. Wenn also der Besucher an einer dieser Variablen
vorbeikommt, wird eine neue �MethodInvocation� erzeugt. Dieser Methodenaufruf be-
steht aus einem �set�+ den jeweiligen Variablennamen. Auf der rechten Seite wird der
gleiche Zuweisungswert verwendet.

4.3.5. OOInvocationRule

Mit dieser gröÿeren Regel wird das eigentliche Problem der fehlenden Objektorientierung
korrigiert. Der Besucher iteriert dabei über alle �MethodInvocations�, also Methoden-
aufrufe. Sobald eine Funktion gefunden wird, welche auch wie bei der �JavaTypeRule�
in einer HashMap gespeichert wurde, setzt der Änderungsprozess ein.
Das jeweilige Feld oder die jeweilige Variable wird als �Expression� an den Anfang ge-
setzt. Dahinter wird der ebenfalls in der HashMap gespeicherte neue Methodenname
gehangen, also über das Feld aufgerufen. Die Parameter werden kopiert und der Metho-
de mitgegeben.
Ein Problem in der fachspezi�schen Logik von RPG ist hier jedoch, dass die Reihenfolge
der Funktionsparameter variieren kann. So kann es sein dass das Ursprungsfeld, also das
Feld auf das die Funktion letztendlich angewendet wird, der erste oder der letzte Para-
meter ist. Daher musste eine neue innere Klasse �JavaMethod� erstellt werden, welche
anstatt eines Namens in der HashMap abgespeichert wird. Ein Objekt dieser Klasse be-
sitzt nun zusätzlich ein Attribut �sourceVarIsFirstParameter�. Damit wird wie der Name
bereits verrät angegeben ob das Ursprungsfeld der erste Parameter ist oder nicht.

∗ EineHashMap ist eine Struktur welche über einen Key einen schnellen Zugri� auf den zugehörigen
Datensatz(value) erlaubt.

22

4.3.6. INIndicatorsRule

Diese Regel sorgt dafür, dass man die verschiedenen Indikatoren über eine Methode
aufrufen kann. Dabei wurde der neue Typ �JavaIndicator� hinzugefügt. Er erlaubt die
Abfrage auf einem Indikator-Objekt anstatt über eine Funktion.
An diesem Beispiel kann man gut die jeweiligen Beein�ussungen der Regeln aufeinander
erklären. Ohne diese Regel würde es Kompilierfehler geben. Das liegt daran, dass die
Indikatoren weiterhin RPG-Variablen bleiben würden und diese nicht die erforderten
Methoden der OOInvocationRule enthalten. Daher müssen beide Regeln in Kombination
angewendet werden, um ein kompilierbares Programm zu bilden.

23

4.4. Finaler Code

Abbildung 4.5.: Das Resultat des Migrators

Wie man in Abbildung 4.5 sehen kann, konnten die meisten Verbesserungen aus der
Vision angewendet werden. Das grundsätzliche Ziel der Objektorientierung wurde durch
das Anwenden der verschiedenen Regeln erfüllt. Jedoch gab es Änderungen bei ein paar
Methodenaufrufen. Da bisher die Funktionen immer auf Seiten des RPG Programms
aufgerufen wurden, konnten die Funktionen ohne Weiteres ausgeführt werden. Da aber
mit der Abkopplung vom diesem und dem Einführen von Objekten neue Methoden
dazukamen, mussten bei einigen als Parameter das RPG Programm mitgegeben werden.
Dies ist eine weitere Problemstelle die es zu lösen gilt.

24

5. Fazit und Ausblick

In dieser Arbeit wurden Grundlagen über die Programmstruktur der VEDA GmbH und
die Programmiersprache RPG vermittelt. Es wurden Hintergründe erläutert warum eine
Migration zu der damaligen Zeit unumgänglich war. Anhand eines Beispielprogramms
wurde ein Prototyp eines Migrators entwickelt, welcher sich an ein Kernproblem der
Objektorientierung richtet.
Bei der Programmierung war es besonders entscheidend eine �exible und erweiterbare
Lösung zu erstellen, da die behandelten Probleme nur einen Bruchteil der noch vor-
handenen Arbeit symbolisieren. Besonders schwierig war es, die einzelnen Probleme in
eigenen Rule-Klassen zu sammeln. Denn immer wieder kam es vor, dass eine Funktion
ein wenig anders als die anderen funktionierte. So musste man abwägen, ob eine neue
Klasse eingefügt, oder die bisherige um die Neuerung erweitert werden musste.
Gerade unverzichtbare Features wie beispielsweise Nullpointer-Safety haben es, dem zeit-
lichen Rahmen der Seminararbeit geschuldet, nicht in den Prototypen gescha�t. Trotz-
dem sollten diese aber standardmäÿig in Java Programmen zu �nden sein.

Zukünftig soll das vermittelte Wissen weiterhin ausgebaut und auf gröÿere und signi-
�kantere Probleme angewendet werden. Dabei soll ein bereits vorhandener Prototyp
weiterentwickelt werden.

25

A. Literatur

Boehr, Dirk (2015). AUTOMATISCHE REFACTORINGS MIT ECLIPSE JDT. url:
https://www.openknowledge.de/automatische-refactorings-mit-eclipse-

jdt/ (besucht am 18. 12. 2019).
Db2 (2019). url: https://de.wikipedia.org/wiki/Db2 (besucht am 20. 12. 2019).
Dijkstra, Edsger W. (1968). Go To Statement Considered Harmful. url: http://www.
u.arizona.edu/~rubinson/copyright_violations/Go_To_Considered_Harmful.

html (besucht am 18. 12. 2019).
Einführung in die RPG/400 Programmierung (2019). url: http://harl3kin.tripod.
com/einf_rpg.htm (besucht am 17. 12. 2019).

Fischer, René (Dez 2016). DIE ZUKUNFT DER PERSONALABRECHNUNG - AS/400
und die Alternativen. url: https://midrange.de/as400-und-die-alternativen/
(besucht am 16. 12. 2019).

Groÿrechner und Minirechner der mittleren Datentechnik (Nov. 2019). url: https:
//de.wikipedia.org/wiki/Minirechner (besucht am 17. 12. 2019).

Hempel, Tino (2006). Programmiersprachen. url: https://www.tinohempel.de/info/
info/sprachen/paradigmen.htm (besucht am 17. 12. 2019).

Hollerith und der Lochkartencomputer (Jan. 2018). url: https://www.planet-wissen.
de/technik/computer_und_roboter/geschichte_des_computers/%5Cnewline%

20pwiehollerithundderlochkartencomputer100.html (besucht am 17. 12. 2019).
Kleutgens, Harald (Nov. 2010). Software Development Strategie VEDA GmbH 2010 -
Klassische IBM i Anwendungen. (Besucht am 17. 12. 2019).

Lagotzki, Stefan (2001). Die dritte Generation: Problemorientierte Sprachen. url: http:
//www.lagotzki.de/scripte/vba/sprachen.html (besucht am 17. 12. 2019).

Operation Codes List (2019). url: https://www.ibm.com/support/knowledgecenter/
en/SSAE4W_9.6.0/com.ibm.etools.iseries.langref.doc/evferlsh259.htm#

HDROPERXCD (besucht am 17. 12. 2019).
Programmierparadigma (Aug. 2019). url: https://de.wikipedia.org/wiki/Programmierparadigma
(besucht am 19. 12. 2019).

Referentielle Datenintegrität (2019). url: https://www.datenbanken-verstehen.de/
datenmodellierung/referentielle-integritaet/ (besucht am 19. 12. 2019).

Rother, Dr. Wolfgang (Mai 2015). NACHWUCHSMANGEL - Sind RPG-Programmierer
vom Aussterben bedroht? url: https://www.it-zoom.de/dv-dialog/e/sind-rpg-
programmierer-vom-aussterben-bedroht-10672/ (besucht am 18. 12. 2019).

Rouse, Margaret (Apr. 2016). IBM (International Business Machines). url: https:
/ / whatis . techtarget . com / de / definition / IBM - International - Business -

Machines (besucht am 19. 12. 2019).

26

RPG (Programmiersprache) (Jan. 2019). url: https://de.wikipedia.org/wiki/RPG_
(Programmiersprache) (besucht am 18. 12. 2019).

Schi�er, Ansgar (2005). Grundbegri�e zu Programmiersprachen. url: http://fbmathe.
bbs-bingen.de/Informatik/C_plusplus/grundbegriffe.htm (besucht am 16. 12. 2019).

Schlosser, Hartmut (2019). Programmiersprachen an US-Unis: Python vor Java. url:
https://jaxenter.de/programmiersprachen-an-us-unis-python-vor-java-845

(besucht am 20. 12. 2019).
Sprunganweisungen (Okt 2019). url: https://de.wikipedia.org/wiki/Sprunganweisung
(besucht am 20. 12. 2019).

TIOBE-Index: Die aktuellen Top-Programmiersprachen im Ranking (Jan. 2019). url:
https://www.informatik- aktuell.de/aktuelle- meldungen/2019/januar/

tiobe - index - die - aktuellen - top - programmiersprachen - im - ranking . html

(besucht am 16. 12. 2019).
Visitor Pattern (Okt 2009). url: https://wiki.thm.de/Visitor_Pattern (besucht
am 18. 12. 2019).

Visitor Pattern (2019). url: https://deacademic.com/dic.nsf/dewiki/1468938
(besucht am 18. 12. 2019).

Vogel, Lars, Simon Scholz und Fabian Pfa� (2018). Eclipse JDT - Abstract Syntax
Tree (AST) and the Java Model. url: https://www.vogella.com/tutorials/
EclipseJDT/article.html (besucht am 18. 12. 2019).

Was ist ein UML Diagramm (2019). url: https://www.lucidchart.com/pages/de/
was-ist-ein-uml-diagramm (besucht am 19. 12. 2019).

27

B. Abbildungsverzeichnis

2.1. RPG Programm in OS/400 . 8
2.2. Ablau�agramm zu Abbildung 2.1 . 10

3.1. Java Model und AST in Eclipse . 13
3.2. UML-Diagramm AST Modi�zierung . 14
3.3. Visitor Pattern am Beispiel ASTVisitor 15

4.1. Der jetzige unmodi�zierte Code . 17
4.2. Handgefertigte Vision . 18
4.3. Struktur des Migrator Codes . 19
4.4. Beispielmethode . 21
4.5. Das Resultat des Migrators . 24

28

C. Tabellenverzeichnis

2.1. Operation Codes . 9

29

