S Software
Engineering

RWTH Aachen University
Software Engineering Group

FH Aachen, Campus Jilich
09 Medical Engineering and Technomathematics

Comparison of State-of-the-Art Analyses for
Software Product Lines

Seminar Thesis

presented by
Mingers, Joshua

MatrNr: 3244971

1st Examiner: Prof. Dr. rer. nat. Bodo Kraft

2nd Examiner: David Schmalzing, MSc.

UNIVERSITY OF APPLIED SCIENCES

FH AACHEN

Aachen, December 31, 2021

Eidesstattliche Erklarung

Hiermit versichere ich, dass ich die Seminararbeit mit dem Thema
Comparison of State-of-the-Art Analyses for Software Product Lines

selbststandig verfasst und keine anderen als die angegebenen Quellen und
Hilfsmittel benutzt habe, alle Ausfiihrungen, die anderen Schriften wortlich
oder sinngemall entnommen wurden, kenntlich gemacht sind und die
Arbeit in gleicher oder ahnlicher Fassung noch nicht Bestandteil einer

Studien- oder Priifungsleistung war.

Ich verpflichte mich, ein Exemplar der Seminararbeit finf Jahre
aufzubewahren und auf Verlangen dem Prifungsamt des Fachbereiches

Medizintechnik und Technomathematik auszuhandigen.

Name: Joshua Mingers

Aldenhoven, den 31.12.2021

Unterschrift des Studenten

Abstract

Product lines are defined as “a group of closely related commodities made by the same
process and for the same purpose and differing only in style, model, or size.” The concept
of product lines has been established in the manufacturing industry decades ago as a means
of increasing productivity.

After product lines had helped the manufacturing industry grow, the underlying concept
was applied to the field of software engineering. This combination has been named software
product line.

Software product lines are interesting because they provide software engineers with several
potential benefits, such as reduction of development cost and increased quality. A common
requirement in software engineering is that a system can be analyzed and validated (i.e.,
properties of a system can be proven). However, software product lines cannot simply be
checked with the techniques that have been developed for single-system engineering. The
techniques must be adapted, if they are applicable at all. If they are applicable, they might
prove highly inefficient due to their implementation. This does of course raise questions,
most prominently: Which analysis approaches and techniques should a software product
line framework support and how can those be performed in an optimized way?

In this thesis, we will explore how analysis techniques from single-system engineering can
be applied to software product lines. We will compare different approaches in an attempt
to determine which use cases they would fit best. In the process, we will consider two
perspectives: the software product line framework developer’s and the framework user’s.

iii

Contents

5
6

Introduction

Preliminaries

2.1 Product Lines
2.1.1 Variability Modelo
2.1.2 Software Product Lines

2.2 Software Analyses
2.2.1 Type Checkingo
2.2.2 Static Analysis
2.2.3 Model Checking
224 Theorem Provingo

2.3 Terminology for Specifications and Scopes

Analysis Techniques for Product Lines

3.1 Single-Stage Analyses L
3.1.1 Product-Based Analyses
3.1.2 Family-Based Analyses L.
3.1.3 Feature-Based Analyses

3.2 Multi-Stage Analyses L
3.2.1 Feature-Product-Based Analyses
3.2.2 Feature-Family-Based Analyses
3.2.3 Family-Product-Based Analyses
3.2.4 Feature-Family-Product-Based Analyses

3.3 Daisy-Chained Analyses

Comparison

4.1 Comparing Single-Stage Approaches
4.2 Comparing Multi-Stage Approaches. L.
4.3 Single-Stage vs. Multi-Stage Approaches L.
4.4 Comparison of Analysis Implementations in Different Approaches

Related Work

Conclusion

Bibliography

v

22

23

23

1 Introduction

While knowing a formal definition of the term “product line” might not be common, an
intuitive understanding of it is relatively widespread. The popular dictionary Merriam-
Webster defines a product line as “a group of closely related commodities made by the
same process and for the same purpose and differing only in style, model, or size.”[MW]
Given the linguist’s definition alongside our natural understanding, it becomes apparent
that product lines are all around us.

A typical example is a car model. The base for the car is always roughly the same - it
has a motor, a drivetrain, a chassis, etc. But the manufacturer offers customization, of
course. For example, you might choose to have a heated windshield. The configurator you
are using then informs you that selecting this requires having heated side mirrors. While it
might not seem like much, you have already been presented with several aspects of product
lines by now.

Another example of a product line can be found in most pockets nowadays. A smartphone
matches what we described above, but the device itself is not the only result of a product
line. The basis for the phone’s operating system, the linux kernel, can also be considered a
product line [TLD*11]. To be more specific, it can be considered a software product line.

After product lines had helped the manufacturing industry grow, the underlying concept
was applied to the field of software engineering. This combination has been named software
product line. Software product lines are interesting because they provide software engi-
neers with several potential benefits, such as reduction of development cost and increased
quality [PBL05]. A common requirement in software engineering is that a system can be
analyzed and validated (i.e., properties of a system can be proven). However, software
product lines cannot simply be checked with the techniques that have been developed for
single-system engineering. The techniques must be adapted, if they are applicable at all. If
they are applicable, they might prove highly inefficient due to their implementation. This
does of course raise questions, most prominently: Which analysis approaches and tech-
niques should a software product line framework support and how can those be performed
in an optimized way?

In this thesis, we will explore how analysis techniques from single-system engineering can
be applied to software product lines. We will compare different approaches in an attempt
to determine which use cases they would fit best. In the process, we will consider two
perspectives: the software product line framework developer’s and the framework user’s.

The structure of the thesis is as follows. We begin by establishing the basics necessary to
describe and discuss software product line analyses in chapter 2. In chapter 3 we describe
different approaches to analyzing software product lines. The approaches are compared
in chapter 4 and related work is presented in chapter 5. Lastly, a summarization of the
previous chapters and a conclusion is given in chapter 6.

2 Preliminaries

In this chapter we will present the basic concepts upon which this thesis is built. Product
lines will be defined more rigorously than in the introduction. We will also be introducing
the analysis techniques that will be considered in chapter 3. Afterwards, specifications
that can be applied to product lines will be established. Since the criteria by which we
intend to qualify analyses are based on the work of Thiim et al., we will be using parts of
their terminology, which includes properly introducing the respective terms [TAKT14].

2.1 Product Lines

A product line is a set of products which (a) typically share a common core and (b) are
based on a common set of features. This concept has a high level of abstraction; i.e., there
are no limits to what sort of product may be described by it. Since the products share a
core and features, there is no need to specify each product separately. Rather, the core is
defined only once, as is each feature. To get a concrete product from this, a subset of the
features must be selected. Such a subset of features is called a configuration.

2.1.1 Variability Model

With the definition given above, the features would only be grouped in an unordered
set. However, certain configurations may contain undesired feature combinations or lack
required features. Thus, constraints need to be introduced, specifying which configurations
are valid. This is achieved using variability models.

There are two common ways to define variability models. The first is a graphical represen-
tation, the feature diagram [KCH'90]. It is most useful for presenting variability models
in a human-readable form.

As we can see in Figure 2.1, the feature diagram conforms to a tree-like structure. The
root node contains the common core of all products. It can be considered a feature and
is then typically referred to as the root feature. It is either a mandatory explicit selection
or implicitly selected for any configuration, based on implementation. We can derive from
this diagram that any valid configuration must have exactly one camera type selected.
Valid configurations may also have an extra card slot selected, but not for both card types
simultaneously. A restriction that cannot be represented in the tree structure is that having
the PRO camera requires selecting the extra SD-Card slot. Restrictions that do not fit the
tree structure can also be represented in text form below the diagram.

The second way to define a variability model is a propositional formula. Propositional
formulae are logical statements which describe valid feature combinations. They are useful
for checking the validity of a configuration using logic solvers or for finding possible partial
configurations using satisfiability solvers. Any feature diagram can be converted into a

Phone

— W,

Slot Camera
SIM SD Standard Pro
. —
" requires

I:lConcrete Feature /‘\OR-Choice O Optional Child Feature
I:lAbstract Feature /<>\XOR-Choice ‘ Mandatory Child Feature

Figure 2.1: A simple example of a feature diagram, representing features of a minimally
customizable mobile phone.

propositional formula and vice versa [Bat05]. The propositional formula in Equation (2.1)
is equivalent to the feature diagram presented in Figure 2.1.

Phone A
(Phone = Camera) A
(Slot v Camera = Camera) A
(Slot & SIMCard v SDCard) N (=SIMCard vV —~SDCard) N
(Camera < Standard vV Pro) A (—Standard V —Pro) A
(Pro = SDCard)

(2.1)

Each variable in the formula stands for the respective feature being selected (true) or
deselected (false). If the whole expression evaluates to true, the configuration is valid. An
example of a valid configuration would be one in which only the three features Phone,
Camera and Standard are selected.

2.1.2 Software Product Lines

Having understood the concept of product lines and being familiar with software engineer-
ing, just thinking about the term software product lines will likely grant you an intuitive
understanding of it. The main reason for developing software as a product line is that it
can lead to an increase in productivity and quality in software development [PBLO05|. The
software product line approach promotes or forces reuse of code across different products
by definition. This can reduce the amount of redundant code as well as the overall size of
the codebase of a group of products. An additional benefit are reduced development costs
for multiple products. As Figure 2.2 shows, developing a software product line comes with

a high initial cost. However, once more than three products are derived from the product
line, the cost per product is lower than having developed each product on its own. It has
also been argued that time-to-market can be reduced significantly after an initially higher
development time for the first few products [PBL05|.

-

Single-System
Engineering
Software Product
Line Approach

1 2 3 4 5 6

Cumulative Cost of Products

Number of Products

Figure 2.2: The cost of developing multiple software products in a classic single-systems
approach vs. in a product-line driven approach [MNJP02].

The definition given in an influential book on software product lines is the following: “A
software product line is a set of software-intensive systems sharing a common, managed
set of features, [...] that are developed from a common set of core assets in a prescribed
way.” [CNO1] This definition extends the one we established for product lines in that it
calls for the assets to be developed in a prescribed way. This is a necessary addition since
the core implementation and all the feature implementations need to interact with one
another. Ensuring such a seemingly basic property can become difficult when software is
being developed in an arbitrary manner. Qutside of this context several loosely related
projects might be developed simultaneously. These then communicate with one another
via APIs. While the APIs’ specifications need to be met, how they are implemented does
not matter as much, since each project is its own system. When developing software to
be used in a product line environment, a high degree of coupling can occur and might
even be intended between the implementations of some features. This does already hint at
problems that may arise when trying to analyze product lines. We will elaborate on them
shortly.

Outlining the complete process of creating a software product line and deriving products
from it would be far beyond the scope of this thesis. However, knowing the process and
the artifacts it creates will be of importance when discussing analyses later. Thus, we will
simplify or abstract the steps. As a premise it is important to know that product lines
are typically developed in an according framework, not unlike most other software. Said
framework may combine different tools: a generator and analysis tools for product lines
are typical examples.

The steps necessary to create software products from a software product line can be as-

signed to two roles, the product line developer and the application developer. First, a
product line developer creates a variability model based on specifications and/or require-
ments that have been determined beforehand. They are typically knowledgeable in the
domain the product line targets, but do not usually have a specific application in mind.
The variability model is defined early in the process, it may however be subject to change.
This is due to flexibility being a major requirement, just like in other areas of software
engineering. As we will see later, some approaches to analyzing software product lines
handle this kind of openness better than others.

Next, the product line developer will start implementing features they defined in the vari-
ability model as well as the common core. The common core and feature implementations
are referred to as domain artifacts. The tasks the product line developer performs can be
grouped as domain engineering.

When the variability model is complete, an application developer can consult with users
to create configurations that best suit their needs. The configurations they create must of
course be valid according to the variability model.

After the domain artifacts and configurations have been completed, they can be passed to
a generator which is typically bundled with the framework used to define the product line.
The generator will create a software product for each given configuration. The steps that
do not fall under domain engineering are considered to be part of application engineering.
Now that we have established how software product lines work, we will go over some of
the unique problems that may arise.

Problem: An Ever-Growing Number of Configurations

A software product line is always designed with the intention of being flexible to allow
several distinct products to be created. To this end, a large number of features might
be introduced in the variability model. This can quickly cause the variability model to
become unwieldy. In addition, the number of possible configurations might grow in an
exponential manner. The worst case would be a variability model in which no feature is
mandatory and no two features are mutually dependent, neither by exclusion nor require-
ment. For n features, this leads to 2" valid configurations. We can also create a highly
restricted example. For example, consider a variability model with n features, arranged
in a binary tree, with each pair of features being mutually exclusive but no pair must re-
main unselected. In this example, the number of configurations grows linearly, n features
lead to [n/2] valid configurations. Considering however, that product lines from industry
applications have had more than 1000 features in the past, even linear growth can be-
come overwhelming. While the number of valid combinations cannot be reduced without
changing the variability model, techniques have been developed to extract key information
even from large-scale models. These techniques are commonly referred to as feature model
analyses [BSRC10]. They can assist developers in keeping an overview of a complex model
which would otherwise become hardly manageable.

Problem: The Optional Feature Problem

As described above, in software product line development, the variability model and con-
crete implementation of features may not be developed simultaneously or by the same
person. Discrepancies might arise between the inter-feature dependencies declared in the
variability models and those present in the implementations of different features. While a
dependency declared in the variability model without an equivalent in the implementation
does not cause problems, this does not hold vice versa. Assume some feature A has already
been implemented. If we now implement feature B and have a program dependency on
feature A, said dependency must be reflected in the variability model in some way. Oth-

erwise, we can likely create a valid configuration in which feature B was selected while
feature A was not. This can cause a multitude of problems, ranging from type errors or
the program not compiling to the product showing inexplicable or erratic behavior. A
discrepancy between the variability model and the implementation of this sort is referred
to as the optional feature problem [LBLO06]. Detecting the optional feature problem can be
a challenge in itself, though certain analyses presented in later chapters can help with this.
Resolving this problem can be achieved in several ways, modifying either the variability
model or the respective features’ implementations, or a combination of both [KAuR™09].

Problem: General Flaws in the Variability Model

This subsection does not refer to a singular problem but to a group of problems. The
optional feature problem is a member of this group, possibly the most prominent example.
One might already conclude from said example that the variability model does not always
allow only correctly functioning products. Even if it has been designed with great care,
the variability model might permit combinations of features causing unwanted behavior.
This is commonly caused by oversights during creation of the variability model, interac-
tions of certain features’ implementations or previously unknown specifics of a deployment
environment. A myriad of other reasons might also cause unwanted behavior to occur.
Approaches to detecting and resolving these problems are as varied as the different forms
of flaws that fall into this category.

2.2 Software Analyses

We will be considering four types of software analyses which have all been applied suc-
cessfully in single-system engineering. While they do not exactly share the same area of
application, they do all prove useful in analyzing software product lines.

2.2.1 Type Checking

Type checking is implemented by default in all modern programming languages. While
the specifics may vary greatly from language to language, the basics are the same. A type
checker bages the analysis of a program on the specified type system. It can evaluate the
type of expressions and determine if variables are assigned values of the correct type (e.g.,
determining String s = 3 + 2.5; would mean assigning a floating-point number to
a string variable). Another common task is determining whether a type that is being used
is defined in that scope (e.g., the type ArrayList cannot be used in a Java class unless
it has been imported). Finally, checking if a variable, method, or function is defined in a
given scope is an important part of type checking [Mit02].

2.2.2 Static Analysis

Two defining characteristics of static analyses are that they operate at compile time and
that they use approximation so as not to exceed the boundaries of computability [NNH04].
Scenarios in which approximation is required are those in which undecidability of program
termination occurs, e.g., loops or recursion. Examples of static analyses are data- and
control-flow analyses, alias analyses and program slicing [NNH04, Muc98, Wei81]. Static
analyses have been integrated into compilers or published in standalone tools. A popular

example of one such standalone tool for Java would be FindBugs [HP04] or its successor
SpotBugs [Tea]. Other areas of application include integration into IDEs, e.g., JetBrains’
IntelliJ IDEA [JB20].

2.2.3 Model Checking

Model checking is a verification technique in which a given system is first described for-
mally. Certain properties of the system are then proved or disproved, based solely on the
formal description. Model checking is performed by a model checker which determines
the languages that can be used. The entire verification process can be subdivided into
three phases [BKO08|. First, a system model and properties are described in the specified
languages. A simulation can then be run to roughly assess if the model describes the sys-
tem as intended. The second step is checking the validity of a property. If the property
is satisfied, the next one is checked. If it is violated, the third phase starts. The model
checker provides a counterexample which can be analyzed by the developer. The system
design, model or property are then modified accordingly. Afterwards, the second step is
restarted with the first property. If the model checker runs out of memory during phase
two, the system model needs to be reduced. The phase can then be restarted. It must be
noted that model checking cannot be implemented or applied without some expertise in
the field of formal logic and verification. Another major drawback of model checking is the
limited scaling capabilities on larger systems. The checker may run out of time or memory
due to a well-known problem referred to as the “state-space explosion” [Sch01].

2.2.4 Theorem Proving

Theorem proving is the use of theorem provers and verification tools with the purpose
of ascertaining that a given implementation fulfills its specification. Verification tools are
able to generate theorems from a specification in a formal language and an implementation.
These theorems are then processed by the theorem prover by applying inference rules on
them. A prover can be either interactive or automated [Sch01]. An interactive theorem
prover requires user input in the form of commands applying inference rules. In contrast,
an automated prover does not require any input other than the logical formulae. While
automated provers offer increased ease of use, interactive provers are generally more power-
ful. Automated provers are typically limited to first-order logic while interactive ones can
also reason about higher-order and typed logic. If a theorem cannot be proved, a theorem
prover will indicate which part of the theorem in particular could not be proved. A major
drawback of theorem proving is the amount of expertise that is required to apply it, re-
gardless of the type of prover used [CGK™18]. Overall, theorem proving can be considered
akin to model checking because both model checkers and theorem provers can be grouped
as inference systems [SchO1].

2.3 Terminology for Specifications and Scopes

As we have established, product lines can become quite complex. In order to be able to
concisely express which part of the product line or its products we want to refer to, we
will introduce some terms. These terms were established by Thiim et al. as specification

strategies for software product line analyses [TAK™14|. They will, however, not only be
used to describe in what way a specification applies to a product line. They can define
which parts of the product line artifacts are considered in an analysis.

In this section, we will be using the expression “(valid) configurations” for the sake of
brevity. This means that the statement typically only applies to valid configurations, but
certain contexts or applications may find it useful to allow invalid configurations as well.

Domain-Independent

The term domain-independent is based on the concept of domains, in this context referring
to the thematic environment in which the software product line is based. This means
anything domain-independent is independent of any concrete product line. Consider type
safety for a given software product line framework. Being domain-independent means that
the requirement of type safety holds for all product lines developed using said framework.
Note that we limited our example to a single framework only for the purpose of clarity.
Theoretically, domain-independent can also mean independent of framework, imagining an
implementation for that might however become difficult.

Family-Wide

The term family-wide refers to all (valid) configurations and/or resulting products of one
specific product line. Consider the example of mobile phones as a product line. A pos-
sible family-wide specification would be that all products must allow the user to make a
phone call. To illustrate why we need a term that is slightly more specific than domain-
independent: If this specification was made domain-independent in the respective frame-
work, it would also apply to a product line of washing machines developed in the same
framework.

Product-Based

The term product-based refers to a singular (valid) configuration and/or its resulting prod-
uct. We can construct an abstract product-based specification with respect to the model
presented in Figure 2.1: The product generated with the configuration Phone A Camera A
Standard must fulfill some property. Said property does not have to be fulfilled by the
product originating from the configuration Phone A Camera A Standard A Slot N STM.

Feature-Based

The term feature-based refers to all (valid) configurations and/or resulting products in
which a specific feature has been selected. Referring to Figure 2.1 again, an example of
a feature-based grouping would be all products originating from configurations in which
the feature Pro was selected. For this variability model, said feature-based selection might
be equivalent to a product-based selection because there is only one valid configuration
containing the feature Pro. Analogously, a feature-based selection of products with feature
Phone selected might be equivalent to a family-wide selection since all valid configurations
must contain the root feature.

Family-Based

The term family-based refers to all (valid) configurations and/or resulting products in
which a specific set of features has been selected. Considering a model covering a bigger
diversity of features compared to the variability mode introduced in Figure 2.1 allows us to
reason better about the family-based specification. Selecting certain subsets of features can
make family-based equivalent to feature-based (only one feature selected) or product-based
(one complete configuration selected). These special cases should normally be avoided and
the term feature-based or product-based should be used for clarity’s sake. Still, family-
based is the most flexible way of defining scopes.

3 Analysis Techniques for Product Lines

In this chapter we will present combinations of the analyses and specifications introduced
in section 2.2 and section 2.3. Considering every available combination of analyses and
specifications leads to a vast number of possibilities, especially because we will consider
combined specifications. To this end, we decided to focus mostly on strategies present in
literature that we would consider promising as well as introducing those strategies required
to better explain the former. Finally, we want to talk about daisy-chained analyses as a
contrast to multi-stage analyses.

3.1 Single-Stage Analyses

Single-stage analyses are approaches to analyzing software product lines in which only a
single scope (as presented in Section 2.3) is considered. Single-stage is not supposed to
mean that every analysis described in the following section can be completed in a single
step. Rather, there is only one abstract step specific to implementing the approach for
software product lines and no techniques are combined.

3.1.1 Product-Based Analyses

Applying known analysis techniques from single-system engineering to products of a soft-
ware product line is called product-based analysis. Obtaining products from a product
line is typically achieved using a generator that comes with the software product line
framework. Any product-based approach must necessarily operate on generated artifacts.
Mapping analysis results to domain artifacts can become difficult or even impossible in
some cases [KS10]. Thus, searching for the source of an error can become a tedious task.

Unoptimized Approach

The simplest type of product-based approach is called exhaustive, comprehensive, or brute-
force. This means applying an analysis technique to every possible product. It offers a
number of benefits. First, completeness can be guaranteed for the analysis (i.e., each
product that is invalid per this analysis will be found). While this may not seem like a
significant advantage at first sight, we will see that this property is not common in other
approaches. Additionally, any fault in the analysis (e.g., invalid products not being de-
tected) can most likely be traced back to a fault in the underlying analysis tool (rather
than the implementation specific to the product line). Another advantage is the minimal
amount of analyses required if a change in the product line affects only a small number of
products. Finally, it can be considered advantageous that such a product-based approach
can be applied without knowledge of the complete product line (i.e., variability model,
feature implementations and configuration of the product under consideration).

However, there are also severe drawbacks to the approach. As we have established, prod-
ucts are supposed to share features, which leads to a significant portion of computations

becoming redundant as more and more products are analyzed. Furthermore, a brute force
approach does not scale well with growing variability models because of the rapidly growing
number of products, as described in section 2.1.2. The approach might even be rendered
completely unusable if the number of products becomes too great.

We could not find publications in which only unoptimized product-based analysis is pro-
posed. This is most likely due to the severe disadvantages. The approach is still important
in order to define a baseline regarding overall efficiency as well as soundness and complete-
ness with respect to the underlying single-system analyses.

This approach may seem attractive to software product line framework developers because
it is easy to implement and is very comprehensive. If a well-established tool is used to
perform the actual analyses, the risk of false positives is also very low. Performing this
analysis on a complete product line may of course take a long time, possibly limiting us-
ability severely. From a software product line framework user’s point of view, this approach
might seem unattractive as it may run for a long time for bigger product lines. Since it is
particularly simple, easy usage can be considered a plus. Viable use cases are (a) a soft-
ware product line with a very limited variability model allowing only a handful of products
and (b) applications in which completeness with regard to a certain base analysis must be
guaranteed.

Optimized Approach

The product-based approach can be improved by reducing redundancy and the number of
operations that need to be performed. The first way this can be achieved is by reusing
results or intermediary results from previous analyses. Analyses can then be performed
incrementally for subsequent products. However, deciding which results can be reused is
not trivial. It requires knowledge of the variability model and configurations of previously
analyzed models. A firm grasp of the applied analysis technique is needed to gauge which
properties checked with the given analysis do not change for two given configurations. Fur-
thermore, off-the-shelf tools do not necessarily support incremental analysis. A resulting
increase in development costs is another potential disadvantage.

This optimized product-based analysis has been described more concretely for model check-
ing in the past [Kat06, CSHL12b|. A preparatory product-based step was required for both,
in which feature implementations are categorized. This categorization is then used to de-
termine which results from previous analyses can be used in the analysis of certain other
products. Both succeeded in identifying checks that did not need to be recomputed. How-
ever, neither research measured nor approximated how much computation time would be
saved compared to an unoptimized approach if their approach was to be implemented. The
concept of an optimized approach to product-based theorem proving has been explored by
Bruns et al. [BKS10]. They managed to reduce the number of proofs required once a base
product has been verified completely. A reduction of computation time between an unop-
timized and an optimized approach has not been quantified here either.

The second option to reduce the number of operations required is to reduce the number of
products that are being analyzed. Performing analyses on a subset of all possible products
is called sample-based analysis. A typical coverage criterion is pair-wise coverage, which
can be achieved for any pair of features (F,G). The set of selected products must contain
products whose configurations include F and G, F but not G, and G but not F'. This does
of course assume that F and G are not mutually dependent. Applying the same concept
to n-tuples of features leads to n-wise coverage. Operating under the popular assumption
that most failures are caused by interaction of only a handful of parameters makes this
approach seem very reasonable [KKL16]. However, completeness with regard to the base

10

analysis can of course not be guaranteed.

For software product line framework developers a sample-based approach is nearly as easy
to implement as the unoptimized approach discussed above. The only difference is that
the framework must allow the user to specify a subset of products to be used as a sam-
ple. Optimization by incremental analysis, on the other hand, is potentially significantly
tougher to implement due to lack of tooling. For the software product line framework
user the sample-based approach is most likely not particularly attractive because it can-
not ensure completeness with regard to the base analysis. The incremental approach has
only been presented for model checking and theorem proving thus far, neither of which are
particularly easy to use.

3.1.2 Family-Based Analyses

Applying analysis techniques to domain artifacts of a software product line and incorpo-
rating knowledge of the variability model into the analysis is called family-based analysis.
The variability model is converted to a logic formula (see Equation (2.1)) to make it acces-
sible to the respective analysis tools. In some approaches, all feature implementations are
merged into a single virtual product, referred to as “metaproduct”, which is not necessarily
a valid product.

The performance of family-based analyses is proportional to the number of features and the
size of feature implementations. This is because they aim to avoid redundant computations
by considering the variability model. Another positive aspect of family-based approaches
is that they operate solely on domain artifacts. Thus, problems found by the analyses can
be mapped to domain artifacts and the source of each problem can be identified.

A disadvantage of family-based approaches is that known analysis methods cannot be
used exactly as they are, since such approaches intend to use knowledge of the variability
model, information which classic tools are not typically able to interpret in a meaningful
way. Some analysis problems have been encoded from software product lines into an ex-
isting formalism in order to allow off-the-shelf tools to be used, but it is unclear whether
this is even possible for all the analysis techniques mentioned in this thesis [ASWT11].
Such encodings have been performed for model checking and theorem proving in the past.
Moreover, the usability of family-based approaches is limited in evolving product lines as
even minor changes in either variability model or domain artifacts usually result in a new
analysis of the complete product line. The impact of this can be mitigated by caching
analysis results, yet significant amounts of work may still be required. Another drawback
is that the size of the analysis problem may exceed physical boundaries (e.g., available
memory) because the analysis may consider all domain artifacts at once. The final prob-
lem we want to consider is that a family-based approach operates in what is known as a
“closed-world scenario”, meaning that the complete variability model must be known in
order to perform any analysis.

Several analyses have already been implemented for software product lines based on a
family-based approach. A criterion by which they can be differentiated further is the point
in time at which the variability model is considered. An implementation can use the vari-
ability model during the analysis to identify analyses that can only lead to false positives
(i.e., problems found by the analysis that cannot occur in a valid configuration). This is
called early variability model consideration. In some cases, however, the variability model
is only used afterwards to identify false positives. This is called late variability model
consideration.

11

Type checking for software product lines has already been performed successfully using a
family-based approach for several kinds of variability implementations. The goal of the
analysis is to prove that, if the product line is type safe according to the check, all prod-
ucts that can be derived are also type safe. In most implementations, the type system
has been extended to incorporate knowledge of the variability model. Kolesnikov et al.
describe key aspects of family-based type checking software product lines in comparison to
single-system type checking [KVRHA13]. First, a syntax tree of the metaproduct is created.
In order to represent the whole product line, it is enriched with variability information.
The information stored alongside each program element contains the feature it belongs to.
Furthermore, information about feature dependencies is included in the syntax tree. Then
a special family-based type checker analyzes the enriched syntax tree. Said type checker
is not an off-the-shelf tool. It must be able to work with variability as it is encoded in
the given syntax tree. Kolesnikov et al. cache results of the SAT solver used to determine
dependencies between features. For some systems they tested their implementation on,
caching reduced the time required to typecheck the whole product line by more than two
orders of magnitude. Most of the product lines they tested their approach on had coarse-
grained features (i.e., a low number of features with rather large implementations). They
suspect that the performance improvement gained by caching will be not be as great in
systems with fine-grained features (i.e., many features with relatively small implementa-
tions).

Since type checking is a very basic analysis and a staple for most modern programming
languages, it can be regarded as an expected feature of a software product line framework.
This expectation is only furthered by type safety being a domain-independent specifica-
tion. For this reason, every software product line framework developer should consider
integrating type checking into the default checks of their tool, possibly in a family-based
approach. The extent of the implementation workload as well as the specifics of how type
checking is performed are of course highly dependent on the framework and the language
used to specify the product line.

The family-based approach has also been used as a basis for static analyses specific to soft-
ware product lines and as a means of applying existing static analyses to software product
lines. One example of a static analysis specific to software product lines was proposed by
Adelsberger et al. [ASN14]. Their analysis applies to dynamic software product lines and
aims to evaluate the complexity of reconfiguration at runtime. As an example of already
existing static analyses being applied to product lines, we want to briefly present the ap-
proach of Bodden et al. [BTR*13]. Their tool SPL*¥T works with analyses formulated
in the IFDS framework for interprocedural dataflow analysis [RHS95]. Any analysis for-
mulated for IFDS can be lifted to work with software product lines. The new analysis
uses the related framework IDE [SRH96]. During the lifting process, means of considering
the variability model are added to the analysis. While producing correct results obviously
necessitates knowledge of the variability model, it was not used for early variability model
consideration. SPLMFT wag tested on four existing product lines. The tool performed
better in almost all experiments using late variability model consideration.

Static analyses are widespread and well-established in single-system engineering, and they
can be useful tools for finding errors in a program. While this makes them attractive, the
amount of work required might deter framework developers from implementing them in
their software product line framework. The tool presented by Bodden et al. in [BTR113] is
advertised as relatively easy to use, which might lower the effort significantly. As we have
not tested SPLMFT we cannot say with certainty how easy it is to use. If it is as easily
usable as we understand it, implementing family-based static analyses would become more

12

feasible. A software product line framework user might expect static analyses to be a sta-
ple of every framework because they are so common in tools for single-system engineering.
For a family-based static analysis, we can ensure soundness and completeness with regard
to the base analysis. Therefore, there should not be a reason not to use a family-based
approach from the framework user’s point of view.

Family-based model checking has been implemented in a number of ways. One of the
most prominent characteristics distinguishing the implementations is whether the analysis
operates on source code or on an abstraction of the system. System abstractions have
been defined as, e.g., I/O automata [LMP10|, transition systems [GLS08|, or featured
timed automata |[CSHL12a|. Software model checking has been performed on software
product lines written in C [AvRWT13, ASW*11] and Java [AVRWT13, KvRE"12]. The
implementations have demonstrated that existing tools for model checking can be used
or extended in order to perform model checking on software product lines in a family-
based approach. Across the implementations, different formalisms were used to describe
the specifications that were to be checked. The specification types ranged from domain-
independent to feature-based and family-based. Thiim et al. state that most family-based
model checking approaches consider the variability model during the analysis in order to
skip analyses of invalid feature combinations [TAK'14].

From a software product line framework developer’s point of view, implementing family-
based model checking as a default in the framework could be considered worthwhile because
model checking is a powerful technique. The framework might offer some default domain-
independent specifications and allow for users to easily add their own specifications of any
type. One could expect to be able to use existing tools in order to more easily implement
the approach. Still, some experience in the field of model checking would be required.
From a software product line framework user’s point of view, the advantage of model
checking being a powerful tool still applies of course. A major drawback is that using
this analysis technique requires expertise in the field of model checking in order to define
custom specifications and possibly in order to properly interpret the results.

3.1.3 Feature-Based Analyses

Applying analysis techniques to domain artifacts while considering features and their im-
plementations only in isolation is called feature-based analysis. Any form of feature inter-
action is disregarded in this approach.

The amount of work performed for feature-based analyses grows linearly, in proportion to
the number of features and the size of the feature implementations. Considering features
exclusively in isolation leads to only small amounts of effort required when a product line
changes. Only changed features need to be reanalyzed and changes in the variability model
do not result in the analyses having to be run again. Feature-based analyses can also be
used in an “open-world scenario” since the variability model is not used in the analyses.
Another advantage is that this approach can be seen as a whole, or it can be divided into
several small analysis tasks which can be executed independently of each other. Thus, the
risk of running out of memory is relatively low and the tasks can be run in sequence or
in parallel. Finally, feature-based analyses operate on domain artifacts, similar to family-
based approaches. This allows for problems found by the analysis to be eradicated at their
root.

A major disadvantage of feature-based approaches is that they cannot be used to reason
about problems occurring in the interaction of features. They are therefore also not able

13

to identify the optional feature problem we outlined in section 2.1.2. Furthermore, which
kind of base analysis can be used in a feature-based approach has to be considered care-
fully. The property to be checked must be compositional across features (i.e., the results
cannot be invalidated by feature interaction), in order to ensure soundness of the analysis
approach with respect to its base analysis. Whether a given property is compositional is
highly dependent on the way the concept of variability is implemented.

Software product line analyses implemented in a strictly feature-based manner are rarely
found. The reason for this is the approach’s inability to detect problems in feature interac-
tions being such an impactful disadvantage. This needs to be counteracted by combining
it with other approaches, a concept which we will be exploring in section 3.2. For the
same reason, we do not consider the feature-based approach a feasible candidate for a
single-stage analysis. It has been introduced in order to more accurately describe certain
multi-stage analysis approaches.

Since features and the combining of those is a key aspect of using software product lines,
analyzing combinations of features must be a key aspect of analyzing software product
lines as a whole. A standalone feature-based approach is incapable of doing exactly that.
Therefore, it should appeal neither to a software product line framework developer, nor to
its users.

3.2 Multi-Stage Analyses

Multi-stage analyses are approaches to analyzing software product lines in which multiple
scopes (see Section 2.3) are considered. To distinguish the concept of multi-stage analy-
ses from single-stage or daisy-chained analyses, it is important to note that the different
analyses will not run independent of each other. Rather, subsequent steps use the results
of previous analyses in order to increase the overall performance of the approach in some
way.

3.2.1 Feature-Product-Based Analyses

As per the definition given in the introduction to this section, a feature-product-based
analysis approach consists of multiple stages, the kinds of which can of course be deduced
from the term alone. The first stage is a feature-based analysis, the results of which are
to be used in the following product-based analysis. We want to motivate this combined
approach as an extension to the product-based approach. The idea of this extension is the
reduction of redundant computations with the bigger goal of reducing the overall analysis
effort.

While the preceding feature-based analysis can reduce redundancies in the product-based
step, they cannot be avoided completely. A benefit of a feature-product-based approach
is that the feature-based approach’s inherent insufficiencies regarding non-compositional
properties and feature interactions can be compensated by the product-based counterpart.
The extent of products analyzed in the second step determines if non-compositional prop-
erties are checked completely. A feature-product-based approach operates in a combination
of an open-world and a closed-world scenario. Thus, the whole approach should be consid-
ered a closed-world scenario, i.e., the complete variability model must be known in order
to perform the analysis. Software product line evolution is handled moderately well. If a

14

feature implementation changes or a feature is added, not much work has to be done in
the feature-based step, as explained in section 3.1.3. However, all products affected by a
change need to be analyzed anew in the product-based step.

Feature-product-based type checking has been implemented previously [KvRHA13]. In
the first step, intra-feature dependencies are typechecked and interfaces for further inter-
feature type checking are created. These interfaces would, for example, contain information
about provided and required fields, methods, and classes. The inter-feature type checking
is performed next. The second step follows a product-based approach, either unoptimized
or optimized in some form (e.g., using pair-wise sampling). Depending on the range of
products examined in the second step, completeness can be guaranteed with regard to the
base analysis.

The same principle has been applied to elevate the single-system analysis technique of
model checking to software product lines. First, feature implementations are model checked
and an interface is generated for each feature. Said interface is composed of behavior pro-
vided by the feature and behavior required from other features. Inter-feature compatibility
is then checked in the product-based step.

The total implementation effort for a feature-product-based approach can be broken down
into parts. A sensible combination of analyses has to be selected, and it must be determined
how the results of the first step are handed to the second. Next, both analyses have to be im-
plemented with the respective approach. The implementations are most likely customized
and specific to the chosen combination of analyses. This customization also determines
the implementation effort required for each individual analysis. Thus, the feature-product-
based approach might seem unattractive to framework developers due to potentially high
implementation effort and limited usability of off-the-shelf tools. Completeness with regard
to base analyses cannot be guaranteed unless an unoptimized product-based approach is
chosen in the second step. This makes the approach less viable for most software product
line framework users searching for validation methods. It might however prove useful in
applications where completeness is not as crucial, for instance in detecting bugs during
development.

3.2.2 Feature-Family-Based Analyses

A feature-family-based analysis approach is characterized by a feature-based analysis fol-
lowed by a family-based analysis which uses the results of the first step. The fact that
redundant computations could not be eliminated fully in the feature-product-based ap-
proach is what motivates this approach. Since the redundancies occur only in the second
step, it is logical to consider other options to replace it. Following up on a feature-based
step with a family-based analysis helps mitigating drawbacks of both approaches.

The deficiencies of a feature-based approach are partially addressed by the family-based
follow-up, which is able to reason about interactions across feature implementations. While
the family-based approach is not particularly suited to evolving product lines, this can be
partly compensated by the first step which deals with evolving product lines better. The
risk of excessive memory consumption in family-based approaches is inherited by this com-
bination. Like the feature-product-based approach, a feature-family-based approach com-
bines open- and closed-world scenarios and should thus be considered to work completely
only if the variability model is known.

Type checking has been implemented in a feature-family-based approach for composition-
based product lines in the past. In both approaches presented by Thiim et al., constraint-

15

based type systems were used [TAK*14|. Constraints were generated in a feature-based
step, in which type references and dependencies were stored for each feature. The con-
straints were then used in the following family-based step in order to complete the process
of type checking.

The attractiveness of this approach to software product line framework developers can
only be reasoned about when considering an equivalent single-stage family-based approach.
This is because a family-based approach can check everything a feature-based approach
can cover. The increased implementation effort has to be outweighed by an increase in
performance. Otherwise, preceding the family-based analysis with a feature-based step is
not justified. To a framework user, there is no reason not to consider a feature-family-based
instead of a family-based approach as long as it is performant.

3.2.3 Family-Product-Based Analyses

A family-product-based approach consists of a family-based step whose results are used in
the second analysis which follows a product-based approach. Unlike previous approaches
presented, completeness with regard to a base analysis can be guaranteed in the first step.
This raises the question of why a second step is even needed. The combination can be
motivated in two ways, both useful in explaining different advantages.

First, consider a product-based approach as the baseline. As presented in section 3.1.1, a
major drawback of this approach is that a growing number of products renders it inefficient,
if not unusable, as the product line evolves. It can be preceded with an appropriate family-
based analysis in order to reduce the number of products that are checked.

To this end, the variability model and codebase can be considered in concert, as proposed
by Tartler et al. [TLD*11]. The goal is determining a set of products such that each
domain artifact and each piece of code are part of at least one analysis in the second step,
effectively maximizing code coverage. The second step can then be any product-based
analysis. This implementation trades the assurance of completeness with regard to the
base analysis for better performance. This is because not all valid feature combinations
are checked, thus some feature interactions causing unwanted behavior might go unnoticed.
Therefore, it is more suited to bug detection than to validation.

Kim et al. [KBBK10, KBK11] developed a family-based approach used to determine which
products could violate a certain specification. They elevated control-flow and data-flow
analyses to software product lines in order to determine which features had what effect.
The analysis resulted in a specialized variability model representing all models that needed
to be checked. This approach was simply prepended to a product-based analysis step. The
analysis was later generalized from safety properties to general test cases.

We may also consider a family-based approach the starting point. As we have established
in section 3.1.2, such an approach may run the risk of exceeding memory limitations when
the whole product line is considered at once. Thiim et al. [TAK14| suggest a family-
product-based approach as a possibility of addressing this issue. They propose partial
family-based analyses, but no example of a concrete implementation nor an idea for such
was found. A partial family-based analysis followed by a product-based approach checking
whatever properties were not checked by the family-based analysis might avoid the family-
based analysis running out of memory. However, the product-based follow-up would still
have to be an approach that is optimized in some way, otherwise the ever-growing number
of products may render the whole approach unusable again. The lack of empirical evidence

16

makes it hard to reason about feasibility, we can only say that the approach seems not to
be plucked out of thin air due to its solid theoretical basis.

From a framework developer standpoint, implementing the approach might again seem
unattractive due to the high amount of work required. Whether the problem of exceed-
ing memory can be solved with this approach is not clear, and completeness is dependent
on the set of products selected for the second step. Tartler et al. [TLD*11] might have
proposed the most interesting implementation for framework developers because their ap-
proach seems to be suited to supporting software product line development rather than
just validation. The approach does not appeal to software product line framework users
requiring completeness of analyses. It is likely interesting to users requiring certain spec-
ifications to be checked for a subset of all products, as the work by Kim et al. [KBBK10)]
shows.

3.2.4 Feature-Family-Product-Based Analyses

One might consider combining the three single-stage analyses into one process. While there
are 6 possible orderings for the three approaches, only one is presented in [TAK14]. The
proposed ordering is a feature-based analysis followed by a family-based step and finally
a product-based approach. This is the only sensible ordering for the following reasons:
The product-based approach should always come last as its results are the least useful
to other analyses. Furthermore, the product-based approach benefits greatly from the
results of previous stages because the number of products that are being analyzed can be
reduced. The feature-based analysis should take place before the family-based step because
the feature-based analysis would become obsolete otherwise. While this combination may
seem like a powerful one-for-all solution, it had actually never even been proposed before
Thiim et al. published their work.

To the best of our knowledge, only one implementation following this approach has been
presented since. Castro et al. presented several model checking approaches for software
product lines in their work, including the first and so far only feature-family-product-based
analysis [CLAT18]. They suggested that the feature-family-product-based approach is an
alternative to the family-product-based approach in model checking under two conditions.
First, the model under consideration is compositional. Otherwise, the feature-based ap-
proach could not be used to its fullest extent. Second, the model to be considered in
the family-based step is too big to be analyzed efficiently. Since this is the only feature-
family-product-based approach currently proposed, empirical data on its performance is
not available. Therefore, discussing advantages and disadvantages of this approach cannot
go beyond speculation.

This approach does not seem to exist outside a singular academic application. Thus, we
suggest only software product line framework developers invested in researching analysis
techniques should consider implementing it for now. It will most likely not appeal to
software product line framework users for the same reason. If the concept gains popularity
and empirical data on its performance becomes available, it may become attractive for
practical applications.

17

3.3 Daisy-Chained Analyses

The term daisy-chaining analyses describes the sequential execution of analyses of all kinds.
In contrast to the previously presented multi-stage approaches, results are not used in
subsequent steps. This approach is rather simplistic, thus we do not intend to discuss it
excessively. The reason for mentioning it nonetheless is equally simple: We do not want
to give the impression that the multi-stage approach is a replacement for daisy-chaining
analyses.

When daisy-chaining analyses, a choice has to be made for each step. Should subsequent
steps be executed if the analysis finds problems in the program? The answer to this
question depends on the use case and the specific analyses executed. The first example we
want to consider is a static analysis used for finding unreachable blocks of code followed by
a model checker verifying that the program fulfills some specification. In this case, there is
no reason not to execute the second step if the first analysis finds unreachable code. This
is because unreachable code is highly unlikely to hinder execution of a model checker or to
invalidate the results. Now consider syntax checking as the first analysis. There is no need
to execute another analysis if the syntax checker finds problems. Any subsequent analysis
will most likely not be able to interpret the code correctly, analyses based on bytecode will
not work because errors are thrown by the compiler.

Implementing the daisy-chaining of analyses is almost as simple as the approach itself. It
is not intended to enhance performance of analyses or produce new results. Rather, it is a
common feature, the lack of which might impede user experience. It can be a viable alter-
native to multi-stage analyses in situations where a less performant approach is favorable
due to significantly reduced implementation time. For these reasons we believe a software
product line framework developer should add simple means to daisy-chain analyses.

18

4 Comparison

In section 3.1 and section 3.2, we presented approaches for applying different software
analyses to software product lines. In this chapter, we will compare the analyses based on
the characteristics presented beforehand with the goal of ascertaining if there is an optimal
strategy. We will not be considering the daisy-chaining analysis approach from section 3.3
in this comparison as it is more of a side note.

4.1 Comparing Single-Stage Approaches

Single-stage analyses were introduced comprehensively in section 3.1. We presented three
approaches for applying analyses from single-system engineering to software product lines
(product-based, section 3.1.1; family-based, section 3.1.2; feature-based, section 3.1.3).
Exemplary implementations for each base analysis presented in section 2.2 were found in
literature. Not every combination of analysis and approach has been proposed.

The easiest approach to reason about is arguably the feature-based one. As it prevents
analysis of feature interaction, a standalone feature-based approach is almost unusable.
The only possible application of a feature-based approach is syntax checking, which is
hardly considered a software analysis in itself. The idea of defining an explicitly feature-
based syntax checker might even be considered far-fetched, since the information which
part of the code belongs to which feature does not offer any benefits.

Choosing between product-based and family-based is more dependent on the scenario.

If time consumption is of no concern and the main requirement is either easy implemen-
tation, integration of preexisting analysis tools, or definitive completeness, there is no
better choice than a product-based approach, most likely unoptimized. The unoptimized
product-based approach can be especially attractive for software product lines with small
variability models and which are not intended to evolve to allow for more products. If
absolute completeness is not required, an optimized product-based approach can be im-
plemented almost as easily. Time consumption could be reduced if enough computational
resources are available by running analyses on several products in parallel. It has to be
noted that product-based approaches cannot operate on domain artifacts, possibly making
the search for the root of an error significantly more complex.

The family-based approach is better suited to product lines with a larger number of prod-
ucts, there is however an upper bound. The approach may experience problems during
analysis execution if the size of the metaproduct that is being analyzed exceeds the avail-
able memory. In order to properly incorporate variability information, analysis methods
need to be adapted, thus off-the-shelf tools cannot be used. Carefully implementing the
base analysis is imperative in order to be able to guarantee soundness. Manually extending
single-system analyses and the associated risk of mistakes can be avoided if lifting tools are
available. A family-based approach can guarantee completeness with respect to its base
analysis as long as the approach was implemented correctly.

19

4.2 Comparing Multi-Stage Approaches

Multi-stage analyses were introduced in detail in section 3.2. We presented four ways of
combining single-stage approaches (feature-product-based, section 3.2.1; feature-family-
based, section 3.2.2; family-product-based, section 3.2.3; feature-family-product-based,
section 3.2.4). Exemplary analysis implementations were given for each base analysis
presented in section 2.2. Some, but not all combinations of approaches and analyses have
been implemented in the past.

We start with the easiest aspect to compare. Not all approaches operate exclusively on
domain artifacts. Three of the four presented approaches end in a product-based step, the
results of which cannot be mapped to domain artifacts easily.

The remaining comparisons will depend on certain attributes of the properties under anal-
ysis.

First, the way product line evolution is handled is examined. None of the approaches are
able to handle product line evolution well in every possible scenario. The family-product-
based approach can never avoid redundant computations if domain artifacts change. For
all other approaches starting with a feature-based step, it depends on whether the changed
domain artifacts can be verified in the first step, how well they handle evolution. If that
is not the case, the other approaches will perform redundant computations as well.

Next, we consider compositional properties. Advantageously, all combined approaches
manage to avoid redundant computations. The family-product-based approach is however
less favorable than other options because compositional properties are analyzed in the
family-based step, leading to the risk of exceeding memory limits.

Finally, we inspect how non-compositional properties are handled. The feature-product-
based approach relies on product-based analysis in order to check non-compositional prop-
erties. This leads to a tradeoff in either completeness or problem size (and thus run-
time), depending on whether the product-based approach is optimized or not. The family-
product-based approach must check non-compositional properties in a family-based step,
again leading to the risk of exceeding memory limits. For the feature-family-based and
feature-family-product-based approach, this risk can possibly be reduced by the preceding
feature-based step. The greater the share of work that can be completed in the first step,
the lower the risk of exceeding memory limits becomes.

4.3 Single-Stage vs. Multi-Stage Approaches

One might assume that multi-stage approaches are always superior to single-stage ap-
proaches because certain disadvantages and shortcomings of the latter are mitigated by
combining them. However, the clear-cut lines drawn by the distinct advantages and dis-
advantages of single-stage approaches become blurred when combining the approaches.
That is to say, while it is somewhat difficult to order the single-stage approaches by gen-
eral quality or usability estimates, it only becomes harder for the multi-stage approaches.
The comparison attempted in this section is complicated further as two sets of approaches
which are not precisely ordered themselves are to be sorted together.

Comparing individual with combined approaches brings out what makes comparing any of
these approaches so intricate. The contexts in which the approaches are to be used, the
types of analyses that can be applied in accordance with the approaches, and the speci-
fications the analyses are then intended to validate span a vast multidimensional space.

20

Consequently, pointing out for each pair of approaches along which axes of said multidi-
mensional space they differ in what manner might turn out to be an endlessly tedious task.
In general, we refer the reader to the arguments made in section 4.1 and section 4.2 in
order to ascertain which approach is suitable for the scenario at hand.

We will be considering a handful of common scenarios (i.e., combinations of certain con-
texts, specifications, or analyses). They will be kept as generic as possible while still
allowing meaningful statements about which approach or approaches would be best suited
to them.

In scenarios where the number of products is very low, for example due to a small or
severely constrained variability model, an unoptimized product-based approach is a valid
choice. Implementation is quick, soundness can be guaranteed by a preexisting implemen-
tation of the base analysis and completeness is guaranteed by design.

Next, imagine a scenario with a complex variability model and a resulting large number of
products, where completeness is not the highest priority. In this case, a feature-product-
based or a family-product-based approach with product sampling applied in the second
step is most likely the best option.

In a scenario with a complex variability model and a resulting large number of products,
where completeness is required, our suggestion changes. A feature-family-based approach
allows completeness to be achieved in the family-based step, however care should be taken
to use the first step to its fullest extent in order to avoid running out of memory in the
second step.

As a final example, we want to consider a medium-sized variability model with an extraor-
dinarily low number of mutually exclusive features, leading to a large number of products.
One could contemplate implementing a simple family-based approach. It allows ensuring
completeness and should not run into memory problems with a medium-sized variability
model. This way, the increased implementation effort of a multi-stage approach is avoided.

4.4 Comparison of Analysis Implementations in Different
Approaches

When we planned the structure of the thesis, we had intended to compare how efficient a
given analysis is implemented with different approaches. However, this type of comparison
is not possible for most analyses due to a lack of data. Most works are not aimed at com-
paring approaches. Many are either propositions for implementations or proofs of concept
for a single analysis in one specific approach. Works intending a comparison are often
considering implementations of different analyses, not different ways of implementing the
same analyses. One might consider comparing quantitative results from different papers.
That is however not feasible because the experiments would have to be performed on the
exact same product line. Results for one specific product line or a small set or product
lines cannot easily be normalized or generalized.

21

5 Related Work

This chapter is used to present theses and topics related to this thesis in some way. We
present more sources for theoretical foundations, additional analysis strategies that can be
applied to software product lines and a source for examples of industry applications.

First, we want to mention a book that lays the foundation for software product lines as they
are understood today [CNO1]. In their work, Clements and Northrop present important
aspects of product line engineering. They start with basic terms and present skill areas in
which an organization should be capable in order to develop software product lines.

The framework of practices they presented in 2001 has since been updated [CN12|. Another
comprehensive work dealing with software product line engineering was published in 2005
by Pohl et al. [PBLO05|.

Configurability is obviously the central feature of software product lines. This property is
made possible by using the concept of variability. Thus, understanding variability and its
implementation can help in understanding software product lines as a whole. Bachmann
and Clements offer an overview of variability implementations for software product lines
as well as guidance on how to select variation mechanisms [BCO05].

Variability in software product lines is of course represented in a variability or feature
model. Said model can become quite unwieldy, thus the concept of feature model analysis
has been established. Benavides et al. present work regarding automated feature model
analysis from 1990 to 2010 in a literature review [BSRC10]. A more recent publication
is an extensive mapping study by Galindo et al., which includes Benavides’ literature
review [GBT19].

In addition to feature model analyses and the software analyses presented in this the-
sis, systematic testing of software product lines is a major field of research. A general
overview of testing strategies is offered in a literature review by do Carmo Machado et
al. [d{CMMCd14]|. They present approaches, but comparison results are limited due to a
lack of empirical evidence from industry applications.

To see product lines as more than just a subject of research, practical examples are use-
ful. We suggest “Software Product Lines in Action” by v. d. Linden et al. as a source of
examples [LSRO7]. In their book, they present ten case studies from industry applications
of varying sizes on 150 pages. They do not only describe the product line but also the
transition from developing in a single-system approach to developing in a product line
driven approach.

22

6 Conclusion

In this thesis, we presented approaches to applying analyses known from single-system
engineering to software product lines. We introduced the reader to the concept of software
product lines and explained common analyses from single-system engineering. Three single-
stage approaches were described and then combined, yielding an additional four multi-stage
approaches. Different combinations of approaches and analyses were presented. At the
same time, we highlighted various advantages and disadvantages of the approaches and
certain combinations of approaches and analyses. The presented characteristics were then
used in a comparison where we attempted to identify an optimal approach for applying
analyses to software product lines.

As it turns out, whether an approach is suitable for a given scenario depends on a multitude
of factors. Therefore, no “general best” approach could be identified. Instead, we opted to
explain by example which approach is the best under which conditions. Furthermore, we
provided the reader with knowledge with which they should be able to identify a suitable
approach for a given situation themselves.

For future works, different areas of software product line engineering come to mind.
Staying close to the topic of this thesis, certain analyses could be implemented in different
approaches with the intention of producing empirical data on the performance impact of
the approaches.

This thesis was focused mainly on existing analyses from single-system engineering. The
field of software product line testing as well as analyses specific to software product lines
surely offer some refreshing new ideas.

Feature model analyses were disregarded for the most part in this thesis. Exploring how
they can be used to improve the performance of software product line analyses might be a
worthwhile endeavour.

Finally, we suggest researching ways of developing software product line frameworks. It
may be interesting to see how much customizability can be offered by analyses integrated
into the framework.

23

Bibliography

[ASN14]

[ASWT11]

[AVRW+13]

[Bat05]

[BCO5|

[BKOS]

[BKS10]

[BSRC10]

[BTRT13]

[CGK+18]

[CLA+18]

24

Stephan Adelsberger, Stefan Sobernig, and Gustaf Neumann. Towards as-
sessing the complexity of object migration in dynamic, feature-oriented soft-
ware product lines. In Proceedings of the Eighth International Workshop on
Variability Modelling of Software-Intensive Systems, VaMoS '14. Associa-
tion for Computing Machinery, 2014.

Sven Apel, Hendrik Speidel, Philipp Wendler, Alexander von Rhein, and
Dirk Beyer. Detection of feature interactions using feature-aware verifica-
tion. In Proceedings of the 2011 26th IEEE/ACM International Conference
on Automated Software Engineering, ASE ’11, page 372-375. IEEE Com-
puter Society, 2011.

Sven Apel, Alexander von Rhein, Philipp Wendler, Armin Groflinger, and
Dirk Beyer. Strategies for product-line verification: Case studies and ex-
periments. In 2018 35th International Conference on Software Engineering
(ICSE), pages 482-491, 2013.

Don S. Batory. Feature models, grammars, and propositional formulas. In
SPLC, 2005.

Felix Bachmann and Paul Clements. Variability in software product lines.
Technical Report CMU /SEI-2005-TR-012, Software Engineering Institute,
Carnegie Mellon University, Pittsburgh, PA, 2005.

C. Baier and J.P. Katoen. Principles of Model Checking. MIT Press, 2008.

Daniel Bruns, Vladimir Klebanov, and Ina Schaefer. Verification of software
product lines with delta-oriented slicing. In Formal Verification of Object-
Oriented Software. Papers presented at the International Conference, June
28-30, 2010, Paris, France, pages 61-75. Karlsruher Institut fiir Technologie
(KIT), 06 2010.

David Benavides, Sergio Segura, and Antonio Ruiz-Cortés. Automated anal-
ysis of feature models 20 years later: A literature review. Information Sys-
tems, 35(6):615-636, 2010.

Eric Bodden, Téarsis Tolédo, Marcio Ribeiro, Claus Brabrand, Paulo Borba,
and Mira Mezini. Spl-lift: Statically analyzing software product lines in
minutes instead of years. In Proceedings of the 34th ACM SIGPLAN Con-
ference on Programming Language Design and Implementation, PLDI *13,
page 355—364. Association for Computing Machinery, 2013.

E.M. Clarke, O. Grumberg, D. Kroening, D. Peled, and H. Veith. Model
Checking, second edition. Cyber Physical Systems Series. MIT Press, 2018.

Thiago Castro, André Lanna, Vander Alves, Leopoldo Teixeira, Sven Apel,
and Pierre-Yves Schobbens. All roads lead to rome: Commuting strategies

[CNO1]

[CN12]

|[CSHL12a

|[CSHL12b|

[dCMMCd14]

[GBT+19)

[GLS0S]

[HP04]

[7B20]

|Kat06]

[KAuR 09

[KBBK10]

for product-line reliability analysis. Science of Computer Programming,
152:116-160, 2018.

Paul Clements and Linda Northrop. Software Product Lines: Practices and
Patterns. Addison-Wesley Professional, 2001.

Paul Clements and Linda Northrop. A framework for software product line
practice, version 5.0. https://resources.sei.cmu.edu/library/
asset-view.cfm?assetid=495357, 2012. White Paper.

Maxime Cordy, Pierre-Yves Schobbens, Patrick Heymans, and Axel Legay.
Behavioural modelling and verification of real-time software product lines.
page 66—75. Association for Computing Machinery, 2012.

Maxime Cordy, Pierre-Yves Schobbens, Patrick Heymans, and Axel Legay.
Towards an incremental automata-based approach for software product-line
model checking. In Proceedings of the 16th International Software Prod-
uct Line Conference - Volume 2, SPLC 12, page 74-81. Association for
Computing Machinery, 2012.

Ivan do Carmo Machado, John D. McGregor, Yguaratd Cerqueira Caval-
canti, and Eduardo Santana de Almeida. On strategies for testing software
product lines: A systematic literature review. Information and Software
Technology, 56(10):1183-1199, 2014.

José Galindo, David Benavides, Pablo Trinidad, Antonio Gutierrez, and
Antonio Ruiz-Cortés. Automated analysis of feature models: Quo vadis?
Computing, 101, 05 2019.

Alexander Gruler, Martin Leucker, and Kathrin Scheidemann. Modeling
and model checking software product lines. In Formal Methods for Open
Object-Based Distributed Systems, pages 113-131. Springer Berlin Heidel-
berg, 2008.

David Hovemeyer and William Pugh. Finding bugs is easy. SIGPLAN
Notices, 39:92-106, 2004.

IntelliJ IDEA Blog Jet Brains. Explore your program with
static analysis. https://blog. jetbrains.com/idea/2020/10/
explore-your-program-with-static—analysis/, 2020. Accessed
27 Dec. 2021.

Shmuel Katz. Aspect categories and classes of temporal properties. Lecture
Notes in Computer Science, 3880:106-134, 01 2006.

Chrigtian Késtner, Sven Apel, Syed Saif ur Rahman, Marko Rosenmiiller,
Don Batory, and Gunter Saake. On the impact of the optional feature prob-
lem: Analysis and case studies. In Proceedings of the 18th International
Software Product Line Conference, SPLC 09, page 181-190. Carnegie Mel-
lon University, 2009.

Chang Hwan Peter Kim, Eric Bodden, Don Batory, and Sarfraz Khurshid.
Reducing configurations to monitor in a software product line. In Runtime
Verification, pages 285-299. Springer Berlin Heidelberg, 2010.

25

https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=495357
https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=495357
https://blog.jetbrains.com/idea/2020/10/explore-your-program-with-static-analysis/
https://blog.jetbrains.com/idea/2020/10/explore-your-program-with-static-analysis/

[KBK11]

[KCHT90]

[KKL16]

[KS10]

[KVRE12]

[KvRHA13)

[LBLOG)|

[LMP10]

[LSRO7]

[Mit02]
IMNJP02]
[Muc98|

[MW]

[NNHO04]
[PBLO5]

[RESO5]

26

Chang Hwan Peter Kim, Don S. Batory, and Sarfraz Khurshid. Reducing
combinatorics in testing product lines. In Proceedings of the Tenth Inter-
national Conference on Aspect-Oriented Software Development, page 57—68.
Association for Computing Machinery, 2011.

Kyo Kang, Sholom Cohen, James Hess, William Novak, and A. Peterson.
Feature-oriented domain analysis (foda) feasibility study. Technical report,
Software Engineering Institute, Carnegie Mellon University, 1990.

D. Kuhn, Raghu Kacker, and yu Lei. Introduction to Combinatorial Testing.
Chapman and Hall/CRC Press, 04 2016.

Martin Kuhlemann and Martin Sturm. Patching product line programs. In
Proceedings of the 2nd International Workshop on Feature-Oriented Software
Development, FOSD’10, pages 3340, 01 2010.

Christian Késtner, Alexander von Rhein, Sebastian Frdweg, Jonas Pusch,
Sven Apel, Tillmann Rendel, and Klaus Ostermann. Toward variability-
aware testing. page 1-8. Association for Computing Machinery, 2012.

Sergiy Kolesnikov, Alexander von Rhein, Claus Hunsen, and Sven Apel. A
comparison of product-based, feature-based, and family-based type check-
ing. SIGPLAN Not., 49(3):115-124, Oct. 2013.

Jia Liu, Don Batory, and Christian Lengauer. Feature oriented refactoring
of legacy applications. In ICSE ’06: Proceedings of the 28th international
conference on Software engineering, volume 2006, pages 112-121, 05 2006.

Kim Lauenroth, Andreas Metzger, and Klaus Pohl. Quality assurance in the
presence of variability. In Intentional Perspectives on Information Systems
Engineering, pages 319-333. Springer, 2010.

Frank Linden, Klaus Schmid, and Eelco Rommes. Software Product Lines
in Action: The Best Industrial Practice in Product Line Engineering. 01
2007.

John C. Mitchell. Conecepts in Programming Languages. Cambridge Uni-
versity Press, 2002.

J.D. McGregor, L.M. Northrop, S. Jarrad, and K. Pohl. Initiating software
product lines. IEEE Software, 19(4):24-27, 2002.

Steven S. Muchnick. Advanced Compiler Design and Implementation. Mor-
gan Kaufmann Publishers Inc., 1998.

Online Dictionary Merriam-Webster. Definition of 'product line’. https:
//www.merriam-webster.com/dictionary/product%$20line.
Accessed 9 Dec. 2021.

Flemming Nielson, Hanne Nielson, and Chris Hankin. Principles of Program
Analysis. Springer Berlin Heidelberg, 2004.

Klaus Pohl, Ginter Bockle, and Frank Linden. Software Product Line En-
gineering: Foundations, Principles, and Technigques. Springer, 01 2005.

Thomas Reps, Susan Horwitz, and Mooly Sagiv. Precise interprocedural
dataflow analysis via graph reachability. In Proceedings of the 22nd ACM

https://www.merriam-webster.com/dictionary/product%20line
https://www.merriam-webster.com/dictionary/product%20line

[SchO1]

[SRH96]

[TAK*14]

[Tea]

[TLD*11]

[Weis1]

SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL ’95, page 49-61. Association for Computing Machinery, 1995.

J.M. Schumann. Automated Theorem Proving in Software Engineering.
Springer Berlin Heidelberg, 2001.

Mooly Sagiv, Thomas Reps, and Susan Horwitz. Precise interprocedural
dataflow analysis with applications to constant propagation. In Selected
Papers from the 6th International Joint Conference on Theory and Practice
of Software Development, TAPSOFT 95, page 131-170. Elsevier Science
Publishers B. V., 1996.

Thomas Thiim, Sven Apel, Christian Késtner, Ina Schaefer, and Gunter
Saake. A classification and survey of analysis strategies for software product
lines. ACM Comput. Surv., 47(1), jun 2014.

SpotBugs Team. Spotbugs homepage. https://spotbugs.github.
io/. Accessed 11 Dec. 2021.

Reinhard Tartler, Daniel Lohmann, Christian Dietrich, Christoph Egger,
and Julio Sincero. Configuration coverage in the analysis of large-scale
system software. In Proceedings of the 6th Workshop on Programming Lan-
guages and Operating Systems, PLOS ’11. Association for Computing Ma-
chinery, 2011.

Mark Weiser. Program slicing. In Proceedings of the 5th International
Conference on Software Engineering, ICSE 81, page 439-449. IEEE Press,
1981.

27

https://spotbugs.github.io/
https://spotbugs.github.io/

	Introduction
	Preliminaries
	Product Lines
	Variability Model
	Software Product Lines

	Software Analyses
	Type Checking
	Static Analysis
	Model Checking
	Theorem Proving

	Terminology for Specifications and Scopes

	Analysis Techniques for Product Lines
	Single-Stage Analyses
	Product-Based Analyses
	Family-Based Analyses
	Feature-Based Analyses

	Multi-Stage Analyses
	Feature-Product-Based Analyses
	Feature-Family-Based Analyses
	Family-Product-Based Analyses
	Feature-Family-Product-Based Analyses

	Daisy-Chained Analyses

	Comparison
	Comparing Single-Stage Approaches
	Comparing Multi-Stage Approaches
	Single-Stage vs. Multi-Stage Approaches
	Comparison of Analysis Implementations in Different Approaches

	Related Work
	Conclusion
	Bibliography

