

1

RWTH Aachen University

Software Engineering Group

FH Aachen, Campus Jülich

09 Medical Engineering and Technomathematics

Patterns in generative software development

Seminar thesis

Presented by

Ali, Daoud

MatrNr: 3278373

1st examiner: Prof. Dr. rer. nat. Bado Kraft

2nd examiner: M.Sc. Alexander Hellwig

Aachen, December , 2022

2

Eidesstattliche Erklärung

Hiermit versichere ich, dass ich die Seminararbeit mit dem Thema

Patterns in generative software development

selbstständig verfasst und keine anderen als die angegebenen Quellen und

Hilfsmittel benutzt habe, alle Ausführungen, die anderen Schriften wörtlich

oder sinngemäß entnommen wurden, kenntlich gemacht sind und die

Arbeit in gleicher oder ähnlicher Fassung noch nicht Bestandteil einer

Studien- oder Prüfungsleistung war.

Ich verpflichte mich, ein Exemplar der Seminararbeit fünf Jahre

aufzubewahren und auf Verlangen dem Prüfungsamt des Fachbereiches

Medizintechnik und Technomathematik auszuhändigen.

Name: Daoud Ali

Aachen, den 31.12.2022

Unterschrift des Studenten

3

Abstract

The principle of software generation has been getting more attention in recent years

and has become an important paradigm in software engineering. Generative software

development simply put means generating code using modelling languages such as

UML or domain-specific Languages (DSLs) as source input, which contributes to

saving time, effort and money.

This automatic generated code is then used for all sorts of things depending on the

intended Purpose of the source modelling language and the target infrastructure. The

task of creating This code is handled by a Generator which consists of a

transformation engine (model source to code) and a runtime environment.

It can in some cases even add a high amount of functionality to the target that was not

“modeled” in the source. Over time, software engineers have noticed recurring

problems that can be analyzed so that we are able to conclude a general design pattern

that helps along in the long run. The design pattern can accelerate the development

process and provide proven development paradigms, which helps save time without

having to reinvent patterns every time a problem arises whether it contributes to the

reusability in the generator, or adaptability in the target code after it’s been generated.

4

Contents

1 Introduction .. 5

2 Preliminaries .. 6

2.1 What is a Pattern .. 6

2.2 What is generative software development .. 6

2.2.1 Model/DSL .. 7

2.2.2 Template engine ... 7

2.3 What is MontiCore ... 8

2.4 What is reusability .. 9

2.5 What is adaptability .. 9

3 GAP/TOP Pattern .. 10

3.1 GAP Pattern .. 10

3.2 TOP Pattern .. 12

3.3 Comparison and Conclusion .. 13

4 Template Hook Pattern ... 15

4.1 Template-hook for reusability ... 16

4.2 Template-hook for adaptability ... 18

5 Decorator Pattern .. 20

6 Conclusion .. 24

7 Bibliography ... 26

5

1 Introduction

Generative software development is a principle that shares its dependence on design patterns

just like many other principles in the software development paradigm. Generating any sort of

code requires the use of a generator. A good generator, whether developed inhouse or one

developed by a third party aims for reusability and adaptability. MontiCore [HoKR21] is a

language workbench that generates tools by reusing existing components. As we will later

see, MontiCore uses many design patterns for its implementation, and adapts some to create

its own. This approach is fueled by the need of tools that are extendable and made from

reusable components.

In this paper we present multiple design patterns that are implemented and adopted in a

generative software example, namely MontiCore. We discuss how each of these patterns

bring advantages that allow for reusability of already-existed code and adaptability of the

code by a user of the generator.

We will start by defining key concepts that are needed for the structure of the paper. In

chapter 2 we will discuss the generation gap pattern and its adoption in Monticore, namely

the TOP mechanism and end the chapter with a comparison of the patterns respectively.

Chapter 4 will introduce the Template hook pattern and how it’s used for both reusability and

adaptability in MontiCore. Furthermore, in chapter 5, the decorator pattern will be introduced

and similarly its usage in MontiCoreand also UML/P [Rum16] would be also presented.

Finally, we will finish the paper with a conclusion that summarizes the patterns and their

provided advantages in MontiCore.

6

2 Preliminaries

2.1 What is a Pattern

Expert designers know better than solving every problem from first principles. Rather, they

reuse solutions that have worked for them in the past. When they find a good solution, they

use it again and again, explained Gumma et al in their introduction [GHJV95]. Patterns in

general are repeatable, identifiable sequences of elements or events. One cannot help but

notice the use of patterns is in a wide area of cases and fields, whether we are planning to

create new software systems, or design new buildings. For example, this is C. Alexander’s

description of patterns, but his book is in the context of buildings and towns: "Each pattern

describes a problem which occurs over and over again in our environment, and then

describes the core of the solution to that problem, in such a way that you can use this solution

a million times over, without ever doing it the same way twice" [AIS+77]. This description is

also true when describing patterns in the context of software development. Each of these

design patterns have four main elements, the patterns identifying name, what problem is it

solving, the solution that the pattern provides and lastly the consequences of implementing

the pattern. Design patterns are crucial in the interest of well-written Code as they can be

used in their basic implementation or they could be a foundation to base one’s own patterns

on, as they are adopted and adjusted to achieve required results. and are therefore of high

importance when creating robust, maintainable code and saving time and effort.

2.2 What is generative software development

One of the biggest challenges in software development today is that software performance is

increasingly at odds with programmer productivity. processor clock speeds are no longer

doubling every as fast as before instead, computer hardware is rapidly becoming more and

more parallel. Programming languages and methodologies focus increasingly on generality

and abstraction, enabling programmers to build large systems from simple but versatile parts.

This makes it difficult for compilers to translate high-level programs to efficient code,

because they do not have the capability to really translate domain-specific operations. As an

alternative to counting on a compiler that’s smart enough to optimize a program,

programmers can write a program generator that translates these these domain-specific

operations into the code that we need. This concept of code generation is a good description

of generative programming. P. Cointe describes it as a subdomain of metaprogramming and

that they are an attempt to manufacture software components in an automated way by

developing programs that synthesize other programs. [CO05]. Generative programing’s goal

is to improve the productivity of programmers. Two essential elements are generally needed

to achieve the generation, namely a source Model and generator engine.

7

2.2.1 Model/DSL

A model is the library or framework that the DSL populates. It’s a representation of the same

subject that the DSL describes [MaFo10, page159-165]. Domain specific languages (DSLs)

are programming languages that are designed for a particular domain. DSLs can be used to

write code in any language, but they tend to have some special features that make them more

convenient and easier to use than general purpose languages. DSLs are usually simple since

they often have syntax that are easier to understand and closer to natural language than other

programming languages. They also provide some built-in functionality so a developer doesn't

need to create their own libraries or frameworks [MaFo10, page3-42]. DSLs can be used for a

variety of goals:

• define commands to be executed

• describe documents or some of their specific aspects

• define rules or processes

DSLs generally have two kinds, internal and external. Internal DSLs are domain-specific

languages that are defined using syntax that are different to that of the main programming

language it’s working with. The syntax may be simpler or in some cases more complex

depending on the intended use. It will usually be parsed by the host application using text

parsing techniques. On the other hand, internal DSLs gives developers a particular way of

using general purpose languages (such as java or C). Developers would introduce a script in

an internal DSL and it would be valid code in the general purpose language the DSL is

working with, but it only uses limited features of the general purpose language in a particular

style to handle small specified tasks.

2.2.2 Template engine

Template engine is a software component that facilitates the creation of textual output from a

source model [MaFo10, page 539-547]. It’s a software designed to combine templates with

a data model to produce result files. A template engine is ordinarily included as a part of

a web template system or application framework, and may be used also as

a preprocessor or filter. The Idea behind a template engine is basically to generate output

using a template which is the source text of the output text. Templates include callouts, that

represent the dynamic parts of the template. These callouts are filled by the parts that vary

upon generation and they reference the data model. The model represents the source of

dynamic parts of the template and it serves as a context for the generation. A generator

therefore acts as the component or tool that brings the template and model together resulting

in dynamic generated output.

A good example for a template engine is the Apache FreeMarker template engine [Fre22].

FreeMarker is a freely available template engine which can easily be customized using the

template files and changing data such as models. FreeMarker stores its templates as files

https://en.wikipedia.org/wiki/Software
https://en.wikipedia.org/wiki/Data_model
https://en.wikipedia.org/wiki/Web_template_system
https://en.wikipedia.org/wiki/Application_framework
https://en.wikipedia.org/wiki/Preprocessor
https://en.wikipedia.org/wiki/Filter_(software)

8

written in freeMarker template language, with extension "ftl". It contains parts of the general

purpose language expressions that are Just like in classing These templates describe the

general structure of the output to be generated in combination with an expression (model) and

a control language that are evaluated when the templates are being processed. Figure 1 shows

a representation of the FreeMarker functionality.

Figure 1: example representation of the FreeMarker template generator

This feature allows to write pieces of code in the general purpose language (such as java)

with callouts in it, which will be filled upon generation by referencing a model. Figure 1

examples some of these expressions, namely ${} , and and comments like <#-- ... --#>. Other

forms of these callouts are control directives, such as <#if ...>, and variable assignements

with <#assign ...>. While FreeMarker was originally created for generating HTML pages in

MVC web application frameworks, it isn't bound to servlets or HTML or anything web-

related. It's used in non-web application environments as well, such as MotiCore [HoKR21,

pp237-245]

2.3 What is MontiCore

MontiCore [HoKR21] is a language workbench for the efficient development of DSLs,

developed by the Institute for Software Engineering of the RWTH Aachen university. M.

Fowler defines a language workbench as a specialized software for defining and building

DSLs. A language workbench is used not just to determine the structure of a DSL but also is

a custom environment for developers to create DSL scripts [MaFo10]. MontiCore’s goal is to

help a developer create their own language tools. Some of these tools are generators

themselves, which categorizes MotiCore as a meta-tool. It provides an array of features

ranging from the modular definition of languages and language components in addition to

9

composing language tools, all the way to model analysis, transformation and the definition of

tools for them

Some of MontiCore advantages are the reusability of predefined language components,

conservative extension and composition mechanisms, and an optimal integration of

handwritten code into the generated tools. Its grammar languages are comfortable to use.

MontiCore provides sophisticated techniques to generate transformation languages and their

transformation engines based on DSLs.

2.4 What is reusability

Designing object-oriented software is hard, and designing reusable object-oriented software

is even harder. After talking about these concepts above, we somewhat get a sense of what

this section is about. Reusability is one of the main motives that fuels the interest and

research in generative software development. Several decades of research in software

engineering left few alternatives but software reuse as the realistic approach to bring the gains

in productivity and quality that the software industry needs, expressed H., F. and A. Mili in

their opening introduction of [Mil95]. Reusability simply put, is the ability to reintegrate or

reuse already defined software components for multiple purposes in order to save effort and

time in implementation. Design patterns are a main ingredient in creating a system that takes

advantage from already defined software. For example, decorator and template hook pattern

as we will further see in more detail. Decorator will allow us to reuse decorator classes

depending on the desired final design. Template hook pattern will give us ability to

reintegrate and preexisting textual files into other to achieve different generated results.

2.5 What is adaptability

In generative programing, a lot of the times generated code needs to be extended with further

functionality. Sometimes methods need to be added, attributes need to be supplied with. A

good generator generates code with extension in mind. A user of that generator must be able

to add the desired functionality without direct knowledge of the generator’s backend. This is

what we mean by adaptability, it’s the ability to add and change functionality without the

need to make changes in the backend. We will see this in the implementation of the template

hook pattern for example as it allows for adapting the generated code simply by using hook

methods. Similarly, TOP mechanism which is a special variant of the Generation gap pattern,

also allows for adapting the generated code by finding a convenient way of integrating

handwritten changes without having to change the related infrastructure of the modified

classes.

10

3 GAP/TOP Pattern

Designing a generator that generates software from textual models such as DSLs or UML is a

complex task that takes a lot of planning in the design stages. MontiCore’s design was based

on many design patterns, a main example for that would be template-hook which we will

discuss later in this paper. There were other patterns however, that MontiCore has

substantially adapted. This paved the way to create new patterns that are improved in the

specific functionality that MontiCore needed. In this chapter we will discuss a design pattern

that MontiCore based one of its main methods of adjusting generated code on, namely, the

generation GAP pattern. We will discuss the intent behind using the pattern as well as its

advantages and drawbacks. Later we’ll introduce MontiCore’s approach to integrate and

improve the pattern which gave light to the TOP mechanism. We will end the chapter with a

conclusion which includes comparing the two patterns.

3.1 GAP Pattern

Code generation from a model doesn’t always results in the most optimal realization and

often needs to be optimized to reach the desired results. Martin Fowler makes the point, when

generating code from a model, textual or otherwise, we basically make that model the

authoritative source for the generation [MaFo10, pages 571-579]. However, the prevailing

conjecture is that deriving a non-trivial, complete implementation from models alone is not

feasible, explained David Wile in [DaWi04]. If we go in and edit the generated code by hand,

these changes would be lost upon regeneration. This also causes extra work on generation,

which is not only bad in its own right, but also introduces a reluctant to change the DSL and

generate again when necessary, undermining the whole point of a DSL. As a result, any

generated code should never be touched by hand. This is where code generators express the

need for integrating handwritten code that extends the generated artifacts to reach optimal

results. Since we want the generated code to never be touched by hand, it makes perfect sense

to keep them apart from handwritten code. Fowler’s preference was to have files clearly

separate into all-generated and all-handwritten. This is MontiCore’s approach as well since it

offers the crucial benefit of ensuring that the generator doesn’t override handwritten code.

Generation GAP is a software design pattern that was first documented by John Vlissides,

motivated by the need to separate generated code from handwritten code [VlJo98]. The

pattern has several variations when it comes to implementation, but all have the same goal

which is a structure that separates generated code from handwritten code. These two

structures are linked by inheritance. Vlissides’s basic form of the pattern involves generating

a superclass, which he refers to as the core class, and hand-coding a subclass for overriding

any aspect of the generated code that needs to be changed. Consider the following code

generation example adopted from [GHK+15]. Assume, we want to generate java classes from

a source model while implementing the generation gap pattern. Assuming a class diagram,

which contains the class Hospital is the source input for our generator. An optimal

implementation of the methods of the Hospital class would have to be hand-coded and

11

integrated with the generated classes, since class diagrams don’t model accurate class

behavior. Generation Gap’s approach would assume a generated superclass

HospitalDefaultImpl for the class Hospital, which defines the general abstract functionality

and a handwritten subclass HospitalCustomImpl which extends the superclass and contains

any manual customization for specific methods in Hospital that need to behave different from

the default implementation defined in HospitalDefaultImpl.

Figure 2: Generation Gap pattern for the class Hospital example

<<gen>> refers to generated class, <<hc>> refers to handwritten code

The Pattern ensures that any handwritten implementation added in HospitalCustomImpl

wouldn’t be lost upon regeneration since the generated superclass HospitalDefaultImpl‘s

relation to the HospitalCustomIpl class is defined with inheritance. Any customized behavior

defined in the handwritten class would simply override that of the superclass which results in

verry efficient flexibility in the customization of the methods defined in the generated

superclass. Now let’s suppose the user of this generator wants to add methods to the Hospital

class. Fowler makes the point, that when we refer to these classes from the outside, we

always refer to the handwritten class that contains the concrete implementation. In this case

that would be HospitalCustomImpl. This is where we notice one of the limitations the pattern

has, as subclasses do not have the ability to add or remove methods of the generated parent

class. Another issue arises, when we use the pattern for the generation of a system, in which

handwritten extensions are rarely needed. In [GHK+15], it’s explicitly mentioned that

generation gap mechanism requires developers to create the handwritten class no matter

whether handwritten code is inserted into it or not. In our mentioned scenario it would result

in generating unneeded number of classes thus leading to a bloated project. MontiCore

addressed these two issues in its implementation of the generation gap pattern which gave

light to the TOP mechanism.

12

3.2 TOP Pattern

One of the disadvantages of generation gap in MontiCore, is the large overhead it causes

when the generated artifacts are extended. As mentioned, Generation gap’s method of code

separation is achieved by subclassing. This approach is robust, but has the disadvantage that

it is not possible to add new methods to the signature of the generated class directly, but to

the subclass only. So either the subclass needs to be explicitly known in the rest of the

system, or no additional functionality is available. This is why Drux, Jansen, and Rumpe

argued in [DJR22] that an issue with generation gap is the necessity to integrate the

handwritten subclasses at the using or instantiating locations of the generated code. Please

keep in mind, that MontiCore is a framework which many of its handwritten subclasses in

which theses extension reside, have corresponding builder classes. Builders are generated in

form of the static delegator pattern. The static delegator is a design pattern that combines the

advantages of publicly accessible static methods with the possibility to redefine them

[GHJV95, page 221-223]. This is where the large overhead in noticeable. Even small changes

in these subclasses would usually result in customizing the Builders as well.

TOP pattern is a pattern that was developed in MontiCore and it allows the automatic

seamless integration of needed extensions in the generated classes. It's a less labor-intensive

approach for developers as well, and it allows for extending the implementation, such as

overriding methods, changing their signatures, or introducing completely new functionality.

When extensions of a generated class are needed, the developer writes the desired class by

hand and it would have the same name and package as the generated super class but it would

be located in a dedicated path, in which the TOP mechanism is sensitive to handwritten

classes. This handwritten class would be a subclass of the generated class. It alters the

generation process such that an alternative class with the suffix TOP is generated instead

which gives the pattern its name. However, if developers don’t want to adjust the generated

code, then a handwritten class doesn’t have to be added. Instead, the generator checks at

generation-time whether it exists. If it does exist, the generated class will extend the newly

handwritten class. This addresses another issue the generation gap has, which is the necessity

of having a handwritten class at all times. However, implementing TOP requires the

generator to be executed again after adding a handwritten class to reflect this change in the

generated code. Let’s take the same Hospital example from earlier and apply the TOP-

mechanism this time.

Figure 3: Top mechanism implementation for the hospital example.

13

In this scenario, we added a handwritten class HospitalDefaultImpl that contains changed and

additional functionality to the source path of the generator. The generation process is now

sensitive to the existence or removal of the classes in this path. So when we run the generator

again, it notices the exitance of the handwritten class, and it will consequently generate the

class containing the suffix TOP, namely HospitalDefaultImplTOP which contains identically

generated code just with a different name. The handwritten class contains the implementation

that’s generated by default plus the new functionality added by hand earlier. However, the

remaining infrastructure now points to the custom implementation (the handwritten class)

since it has the old name of the generated class. This is what is meant by seamless integration

of the handwritten code. HospitalDefaultImplTOP is actually now abstract. We referred to

the inheritance shown in Figure 3 as “optional” because it could be evaded but it is

recommended by the developers of MontiCore. In this scenario, HospitalDefaultImplTOP

serves as a super class and it extends HospitalDefaultImpl. This is MontiCore’s usual

implementation and the reason for that has to do with the standard functionality that’s

additionally provided when generating, such as the HospitalBuilder class shown. Extending

the generated artifacts makes the change effort minimal and applies only to the modified

content. So in this case, HospitalBuilder returns instances of the handwritten class, as

HospitalDefaultImpl extrends the generated artifact HospitalDefaultImplTOP, it directly

inherits all required features and doesn’t need any additional changes.

3.3 Comparison and Conclusion

Generation gap is a software design pattern that serves the main purpose of adaption of

generated code without changing the generated files. Its basic functionality involves the

generation of a super class in which the default implementation is introduced, and a

handwritten subclass for the manual overriding of the default methods. This is a robust

method that guarantees that that any handwritten changes to the inherited methods won’t be

lost when the generation process is ran again. This serves the adaptation concept introduced

earlier in this paper. Besides that, the existence of handwritten code does not effect the

generation process in any way since the generator would always requires the existence of a

hand coded subclass. So in the case of any adaptation required that doesn’t have the necessity

of adding more methods or changing the inherited method’s signatures, generation gap would

be of great value. However, we discussed three main disadvantages the pattern has namely,

the necessity for developers to have a hand coded subclass, the inability to extend the

methods of the generated super class, and the large overhead caused by adaption in

environments like MontiCore which generates additional artifact needed such as builders.

Generation TOP pattern was developed in MontiCore and is a special variant of the

generation gap pattern. It offers a convenient solution for integrating handwritten artifacts

into the generated infrastructure. When implemented, the generator would react to the

existence of a handwritten class with the same name and would generate an abstract class

with the a different name (with suffix TOP) allowing the reference on the handwritten class

which results in the in automatic adaptation and integration of these manual changes

14

accordingly. This gives the ability to extend the generated class with more functionality, and

not reduce the relation between the generated and handwritten class only to inheritance,

although it’s recommended in [DJR22]. Additionally, the TOP mechanism cancels the

necessity of having an empty handwritten subclass since the generator would just generate

the abstract class in case of unavailability of handwritten classes. In the case of constructor

consistency between generated and handwritten classes, i.e. if the constructor for the hand

coded class remains the same, then the generated builder can be reused directly. If the

constructor of a hand coded class has, however, changed, the same TOP mechanism can be

applied to the builder. A disadvantage of the TOP mechanism in comparison to generation

gap would be the fact that independence of handwritten code at run-time is unfulfilled since

the generator would always have to check whether a handwritten interface or a handwritten

implementation class was introduced, as this influences the structure of the generated code.

15

4 Template Hook Pattern

Template hook pattern is a design pattern that belongs to the behavioral design patterns

identified in [GHJV95, page325-331]. The intent behind developing such a pattern was the

need to make the behavior of an algorithm that’s running more flexible in its design and

implementation while avoiding duplicate code and unneeded effort in reimplementation. The

main idea of how template hook pattern’s implementation works is very basic, it defines the

general behavior of an algorithm and the steps to execute it in a super class which can

provide default implementation that might be overwritten by the subclasses that needs the

algorithm to act in a more specialized matter. Most of the times, subclasses call methods from

super class but in template pattern, superclass template method calls methods from

subclasses, this is known as Hollywood Principle - “don’t call us, we’ll call you.” [MiMa96].

Consider the following example: Let’s suppose we want to provide an algorithm to write a

seminar paper like the one I’m presenting. The steps needed to write a seminar paper are, find

a topic, research the idea and lastly start with the writing and drawing. It’s important to keep

in mind that we can’t change the order of execution without introducing hook methods

(which we will discuss later) but that’s convenient in our example, because if we think about

it, we can’t start with researching if we don’t know what it is exactly, we’re researching about

so we need a topic before building a solid research foundation and then we can start with

composing of the paper. In this case we can create a template method in which a general

algorithm, for example composePaper() is specified and in it exists the steps or in other

words methods needed to implement this algorithm like for example determineTopic(), cite(),

writePaper() and drawPaper(). Naturally the subclasses that use these methods have 2

options, either use the default implementation or overwrite what needs to be overwritten.

Now for the sake of argument, let’s suppose that the Matse-group already prepares a pool of

topics of which the students have to choose from. This will make the method of finding a

topic the same for all types of seminar papers, whether it’s a concept, or it’s in English,

German, made with word, latex and so on. We can provide base implementation for this by

restricting subclasses from overriding this method (step), and in this case we do that simply

by making that method final.

16

Figure 4: class diagram that shows the basic functionality of template hook pattern.

Up next, we will discuss an example usage of the template hook pattern in a generative

software development example, namely MontiCore. We will get to know how Template hook

is a pattern that MontiCore utilizes for both reusability and Adaptability. Finally, we will

connect all the points together with a conclusion.

4.1 Template-hook for reusability

The pattern consists of two methods: the template method and the hook method [HoKR21].

The template contains the general logic that defines the algorithm in an abstract way. It calls

the specific functionality using the hook method. The hook method is therefore the principle

of the template’s calling of the more specific functionalities that do not exist in it. We use

hooks to override partial implementation which allows the customization of the algorithm

without the need to redevelop an entire algorithm. One of the methods MontiCore uses to

generate code, is the TOP mechanism that we introduced in chapter 3.2 . We explained how

TOP can utilize subclassing to adapt generated code. If the generated TOP-class has a

Template method, then MontiCore applies this pattern in subclassing with the TOP

mechanism that to customize the generate code.

17

Figure 5: Template hook pattern being used for integrating

handwritten and generated code adopted from [DJR22]

Figure 4 shows a generated TemplateHookTOP that’s being extended by a handwritten

CostumHook that’s used for customizing a specific method using the template hook pattern.

The generalMethod() method calls specificMethod() -which acts as the hook method- and the

handwritten CustomHook overrides the implantation using subclassing. This conjunction of

core functionality and delegation of some basic actions to hook methods is a key mechanism

in frameworks, where the template method belongs to the framework and the hook method is

meant to be defined by the individual application via subclassing respective framework

classes

Another method MontiCore uses to generate java artifacts is the via FreeMarker template

engine. We discussed in Chapter 2 that freeMarker uses templates to store the intended

general structure of the code, that is to be generated. Additionally the define callouts that are

dynamically filled by referencing the desired data model (context). In these freeMarker

templates, we also can specify what’s known as hook points. A summary of hook point’s

definition mentioned in [HoKR21, page245-281] would be, a place in the freeMarker

template that’s meant for customizing the generated artifacts. The hook point consists of a

name, which identifies the place in the template, where to hook in, and a value, that is bound

to the hook point. A hook point could be defined using the include command, then the

template itself has static knowledge of the included template and no additional binding (e.g.

in the controller) is required. This allows hook points to be defined implicitly in these

freeMarker templates. Hook points can also be defined explicitly by using the

“definHookPoint” command, but only if bound to a value or they would default to an empty

String. This is where we make use of the template method pattern for reusability as well.

Because of the pattern’s compatibility with the hook points that exist in the freeMarker

templates, we can reuse templates that we already bound in other freeMarker templates for

different purposes. This saves the effort of redeveloping templates and by that displaying

another reusability feature of the template hook pattern.

18

4.2 Template-hook for adaptability

Drux, Jansen, and Rumpe [DJR22] argue that, generators created with MontiCore are

designed explicitly for providing various hook methods. The reasoning behind this

architecture is. This is due to fact that in some cases generated code is intended to be

extended by handwritten code or at least an option to extend generation using handwritten

code should be provided. In this case, providing such hooks leads to flexibly extensible

generated code. So it makes sense to design a generated piece of code similar to a framework

providing various hook methods. In the same paper, a none-standard way of integrating the

template hook method is discussed, namely by relocating the hook methods to hook classes

that are separate from the template class. This is similar behavior the delegator pattern

[GHJV95, Intro] where two objects are involved in handling a request: a receiving object -in

this case the Template class- delegates operations to its delegate, namely the hook class. The

main advantage of delegation is that it makes it easy to compose behaviors at run-time and to

change the way they're composed. Therefore, the hook methods can be interchangeable even

during run time, due to the total separation between the Template class and the hook class.

The Template would always implement the same behavior and the customization via hook

calls would be delegated to the sperate hook classes. The main disadvantage Delegation has,

one it shares with other techniques that make software more flexible through object

composition: Overhead. Highly parameterized, dynamic software is harder to understand than

more static software. Delegation is a good design choice only when it simplifies more than it

complicates.

Another integration of the pattern for adaptability is noticeable in MontiCore’s usage of the

FreeMarker template engine as well. In MontiCore, we extend the FreeMarker engine with a

controller that integrates the template hook pattern throuth its definition of explicit hook

points. Figure 6 shall help with explaining this mechanism:

Figure 6: explicit hook points used to flexibly add more functionality

19

Figure 5 represents a simple FreeMarker template. We define in the body of the template an

explicit hook point with the command “defineHookPoint(“B”)”. This hook point in the

example is still empty and is not bound yet by the user of the generator. It could, however, be

bound manually to one or multiple templates that add more functionality. In the example B.ftl

is just there to show the concept of manually adding more functionality by the generator’s

user through explicit hook points. If bound, the generator would translate the content of the

template B.ftl and would add the result to SimpleClass.ftl in the specified order. B.ftl could

result in adding more attributes, methods or any adjustments the user of the generator sees

fitting. The user could also bind multiple templates using the same mechanism. This

separation of generated abstract classes and concrete handwritten implementation is what

makes template hook pattern so well integrated in MontiCore, since it facilitates the

separation of concerns [HuLo95], which is a core concept in MontiCore’s method of code

generation, also this allows the developers to regenerate without losing the handwritten

extensions.

To tie things together again, template-hook pattern is a powerful design model to take

advantage of when common behavior among subclasses with noticeable differences should

be factored and localized in a superclass to avoid code duplication. This is a good example of

"refactoring to generalize" as described by Opdyke and Johnson [OJ93]. We saw how the

pattern’s implementation in a simple real word example such as the seminar paper scenario

discussed at the beginning of the chapter is similar to MontiCore’s approach, however we

also witnessed MontiCore’s more advanced implementation of the pattern in its generation

mechanism. Two different variants of the pattern’s implementation were introduced,

integrated template-hook class and. We saw TOP mechanism’s integration of the pattern for

reusability by overriding methods by subclassing without redeveloping entire algorithms.

Additionally, TOP mechanism’s method for adaptability by integration of another variant of

template hook similar to that of the delegator pattern were template class delegates to a

separate hook class which made the hook’s behavior interchangeable even during runtime

(although with more overhead). We discussed the pattern’s integration in the FreeMarker

engine, implicitly which allows reusing templates to generate different results and explicitly

which allows both the generated infrastructure and the generator to be extremely adaptive to

extensions.Both template and hook methods work hand in hand to facilitate the separation of

concerns whether it’s from the developer side in saving effort and time by shifting the

functionality elsewhere, separating it from the abstract super class or from a user’s side by

keeping the used templates flexibly interchangeable during run time. It’s one the patterns that

serve both Reusability and adaptability.

20

5 Decorator Pattern

In this chapter, we will talk about a design pattern that belongs to the structural patterns,

namely, the Decorator pattern [GHJV95, p175-185]. The intent behind the pattern is to add

more functionality to an object at run-time. Usually, we use inheritance or composition to

extend the behavior of an object, but this is done at compile time and its applicable to all the

instances of the class. We can’t add any new functionality of remove any existing behavior at

runtime. This is when Decorator pattern comes into picture. Let’s take an example. Suppose

we want to implement different kinds of house decorations. If we implement this using

inheritance, we would create an interface House to define the decorate() method and then we

can have a basic HouseDecoration class that implements it. We can then extend

HouseDecoration with more classes that define deferent types of decorations that we might

need. For example ChristmasDecoration and ChildrenDecoration. If we want to get a

decoration at runtime that has both the features of Christmas and children, then the

implementation gets complex. If furthermore, we want to specify which decoration should be

added first, it gets even more complex. This inheritance structure is only going to get more

and more complex and difficult to manage the more decorations and conditions we add. To

solve this kind of programming situation, we apply decorator pattern. The following Figure 7

shows the same scenario but with a decorator implementation.

Figure 7: implementation of the decorator pattern in a house example

First we create an interface defining the method decorate() that will be passed down. In our

case House will be the component interface. Then we define the basic implementation

BasicHouse of the component interface. The Decorator class HouseDecorator implements

the House and it has a “HAS-A” relationship with the component interface. The variable

that’s defined in HouseDecorator should be accessible to the child decorator classes, so in

21

this case we make this variable protected. Then we extend the HouseDecorator class which is

the base decorator functionality with as many concrete decoration-classes as needed

(ChristmasDecorator, HalloweenDecorator, ChildrenDecorator) and we modify the

component behavior accordingly. This way, the client program can create different kinds of

Objects at runtime and they can specify the order of execution too. With inheritance an

object’s functionality is extended by adding a subclass at compile time. Decorator pattern’s

implementation wraps the component object (house) dynamically with added functionality or

responsibility at run-time without the object’s knowledge of the decorator’s existence. This is

why it’s referred to as “Wrapper” in [GHJV95, p175].

In MontiCore [HoKR21, page245-274] we apply the Decorator pattern in decorating

templates before generation to add more functionality without dependence on inheritance

and without the template knowing it’s being decorated. We talked in chapter 4 about the

controller that we extend the generator with, in order to manage the Freemarker templates.

There we described the concept of a hook point, and we mentioned different types of that

concept. In this situation we also depend on the usage of hook points defined in templates

(both implicitly or explicitly), but in this case we use a different binding mechanism to

decorate the templates before generation. The class that provides the binding method

introduced in chapter 4, also provides decorating methods, with which functionality is added

in a specific order. Methods like setBeforeTemplate() or setAfterTemplate() take other hook

points or templates -a large number of are designed for decoration- as arguments and they

would be used to decorate the hook points specified. Once these methods are implemented,

the controller would take advantage of already written decorator-templates to add more

functionality in a specific order needed. Let’s take an example Adopted from [HoKR21].

Suppose we want to generate java artifacts using a UML state diagram as a source-model.

We’re using a state diagram since it provides the language definitions for advanced tooling

such as model-transformation. The state diagram would be realized by a set of templates each

realizing different elements of the diagram, for example, abstract state, concrete classes,

attributes etc. In most cases, MontiCore uses these templates as a part of a fixed library that’s

intended for reusability and are not to be changed each time a generation is needed. Figure 8

shows a standard generation example for attributes using the standard templates defined in

the controller manager:

Figure 8: generation of attributes using a standard template without decoration

Now suppose we want to add access functionality to the attributes that are generated by

providing getter methods for each generated attribute. This would be a great opportunity to

decorate the ActivityDiagramAttribute.ftl template with a decorator template that we design

specifically for access functionality. In this case, we would need to define a hook point in the

22

template controller to attach the needed template. Finally we bind the decorator template

using the setAfterTemplate(ActivityDiagramAttribute.ftl, AttributeGetter.ftl) command in this

case, that generates getter methods after the attributes are declared respectively. Figure 9

shows the resulted output after we decorated the template with more functionality:

Figure 9: binding of attributes using a standard template with decoration

We could reach a similar result if we use the include(“AttributeGetter.ftl”) method since it

also decorates the template with another template but there is a main difference between that

method and the setBeforeTemplate or setAfterTemplate. Method Include() enforces the

hosting template’s static knowledge of the template that’s being included. For example, if we

type the command include(”B.ftl”) in template A.ftl, then A.ftl would have static knowledge of

B.ftl . With the setBefore or setAfter methods then the knowledge direction would be inverted

and in the same example if we specify to A.ftl to be decorated with B.ftl after via the

command setAfterTemplae(“A.ftl”, “B.ftl”) then A.ftl wouldn’t have any knowledge of its

decoration with B.ftl .

Another application of the Decorator pattern is in metamodel extendibility mechanism

[TrGa10]. A metamodel defines the structure (abstract syntax) of a modeling language. With

nodes and edges. A metamodel defines syntactical rules to which the instance model must

conform [VFV06a]. A good example for that is UML/P. B. Rumpe, defines UML/P as a

specifiable language that consists of several types of diagrams and texts that could be used in

an integrated form [Rum16]. It’s a language profile that consists of 6 sub notations such as

class, sequence and object diagrams among others. It’s used as a notation for a number of

activities such as use case modeling, target performance analysis, as well as architectural and

detailed design at different levels of granularity. Model extendibility in UML/P is a proactive

approach in which the metamodel engineers recognize that the attachment of additional

information to model elements might be needed or desired. Therefore, UML/P is designed

with extendibility in mind. Its design provides built-in support for attaching arbitrary key-

value pairs of information to any element of the model. These pairs are referred to as

23

stereotypes and tags. Stereotypes and tags are used to extend and adjust the language

vocabulary according to the respective needed requirements. We use the decorator pattern to

decorate any element in the model using stereotypes and tags [Rum16]. Stereotypes

generally have a multitude of (overlapping) application possibilities depending on the

scenario and the stereotype used. For example, the stereotype “refine” in the UML standard is

designed for describing a methodical relation between model elements. stereotypes of the

form “Wrapper”, allow the role of a class in a design pattern to be documented. In general

Stereotypes can also demand additional properties from model elements as well as specialize

existing properties, so they have the ability to describe syntactic properties of a model

element. Another form of application is ability to describe application-specific requirements,

a food example for that is the “persistent” stereotype, which can specify that objects of this

class are persistently stored. much more. Tags can be attached to basically to each model

element to allow the developer to specify properties in a more detailed form. This helps with

solving the problem of overlapping functionality of different types of stereotypes since one or

multiple tags could also be bound to a stereotype. Whenever more specification or different

functionality is required in a model element, developers would use one of these already-

defined stereotypes in combination with one or multiple tags if needed to decorate and

manipulate the model’s different elements as desired. This means the same stereotype could

be used for multiple model elements which contributes to the reusability of preexisting code.

[Rum16] [TrGa10].

In this chapter we discussed the functionality of the decorator pattern. We started with

explaining the pattern’s functionality by using a real-word example. We then followed it with

two adaption implementations in generative programming, namely in MontiCore and UML/P.

We explained how The pattern’s implementation was demonstrated in the MontiCore

generator by decorating the Freemarker templates by taking advantage of the hook point

concept which would allow the templates to be decorated without their static knowledge of

the decorating templates. This allowed for the reusability of other templates. Meanwhile in

UML/P we argued how the decorator pattern was giving the advantage of reusability in

metamodel extension using decoration of model elements, by reusing stereotypes and tags

that would manipulate elements of the model.

24

6 Conclusion

Design patterns are powerful tools, with which developers can reach robust, optimal and

clean implementation. Each of these patterns was found with the motive of solving a

noticeable, recurring problem in a specific situation. They have been implemented in

countless situation with all of their characteristics documented and proven over time to be

accurate. In this paper we presented a number of design patterns used in generative software

development. We used [GHJV95] as a citation for them throughout the paper since it’s one of

the main references for software design patterns. Our main example for the patterns

implementation in a generative environment was the language workbench MontiCore

[HoKR21] since it was designed on a solid foundation of well implemented design patterns as

well as in-house design patterns. For each of patterns discussed, we showed an example

usage in a traditional software design and then followed it with at least one example usage in

MontiCore. We defined some of the main concepts needed for the comprehension of the

paper and followed them with a discussion about four different patterns and focused on the

reusability and/or adaptability they contributed to the system.

 Sarting with generation gap. Generation Gap is a pattern for integrating generated and

handwritten code, where generated and handwritten code would be guaranteed to stay

separated and regeneration won’t delete the handwritten extensions, however its disadvantage

was the lack of customization of the generated classes and the overhead it could introduce in

generative environment that provide other functionality as well as the necessity to always

generate a handwritten class. This was addressed by TOP which is a MontiCore-developed

pattern also used of integrating generated and handwritten code. TOP mechanism allows the

generator to detect handwritten classes and would incorporates handwritten classes instead of

generated classes, which solves the extension problem and the necessity for handwritten

classes that Gap had. It also didn’t depend solely on subclassing which solved the overhead

problem. We saw how both of these patterns were achieving adaptability, but TOP was

giving more adaptability since seamless integration of handwritten code was achieved with

no additional integration effort was needed.

Then we discussed the Template hook pattern. Template hook was mainly used to split

generation steps into multiple modular functions. We argued how it achieved both reusability

and adaptability. Its integration in the FreeMarker templates by using hook points to reuse a

template to generate different target results as well as facilitating extension by the definition

of explicit hook points which would be used to bind other templates by an end user. We saw

how the pattern also cooperated well with TOP in extension scenarios where we would

implement a template and a hook method in the generated class, allowing the handwritten

class to extend the functionality by overriding the hook method. Furthermore, we presented a

reference to delegator pattern, since a variant of template hook can implement the original

parts in sub-classes of the delegates.

25

Finally, we discussed the decorator pattern and argued that it served mainly the reusability

concept. Decorator’s intent is to add more functionality at run-time. In MontiCore we took

advantage of the hook points defined in templates to decorate a template using a binding

mechanism that lets the decorated template to be blind of the decoration. This allowed for

reusing of decorator templates and achieved reusability. Another example of the pattern was

in the UML/P language, where the decoration of the model was achieved by adding already-

defined stereotypes and binging them with tags to add more detail or functionality to different

model elements, facilitating the reuse of these software components (stereotypes and Tags).

With these discussions and points, we argued how each of the above-mentioned patterns was

used by MontiCore to serve a certain role. We were mainly focused on reusability such in the

case of template hook and decorator and adaptability in the case of Gap/TOP and also the

different implementation template hook.

26

7 Bibliography

[AIS+ 77] Christopher Alexander,Sara Ishikawa, MurraySilverstein, Max Jacobson, Ingrid

Fiksdahl-King, and Shlomo Angel. A Pattern Language. Oxford University Press, New

York, 1977. Page 10

[Co05] Cointe, P. (2005). Towards Generative Programming. In: Banâtre, JP., Fradet, P.,

Giavitto, JL., Michel, O. (eds) Unconventional Programming Paradigms. UPP 2004.

Lecture Notes in Computer Science, vol 3566. Springer, Berlin, Heidelberg. Pp. 315-

325, doi.org:10.1007/11527800_24

[DaWi04] Wile, D. S. (2003). Lessons Learned from Real DSL Experiments. In Proceedings of the

36th Annual Hawaii International Conference on System Sciences, HICSS ’03, pages

265–290. IEEE Computer Society

[DJR22] Florian Drux, Nico Jansen, Bernhard Rumpe, “A Catalog of Design Patterns for

Compositional Language Engineering”, Journal of Object Technology, Volume 21, no.

4 (October 2022), pp. 4:1-13, doi:10.5381/jot.2022.21.4.a4.

[Fre22] FreeMarker website. http://freemarker.org/, 2022. Retreaved on 11.12.2022

[GHJV95] Gamma, E., Helm, R., Johnson, R., Vlissides, J. (1995). Design Patterns: Elements of

Reusable Object-Oriented Software. Design Patterns. massachusetts: Addison-

Wesley Publishing Company

[GHK+15] T. Greifenberg, K. Hölldobler, C. Kolassa, M. Look, P. Mir Seyed Nazari, K. Müller, A.

Navarro Perez, D. Plotnikov, D. Reiss, A. Roth, B. Rumpe, M. Schindler, A. Wortmann:

A Comparison of Mechanisms for Integrating Handwritten and Generated Code for

Object-Oriented Programming Languages. In: Proceedings of the 3rd International

Conference on Model-Driven Engineering and Software Development. Angers, Loire

Valley, France, pp. 74-85, 2015.

[HoKR21] Hölldobler, K., Kautz, O., & Rumpe, B. (2021). MontiCore Language Workbench and

Library Handbook: Edition 2021. Shaker Verlag pages

[HuLo95] Hürsch, W. L., & Lopes, C. V. (1995). Separation of Concerns. Kleppe, A. (2008).

Software Language Engineering: Creating Domain-Specific Languages Using

Metamodels. Pearson Education

https://www.jot.fm/contents.php?query=Drux
https://www.jot.fm/contents.php?query=Jansen
https://www.jot.fm/contents.php?query=Rumpe
https://www.jot.fm/contents/issue_2022_04.html
https://www.jot.fm/contents/issue_2022_04.html
http://dx.doi.org/10.5381/jot.2022.21.4.a4

27

[MaFo10] Martin Fowler. 2010. Domain Specific Languages (1st. ed.). Addison-Wesley

Professional, pages 571-579

[Mil95] H. Mili, F. Mili, A. Mili, Reusing Software: Issues and Research Directions, IEEE

Transactions on Software Engineering, Vol. 21, No. 6, June 1995

[MiMa96] Mattsson, M.. Object-oriented frameworks. Licentiate thesis, pp. 98, 1996.

[OJ93] William F.Opdyke and Ralph E.Johnson. Creating abstract superclasses by

refactoring. In Proceedings of the 21st Annual Computer Science Conference (ACM

CSC '93), pages 66-73,Indianapolis, IN, February 1993

[Pre95] W. Pree. Design Patterns for Object-Oriented Software Development. Addison-

Wesley, 1995.

[Rot17] Alexander Roth. Adaptable Code Generation of Consistent and Customizable Data

Centric Applications with MontiDex. Aachener InformatikBerichte, Software

Engineering, Band 31. Shaker Verlag, December 2017.

[Rum16] Bernhard Rumpe. Modeling with UML: Language, Concepts, Methods. Springer

International, pp. 231-257 July 2016.

[TrGa10] Kolovos, D.S., Rose, L.M., Drivalos Matragkas, N., Paige, R.F., Polack, F.A.C.,

Fernandes, K.J. (2010). Constructing and Navigating Non-invasive Model

Decorations. In: Tratt, L., Gogolla, M. (eds) Theory and Practice of Model

Transformations. ICMT 2010. Lecture Notes in Computer Science, vol 6142. Springer,

Berlin, Heidelberg. doi.org/10.1007/978-3-642-13688-7_10, pp. 138–152

[VFV06a] Gergely Varro, Katalin Friedl, and Daniel Varro. Adaptive Graph Pattern Matching for

Model Transformations using Model-sensitive Search Plans. Electronic Notes in

Theoretical Computer Science, 152:191–205, 2006.

[VlJo98] Vlissides, John (1998-06-22). Pattern Hatching: Design Patterns Applied. Addison-

Wesley Professional. pp. 85–101. ISBN 978-0201432930.

http://www.informit.com/store/pattern-hatching-design-patterns-applied-9780201432930
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/978-0201432930

