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mich, ein Exemplar der Seminararbeit fünf Jahre aufzubewahren und auf Verlangen dem
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Abstract

E�cient utilization of HPC clusters is crucial due to their high upfront costs and on-
going operational expenses. On the CLAIX systems at the RWTH Aachen University,
performance monitoring data is collected to analyze hardware utilization for this rea-
son. By predicting the power consumption and heat dissipation of the cluster with the
monitoring data, the cooling controls of the cluster could be optimized and automated.
To achieve this goal, it is first necessary to verify the reliability and correctness of the
data. This work aims to fill the gap by analyzing the reliability of the time series data
by searching for missing values. The correctness of the data is assessed by searching
for implausible values. This work also presents preprocessing methods to repair missing
and implausible values, as well as an analysis of the correlations between performance-
related and power-related metrics which could be valuable for future predicting modeling
approaches.
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1 Introduction

HPC clusters are expensive, both in terms of the initial purchase as well as the cost
of their operation and maintenance. Thus, it is desirable to ensure the hardware is
used e�ciently. Performance monitoring data of clusters can be useful to analyze the
utilization of the clusters hardware. Insight on cluster usage that is gained through
monitoring can help to make informed decisions about the future of their HPC systems,
like defining requirements for future acquisitions and helping to justify the total cost of
ownership (TCO) of a cluster to stakeholders. Monitoring data also serves to document
the performance metrics of research experiments and can be helpful for detecting per-
formance issues. A cluster-wide performance monitoring can also enable the detection
of malfunctions and failures of compute nodes.
The HPC cluster CLAIX-2018 at RWTH Aachen University uses non-invasive, back-
ground monitoring to collect the performance metrics of the entire cluster, which only
minimally impacts the performance of the cluster. The di↵erent metrics of the perfor-
mance monitoring data are gathered with various methods. Metrics from the CPUs,
caches, memory devices and power-related metrics are collected with Hardware Per-
formance Counters (HWPCs). Other metrics like disk or network-related metrics are
collected by the Linux kernel or by the distributed file system software. The IT-Zauber
research project of the RWTH Aachen University aims to improve the energy e�ciency
of hpc clusters by using performance monitoring data to develop digital twins of hpc
clusters [1]. These digital twins model the power supply, cooling components and job
load of hpc facilities. The digital twin has the potential to be used for a predictive anal-
ysis of the clusters power consumption and heat dissipation. By accurately predicting
future heat dissipation of the cluster based on the most recent monitoring data, the
cooling controls could be optimized and even automated. The available performance
monitoring data holds the potential to be used for an accurate modeling approach.
However, to achieve this goal, it is first necessary to assess the quality of the monitoring
data. While the measurements of HWPCs are often accurate, their reliability depends
on the architecture of the system being measured and on the tool used to access the
counters. The reliability of the other measurement techniques is also unknown.
This work aims to perform an Exploratory Data Analysis (EDA) of the performance
monitoring data of the CLAIX-2018 cluster, specifically to assess the correctness and
reliability of the monitoring data. If the EDA raises data quality concerns, then methods
for automatic preprocessing of the monitoring data need to be proposed. To support
predictive modeling in the future, this work also includes an analysis of the relationship
between performance and power supply metrics and searches for correlations. Chap-
ter 2 describes the architecture of CLAIX-2018 and explains the various metrics and
their di↵erent sources. Chapter 3 describes the methods used to detect missing and
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1 Introduction

invalid values across the various metrics. The chapter also covers how correlations be-
tween di↵erent metrics were examined. Chapter 4 presents the results of the methods
described in Chapter 3 and compares the reliability of the various metrics and draws
conclusions about the reliability of the di↵erent sources. This work concludes with a
summary of the di↵erent methods and their findings, as well as an outlook for future
work, in Chapter 5.
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2 Background

The upcoming sections will present the essential information for conducting the EDA
of the cluster monitoring data. The first section covers the architecture of the hardware
of the cluster from which the data is collected. This will be followed by an explanation
of the software which allows users to execute jobs on the cluster. It will also describe
how meta-data about the jobs are collected and stored. Subsequently, the third sec-
tion presents an overview of the di↵erent sources of performance-related metrics on the
cluster. The metrics, which are collected by each source, will also be listed. The final
section covers di↵erent benchmarks that can be used to gauge the maximum values the
cluster is capable of achieving across various performance metrics.

2.1 Hardware Architecture of CLAIX-2018

CLAIX-2018 is the current compute cluster of the RWTH Aachen University and op-
erates since February 2019 [2]. It is equipped with 1032 compute nodes. Each node
contains 2 Intel Xeon Platinum 8160 CPUs with 24 cores each at a base clock frequency
of 2.1GHz, as well as 192 GB of RAM [3]. Each node is split into 2 sockets. Each
socket has one CPU and its own dedicated memory. The cluster also contains 48 com-
pute nodes which are equipped with 2 NVIDIA Volta V100 GPUs that can be used as
accelerators for suitable applications.
The compute nodes are arranged in racks. The racks are split up into several rows
and each row contains 7 racks. Within each rack, there are 18 chassis. Each chassis
contains 4 nodes, meaning there are 72 nodes inside each rack. Every rack is supplied
with power by 2 Power Distribution Units (PDUs) and each chassis is connected to the
PDUs by a Power Supply Unit (PSU). The inside of a rack is shown in Fig. 2.1. The
racks are cooled by the sidecoolers which are placed in the gaps between the racks. The
leftmost rack in each row is only cooled by the one sidecooler to its right while the other
racks including the one at the right end of the row is cooled by two sidecoolers. The
structure of racks and sidecoolers in a row can be seen in Fig. 2.2. The sidecoolers use
air cooling to reduce the temperatures of the nodes. During the cooling cylce, the fans
of the sidecoolers blow air into the racks on each side of each sidecooler. The air enters
the rack in the front and then travels through the rack to the back where it returns to
the sidecooler. During this process, the air heats up which is why the air is the coldest
at the front of the racks and hotter at the back. The sidecoolers also use water cooling
to transport heat away. During the water cooling cycle, cold water enters each side-
cooler and flows through the sidecooler where it absorbs heat. The water then leaves
the sidecooler at a higher temperature compared to when it entered.
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2 Background

Figure 2.1: Front view of the inside of a rack row.

Figure 2.2: Front view of a row of racks and sidecoolers.
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2.2 SLURM

Figure 2.3: Collection of SLURM job metadata.

2.2 SLURM

The Simple Linux Utility for Resource Management (SLURM) is a job scheduler and
workload manager, and it is commonly used for supercomputers and compute clusters
[4]. On CLAIX-2018, users can use SLURM to request exclusive or non-exclusive access
to the compute nodes to execute their jobs on the cluster. Users can request access to
the compute nodes by submitting a jobscript to SLURM which contains the commands
that the user wants to run on the nodes. The jobscript should also include information
about the size of the job like the maximum runtime and the number of nodes that
SLURM has to allocate. SLURM manages the queue of pending jobs and allocates
nodes to users accordingly.
A Python script on the cluster regularly retrieves the data that SLURM tracks about
the jobs and sends it to a MariaDB database. This process is illustrated in Fig. 2.3.
For each job, the MariaDB contains the start and end time of its execution and the
resources the job was given as well as a copy of the jobscript.

2.3 Performance Data of the RWTH Cluster

The CLAIX Monitoring data is collected every minute by instances of Telegraf which
run on each node of the cluster. Telegraf is a server agent for collecting and sending
data from computer systems and sensors to databases [5, 6]. Time Series data is stored
in an InfluxDB instance which is a Time-Series Database (TSDB). Inside the InfluxDB
instance the data is split up into two databases. The database Cluster contains the
performance data of the nodes and the database Environment contains the operational
data from the cluster environment like the power consumption and information about
the cooling.
Most data in the Cluster database are measured for every node however some are
measured per socket and others others even for every single CPU core. Table 2.1 shows
the di↵erent metrics in the Cluster database, as well as the granularity and source of
their measurement. The following list describes the meaning of the individual metrics
in greater detail.
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2 Background

Table 2.1: Overview of metrics contained in Cluster database.

Metric Granularity Source Short Description

PSU Power per Chassis Ipmitool Power Consumtpion measured by
individual PSUs.

RAPL Power per Node Likwid Power consumption measured by
individual nodes.

Memory Bandwidth per Node Likwid Speed at which bytes can be writ-
ten into or read from the memory.

Infiniband Bandwidth per Node OS Speed of parallel read and write
operations between di↵erent com-
pute nodes.

Lustre Bandwidth per Node OS Speed of read and write opera-
tions on the parallel distributed
file system of the compute clus-
ter.

Active Cores per Node Likwid Number of active cores of each
node.

Node Temperature per Node lm-sensors Temperatures measured inside of
compute nodes.

Flops DP per Core Likwid Floating Point Operations of
Double Precision Datatypes (64
Bit).

Flops SP per Core Likwid Floating Point Operations of Sin-
gle Precision Datatypes (32 Bit).

CPI per Core Likwid Average number of clock cycles
per instruction.

Clock Frequency per Core Likwid Average number of clock cycles
per second.

L3 Miss Rate per Core Likwid Ratio of caches misses to total of
memory requests.

CPU Usage per Core OS Percentage of time during which
the CPU core is active.
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2.3 Performance Data of the RWTH Cluster

• Flops: The floating point operations per second refer to the number of mathemat-
ical operations performed with floating point datatypes, like doubles and floats.
The Flops for single precision datatypes (32Bit) and double precision datatypes
(64Bit) are measured separately.

• Clock Frequency: This metric refers to the number of instructions a CPU core
performs per second. This value often deviates from the base frequency of 2.1GHz
since the clock frequency can be increased dynamically up to 3.7GHz with Intel
Turbo-Boost. The frequency can also be dynamically reduced through Dynamic
Voltage and Frequency Scaling (DVFS) to optimize power consumption depending
on the required performance.

• Cycles per Instruction (CPI): CPI refers to the average number of clock cylces
a CPU core needs to complete an instruction.

• Memory Bandwidth: The memory bandwidth refers to the speed at which
bytes can be written into or read from the memory and is measured per node in
MegaByte per second (MB/s) with Likwid.

• PSU Power: PSU Power refers to the power consumption for each chassis and
is measured for each PSU.

• RAPL Power: RAPL Power refers to the power consumption that is measured
for every node.

• Lustre Bandwidth: The lustre bandwidth refers to the speed of read and write
operations on the parallel distributed file system of the compute cluster.

• Infiniband Bandwidth: InfiniBand is a high-speed, low-latency interconnect
that often used in high-performance computing environments. The Infiniband
Bandwidth refers to the speed of parallel read and write operations between dif-
ferent compute nodes.

• Node Temperature: refers to the temperature measured inside of the compute
nodes.

The Environment database contains the data that is measured by the devices surround-
ing the compute nodes like the PDUs and the sidecoolers.

• PDU Power refers to the consumption of the power that is used for the racks.

• several metrics from the sidecoolers

– Air and water temperature in Celsius at di↵erent times of the cooling cycle.
Air is measured at the front and the back at the rack. Water is measured
when it enters and when it leaves the sidecooler.

– Fan speed of the sidecooler in revolutions per minute RPM.
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2 Background

– The valve percentage determines to what degree the valve is open to let the
water enter the rack.

– The vent percentage determines how much air can enter the rack.

The monitoring data contains three types of metrics: performance, power supply and
cooling. Power supply metrics measure the amount of power which is consumed by the
hardware which is a result of the number and types of operations being performed as
well as the rate at which operations are performed [7]. Operations include mathematical
operations like the two types of Floating Point Operations and di↵erent types of memory
access operations which are measured in the bandwidth metrics. The rate at which
operations are performed is directly linked to the Clock Frequency. Other metrics like
the CPI, Memory Bandwidth and the L3 cache metrics also influence the rate, as they
can be bottlenecks for the execution of operations. Most of the performance related
metrics are measured with Likwid [8]. Likwid is performance tool suite for the GNU
Linux operating system. Likwid contains a tool called likwid-perfctr that can access and
read performance counters of Intel, AMD, ARM and POWER processors and Nvidia
GPUs. Performance Counters are special registers of modern multicoreprocessors which
provide a low-level, hardware based mechanism for counting the occurrences of specific
performance related events within computer systems. On CLAIX-2018, Likwid is used
by the Telegraf instance to measure the performance counters of all CPUs. These
measurements are collected every minute. Some metrics, like the Flops and CPI, are
measured for every CPU core while others, like the Memory Bandwidth, are measured
per socket and later aggregated inside the InfluxDB to node level.
The collection process of the performance data is illustrated in Fig. 2.4. Other metrics
are collected through the OS. The Infiniband Bandwidth is collected by the OS through
the Infiniband Driver HFI1 and written into logfiles on the cluster. Telegraf then reads
the files and stores the data in the InfluxDB.
The values for the Lustre Bandwidth are provided by the Lustre clients that run on
each node. The metric is collected for each Lustre mount. Each socket has one Lustre
mount, so there are two values for every node. Each mount provides the information
about the amount of data that was written and the amount that was read. Inside of the
InfluxDB the values are aggregated to node level by taking the mean number of each
bytes either written and bytes read and converting the results into the rate of change
per second, resulting in the bandwidth.
The values of the PSU metric are reported by the Intelligent Platform Management
Interface (IPMI). IPMI is an open standard for monitoring and logging the activity of
hardware that is implemented independent of the main CPU, BIOS, and OS. Ipmitool is
a utility program for devices that support IPMI. Ipmitool provides a simple command-
line interface which can be used to read and display the data that is monitored by IPMI.
The Telegraf instances on the cluster run ipmitool to retrieve the power consumption
of the PSUs and store the data in the InfluxDB in the PSU Power metric.
The node temperature values that are contained in the Node Temperature metric are
collected with Linux-Monitoring Sensors (lm-sensors) which is an open-source software-
tool that can be used to monitor temperatures, voltage, humidity, and fans.
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2.4 Benchmarks

Table 2.2: Standard Kernels of the STREAM benchmark.

Kernel name Array Operation

Copy c[j] = a[j]
Scale b[j] = scalar * c[j]
Add c[j] = a[j] + b[j]
Triad a[j] = b[j] + scalar * c[j]

The PDU and sidecooler data is queried directly from the PDUs and sidecoolers using
the Simple Network Management Protocol (SNMP) which is a standard protocol for
collecting and organizing information about managed devices on IP networks. The
PDUs measure the power consumption accurate to 1%.

2.4 Benchmarks

This section covers the di↵erent benchmarks and tools which were used to measure
the highest possible values of various metrics. These values were used to assess the
plausibility of the values in the time series data and to clean implausible values. The
Intel Memory Latency Checker (Intel MLC) [9] is a tool for measuring the memory
latency and bandwidth of computer systems. The Intel MLC provides several options
to measure the latency or bandwidth at di↵erent levels of granularity. The option
max bandwidth measures the peak bandwidth of a system with varying amounts of read
and write operations. The max bandwidth option includes the bandwidth with only read
operations as well as with a 3:1, 2:1 and 1:1 ratio of read and write operations.
Another benchmark that was employed is the STREAM benchmark. The STREAM
benchmark is a tool that is commonly used to measure the sustained memory bandwidth
of computer systems [10]. During execution, STREAM initializes several arrays of the
same size and applies di↵erent combinations of read, write and mathematical operations
to them. The combinations of operations are called kernels and the memory bandwidth
is measured separately for each one. The STREAM benchmark contains 4 kernels, shown
in Table 2.2. The STREAM benchmark is parallelized such that the workload can be
spread between all of the individual CPU cores of a node. Executing the benchmark
in parallel increases the rate at which memory accesses are performed and allows to
measure the maximal memory bandwidth of the entire node.
LMBench was also used for this work. LMBench is benchmark suite for UNIX [11].
Most benchmarks in the suite are used to measure memory bandwidth or latency. The
benchmark lat mem rd is used to measure memory load latency which refers to the time
needed for the CPU to retrieve data from memory of the subsystem. To perform the
measurement, the benchmark initializes an array and then loads individual values with
a specific o↵set to each other, called stride length, into the CPU. The array size and
the stride length are two mandatory arguments that must be provided when executing
lat mem rd. The array size and stride length are passed as arguments because they
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need to be adjusted depending on the characteristics of the system. The array size
determines whether the benchmarks measures the load latency of the di↵erent caches
or of the main memory. To measure the load latency correctly, the stride length must
be set to a value large enough such that loading one value does not load the next one
through cache prefetching.
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2.4 Benchmarks

Figure 2.4: Collection of performance monitoring data through Telegraf.
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3 Methods

The primary goal of this EDA is to determine what kind of preprocessing is necessary
to prepare the Cluster Monitoring data for statistical modeling. At first, it is necessary
to verify the integrity of the time-series data by detecting the amount of missing values
for the various metrics. The data will also needs to be checked for impossible values.
These refer to values that exceed what the cluster can achieve. To do this, the limits
for the various metrics must be determined. All values that exceed these limits can
be considered invalid and need to be filtered out or repaired. Repairing the dataset
by filling in the missing and impossible values through various methods will be the
main component of the data preprocessing. The EDA also includes other checks for
the correctness of the data which are necessary for the metrics that do not possess a
theoretical or experimental peak performance. The last step of the EDA will focus on
correlations between the power consumption and the performance related metrics. The
goal is to find the metrics with the highest correlation to the power consumption since
these metrics should be the most relevant values for the statistical modeling of the power
consumption and heat dissipation.

3.1 Detection of Missing Data

Determining the precise number can be achieved by calculating the expected values for
a selected timeframe and the designated number of nodes and subtracting the actual
number of values in the database. The number of expected values can be calculated by
multiplying the number of minutes in the timeframe with the selected number of devices
that are supposed to measure the metric every minute. For example, to calculate the
expected number of Floating Point Operationss (Flops) for a single rack over the course
of the week, we would need the amount of minutes contained in a weeks and the number
of cores that the Flops are measured on. Since a rack has 72 nodes with 48 cores each,
the total number of expected values equals:

72 ⇤ 48 cores ⇤ 7 ⇤ 24 ⇤ 60minutes = 34, 836, 480 expected values

This calculation can be used to create an overview of the amount of missing values
across all metrics. This overview could be used to compare the integrity of metrics
which are tested with di↵erent methods or with di↵erent granularities.

13



3 Methods

3.2 Detection of Impossible Values

To identify impossible values in the dataset, it is necessary to first establish the max-
imum possible values for the various measurements. Some of the maximum possible
values can be inferred with knowledge of the hardware. In these cases the maximum
values can either be obtained directly from the hardware specifications or calculated
based on them. The maximum possible values of the Memory Bandwidth and CPI
could be derived from hardware specifications, however, employing benchmarking can
yield a more accurate representation of what can be achieved on the cluster.

3.2.1 Identification of Theoretical Peak Performance

For the Clock Frequency metric the limit can be set to 3.7GHz which is the maximum
clock frequency of Intel the Xeon Platinum 8160 CPUs on the cluster with Turbo-Boost
[12]. The limits for the Infiniband and Lustre Bandwidth can both be set to 6.25GB/s
which is the limit for parallel I/O and network bandwidth with the Fat-Tree network
topology on the cluster. For the Floating Point Operations the limit can be calculated.
For other metrics the maximum possible value cannot be determined exactly but can
be roughly tested with specific benchmarks. The theoretical limit for the Flops on a
single CPU core can be calculated by multiplying the peak clock frequency of the CPU
together with the number of operations per cycle. The maximum operations per cycle
can be calculated by multiplying the number of possible multiply and add operations
per cycle with the vectorization factor. Vectorization is a technique in which multiple
operations are combined into one by treating the data as vectors. The CPUs on the
cluster support AVX-512 vectorization which means that the maximum size of a vector
is 512Bit [12, 13]. Therefore the vectorization factor for double precision datatypes with
a size of 64Bit is 8 and the factor for single precision datatypes which are 32Bit is 16.
The amount of possible multiply and add operations per cycle depends on the number
of Fuse-Multiply-Add FMA units which are units that can perform one multiply and
one add floating point operation per cycle and the CPUs on the cluster each have 2
FMA units which means the number of operations per cylce is 4. Theoretically, the
peak clock frequency for the CPUs on the cluster is 3.7GHz, however, this frequency
cannot be reached when vectorization is used, especially if multiple cores are active.
The peak clock frequency when using AVX-512 with a single active core is 3.5GHz.

Maximum Flops = Frequency ⇤ Vector ⇤ FMA

Flops DPmax = 3.5GHz ⇤ 8 ⇤ 4 = 112GFlop/s

Flops SPmax = 3.5GHz ⇤ 16 ⇤ 4 = 224GFlop/s

(3.1)

With this information, 112GFlop/s can be employed as the limit for Flops DP, and
224GFlop/s for Flops SP to search the dataset for impossible values.
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3.2 Detection of Impossible Values

3.2.2 Identification of Experimental Peak Performances with
Benchmarking

There are two metrics that require benchmarking to find their maximum possible value
on CLAIX: These are the Memory Bandwidth and CPI. However, the Memory Band-
width must be di↵erentiated between the read bandwidth and the write bandwidth.
Because of this, it is necessary to run two di↵erent benchmarks, one with pure read op-
erations and another with pure write operations. The Intel Memory Latency Checker has
a max bandwidth option that performs various measurements with di↵erent proportions
of read and write operations. The max bandwidth option does contain a measurement
with only read operations. After running the Memory Latency Checker 10 times on the
cluster, each time on one exclusive node the mean read bandwidth of all the runs was
222,260.29MB/s and the maximum of the runs was 231,848.9MB/s. It should be rea-
sonable to employ 232,000MB/s as the limit for the read bandwidth as it is the slightly
rounded up maximum of all the runs.
Since the Memory Latency Checker does not have an option to measure the pure write
bandwidth, another benchmark must be employed for this purpose. The STREAM
benchmark is commonly used to measure the bandwidth of compute clusters. However,
none of the four kernels is suited to purely measure the write bandwidth. For this
reason, I changed the Copy kernel such that it sets the array element to a literal value
instead of another array element then it becomes a pure write operation and can now
be used to determine the limit of the write bandwidth. After executing the STREAM
benchmark on one node with all 48 cores a total of 10 times, the maximum bandwidth
for the new fill kernel was 152,897.4MB/s. The rounded up value of 153,000MB/s was
then used as the limit for the write bandwidth.
To find the maximum possible value for the CPI, it is necessary to find a benchmark that
maximizes the duration of its instructions. For this purpose, the lat mem rd benchmark
from the LMBench suite was chosen, as the benchmark’s instructions are prolonged since
the data for each instruction must be retrieved from the systems memory. To make the
instructions as long as possible, the data must be retrieved from the main memory,
not from the caches. To achieve this the data must be larger than the capacity of the
largest cache. The L3 Cache of the compute cluster of CLAIX-2018 has a capacity of
16MByte. To measure the highest possible CPI values, the benchmark was executed
with array sizes of up to 4GByte. The measurement was performed with Likwid. The
lat mem rd benchmark was executed with likwid-perfctr and after executing the bench-
mark 10 times, the highest measured CPI value was 58.6. This value was rounded up
and 60 was then used as the limit for the CPI. To summarize, all the limits that were
established for performance related metrics are shown in Table 3.1. These limits were
then used to verify whether there are impossible values in the dataset and count the
number of impossible values for the various metrics and compare the results. After the
detection of missing and impossible values, di↵erent methods were tested to repair them
in the preprocessing stage to improve the data quality.
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Table 3.1: Established limits for identifying impossible values.

Metric Granularity Limit Unit

Clock Frequency per Core 3.7 GHz
Flops SP per Core 112 GFlop/s
Flops SP per Core 224 GFlop/s
CPI per Core 60
Memory Bandwidth - Read per Host 232000 MB/s
Memory Bandwidth - Write per Host 153000 MB/s
Lustre Bandwidth per Host 6.25 GB/s
Infiniband Bandwidth per Host 6.25 GB/s
CPU Usage per Core 100 %

3.3 Preprocessing

The goal of the preprocessing is to improve the quality of the data which is reduced
by the existence of both missing and impossible values. One approach would be to
simply ignore the missing values and filter out the impossible values with the established
limits. However, if too many individual values on the core or node level are missing
throughout the time series data, that could falsify the total activity on the rack level
that is observed at any given time. And this might negatively impact the correlations
that can be observed between the power related metrics and the power consumption
and temperature related metrics and therefore decrease the usefulness of the data when
it comes to predicting power consumption and heat dissipation in the future. Because
of this, it is necessary to fill the gaps that are caused by missing and impossible values
and attempt to reconstruct the original information that was lost. In the future, the
preprocessing should be applied when collecting samples for statistical modeling. It
should also be applied to the recent monitoring data when it is used to predict the
power consumption and heat dissipation of the cluster.

3.3.1 Repair of Missing and Impossible Values

Missing values result in entire rows being absent from the database, meaning the time-
stamp and device information are missing as well. To repair the missing values, it is
first necessary to recreate the missing rows with the correct timestamps and device
information. The actual values in the newly recreated rows are first set to NaN so that
they can easily be identified and repaired. The impossible values of a metric are also
set to NaN so that they can be repaired alongside the missing rows. For this process,
I first checked if all of the nodes that are expected to be in the dataset are present.
This is necessary because sometimes nodes can be shut down for periods of time. And
if one or multiple nodes are missing then it would be a waste of resources to insert an
entire time series of NaN values into the datasets since those values cannot be repaired
anyway. Now that the dataset is filled with NaN values, the pandas library can be
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employed since it o↵ers functions specifically to fill in NaN values in dataframes. In
total, 3 di↵erent strategies were used to fill in the NaN values:

• Constant Fill: The NaN values are filled with a constant values, in this case
zero.

• Forward Fill: Each NaN value is set to the last valid value in the time series.
Consecutive NaN values will be set to the same value.

• Linear Interpolation: The NaN values are interpolated between the previous
and the next valid value. Consecutive NaN values will be evenly spaced on the
linear slope between the previous and next valid value.

These di↵erent strategies can be applied to the dataframe with the pandas.fillna as
well as the pandas.interpolate method. When using Constant Fill all the NaN values
will be always be corrected. However, since Forward Fill requires a previous valid value
and Linear Interpolation requires both a previous and a next value, these methods are
not able to repair NaN values at the edges of the selected timeframe. To determine the
e↵ectiveness of both methods, the number of NaN values was counted before and after
applying the repair operation. After applying the three di↵erent methods, the impact of
the fill operations on the time series data will be compared. The distribution of values
can be compared between the di↵erent strategies as well as with the raw data. This can
be achieved visually with the use of histograms but also with the use of the five-number
summary which is a set of descriptive statistics that is commonly used to provide a
statistical overview of a dataset. The five-number summary contains the 0%, 25%,
50%, 75%, and 100% quantiles of a dataset. Ideally, the impact of the preprocessing
methods on the distribution of the metrics should be as small as possible.

3.4 Sanity Checks

In previous sections, the correctness of the various metrics could only be tested through
comparison to the peak performance of the cluster. However, the metrics listed below are
unique since it is possible to formulate concrete expectations of how they should behave
compared to other metrics based on the knowledge of the architecture of CLAIX-2018.

• The power consumption measured by each the PDUs, the PSUs and with RAPL.

• The sidecooler temperatures which measure the air temperature at the bottom and
at the top of each rack. The sidecooler data also contains the water temperature
which measures the temperature of the water entering the sidecooler as well as
the water leaving it.

• The Sensor LT temperatures which measure the temperature inside the compute
nodes.

The following sections describe various sanity checks which were employed to verify the
correctness of these metrics.
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3.4.1 Comparison of Power Consumption Metrics

While the measurements PDU, PSU and RAPL all measure the power consumption on
the cluster, they each measure it at di↵erent levels of granularities. Each of the two
PDUs in each rack measures the power that they distribute to the PSUs. The PSUs
measure the consumption of the four nodes that are contained in their chassis while
RAPL measures the power consumption per node. However, RAPL only measures the
power consumption in parts of the node. To compare the three di↵erent metrics I
aggregated them to the rack-level to verify if the sums of the three metrics are equal to
one another. In theory, for each rack the sum of both PDUs should be equal to the sum
of the 18 PSUs and equal to power consumption of the 72 node measured with RAPL.
Since RAPL does not measure the entire power consumption of the nodes, it should be
expected for the RAPL measurement to be much lower than both PDU and PSU. PDU
and PSU should be noticeably higher and closer together and since the PDUs distribute
power to the PSUs, the power consumption of the PSUs cannot be higher than that
of the PDUs. To see if the power consumption metrics meet this expectation I plotted
their sums at individual timestamps against the time series.

3.4.2 Comparison of Sidecooler Temperatures

The sidecoolers measures four temperature values in total. The air and the water tem-
perature both have two di↵erent measurements, a cold and a warm value. The cold air
temperature is measured at the front of the rack and the warm at the back. For the
water temperature, the cold value refers to the temperature of the water entering the
sidecooler and the warm value measures the water leaving the sidecooler. Naturally, the
cold temperature is expected to be lower than its warm counterpart. Another expecta-
tion is that the air temperature is considerably higher than the water temperature since
the air is measured inside the rack and has direct contact to the source of the heat, the
nodes, while the water only flows through the sidecooler. To verify if the sidecooler data
meets these expectations, I compared the mean values of the sidecooler temperatures
for a few individual racks in a bar plot.

3.4.3 Comparison of Node Temperatures

The Sensors LT metrics measures the temperature for each of the 72 nodes within each
rack. The temperature is expected to increase with the physical height of the nodes in
the rack, since hot air rises to the top of the rack, making the air cooling less e↵ective. To
check if there are significant di↵erences between the temperatures of nodes in the same
chassis, the mean di↵erence between the maximum and minimum Node Temperature
values in each chassis was determined. The mean di↵erence turned out to be quite
high at 13.8 �C. Observing the minimum node temperatures revealed several extreme
outliers with relatively cold node temperatures of only 40 �C while the majority of the
temperatures was well above 60 �C. These outliers are most likely caused by inactive
nodes, which might have been in maintenance or shut down temporarily, and cooled
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down during this period. I decided to use both the maximum and mean value of the
node temperatures in each chassis for this sanity check. The comparison was performed
with the mean node temperatures of a one week long timeframe to compare the di↵erent
chassis temperatures based on their height.

3.5 Correlations between Metrics

To detect correlations between the performance related metrics and the power consump-
tion metrics, I decided to make use of the Pearson correlation coe�cient. The Pearson
correlation coe�cient is commonly used to test di↵erent metrics in a dataset for positive
or negative linear correlation [14]. The coe�cient of two features X and Y is calculated
by dividing the covariance cov(X,Y) of X and Y with the product of the standard de-
viations SX and SY of X and Y.

X = x1, ..., xn and Y = y1, ..., yn
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The coe�cient rXY produces results in the range between -1 and 1. If it equals 0, then
no correlation between X and Y exists. A value of 1 means that X and Y have a
strong positive correlation, meaning an increase in X causes an increase in Y. If rXY

equals �1, it signifies a strong negative correlation, indicating that as Y increases, X
decreases and vice versa.

3.5.1 Generation of the Correlation Matrix

To compare the Pearson correlation coe�cients of various performance metrics with
the power consumption during a selected timeframe, I aggregated the various metrics
so that each metric has one value for each timestamp. For most metrics, including
the power consumption metrics, I chose to use the sum of all measurements across all
devices for each timestamp. But, for the following metrics I used the mean across the
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devices instead. Other metrics count absolute values that were measured during each
minute which makes it reasonable to use their sum to aggregate the values. But since
these metrics are already mean values it makes more sense to use their mean.

• CPI

• Clock Frequency

• Memory Bandwidth

• Infiniband Bandwidth

• Lustre Bandwidth

• Node Temperature

I used the pandas.corr method to calculate the Pearson correlation coe�cient for
the aggregated metrics. This function returns a matrix which contains the coe�cient
for every pair of metrics in the original data it is used on. The matrix contains all
of the correlation coe�cients between the three power consumption metrics and all
performance metrics and can be used to determine which metrics show the highest
positive or negative linear correlation.
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This chapter presents the results of the EDA which was described in Chapter 3. The
first two sections cover the detection of missing and impossible values and compare the
correctness of the di↵erent metrics as well as their sources. These sections are followed
by a comparison of the reparation strategies which aim to reconstruct the missing and
impossible values. The fourth section covers the results of the sanity checks and the final
section discusses the correlations that were found between the performance and power-
related metrics. All of the tables and figures presented in this chapter were created
with a single rack, rack 605, during a timeframe of one week, from the 1st to the 7th
September 2023.

4.1 Overview of Missing Data

Table 4.1 shows an overview of the amount of missing values in the monitoring data.
RAPL Power andMemory Bandwidth are measured per node with Likwid and both have
the same amount of missing values. The PSU, PDU, Lustre and Infiniband Bandwidth
measurements all have no missing values during the selected time period and all of
them are measured by the OS. This shows that measurements taken with Likwid are
less reliable than other methods and might require more preprocessing. Among the
measurements that are made with Likwid there seems to be a big discrepancy between
those measured per node and those per CPU core. The metrics Flops DP and Flops
SP, Clock Frequency, CPI and CPU Usage are the only ones measured per CPU core
and they have the highest percentage of missing values. All five are missing roughly
9% of their values while RAPL Power and Memory Bandwidth are measured per node
and both are only missing 0.68% of their values. The Flops DP, Clock Frequency and
CPI stand out, as all three metrics contain the exact same number of missing values
with 3,158,246. A closer inspection of these metrics revealed that all of the 3,158,246
missing values occurred at the same timestamps and on the same hardware.

4.2 Overview of Impossible Values

The following Table 4.2 shows an overview of the amount of missing values in the
monitoring data. Most of the metrics in the overview have a total of zero impossible
values which should make them very reliable. The only two exceptions are the CPI
and Clock Frequency. The Clock Frequency only shows a very small percentage of
impossible values with only 0.0055%. Nonetheless, these impossible values still lower
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Table 4.1: Overview of missing values for rack 605.

Measurement Device Expected Number Missing Missing

of Values Values Percentage

PDU PDU 20158 0 0.0%
PSU Chassis 181440 0 0.00%
RAPL Node 725760 4957 0.68%
Memory Bandwidth Node 725760 4957 0.68%
Lustre Node 725760 0 0.00%
Infiniband Node 725760 0 0.00%
Active Node Node 725760 4957 0.68%
Flops DP CPU Core 34836480 3158246 9.06%
Flops SP CPU Core 34836480 3097169 8.90%
CPI CPU Core 34836480 3158246 9.06%
Clock CPU Core 34836480 3158246 9.06%
CPU Usage CPU Core 34836480 48 0.0001%
L3 Miss Rate CPU Core 34836480 3182208 9.13%

Table 4.2: Overview of impossible values for rack 605.

Metric Device Limit Total values Found Percentage

Read Bandwidth Node 232,000MB/s 720803 0 0.0000%
Write Bandwidth Node 153,000MB/s 720803 0 0.0000%
Lustre Node 6.25GB/s 725760 0 0.0000%
Infiniband Node 6.25GB/s 725760 0 0.0000%
Flops DP CPU Core 112GFlop/s 31678234 0 0.0000%
Flops SP CPU Core 224GFlop/s 31739311 0 0.0000%
CPI CPU Core 60 31678234 6872 0.0217%
Clock Frequency CPU Core 3.7GHz 31678234 1755 0.0055%
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Table 4.3: Overview of values that cannot be repaired with FFill and Linear Interpola-
tion.

Metric NaN values FFill Interpolation

RAPL 4957 4896 98.77% 4896 98.77%
Flops DP 3158246 239696 7.59% 239696 7.59%
Flops SP 3097169 242007 7.81% 242007 7.81%
CPI 3158246 239697 7.59% 239697 7.59%
Clock Frequency 3158246 239820 7.59% 239820 7.59%
Read Bandwidth 4957 4896 98.77% 4896 98.77%
Write Bandwidth 4957 4896 98.77% 4896 98.77%

the correctness of the data and should therefore be repaired. Especially since the limit
for the Clock Frequency was derived through information about the hardware and is
most likely correct. In the case of the CPI, the amount of impossible values is also
quite low with 0.53%. It is possible that the amount of impossible values is actually
lower, since the benchmark that was used in Section 3.2.2 was not designed to detect
the highest CPI values. Because of this the limit that was chosen might be too low.
However, when looking at the distribution of the CPI, we can see that there are many
values that are magnitudes higher than the current limit of 15, with quite a few even
going above 1000. Because of this, we can be certain that there are impossible values
in the CPI metric that must be corrected.

4.3 Results of Reparation Strategies

As described in Section 3.3, I used three di↵erent methods to reconstruct the missing
and impossible values that were detected in Section 4.1 and Section 4.2. In this section,
I will explore the e↵ectiveness of the di↵erent methods and compare their impact on the
data. The method Constant Fill can be used to fill in all of the missing and impossible
values since it always inserts the constant value 0 and does not need to take the posi-
tion of the missing value or its previous and subsequent values into account. The same
cannot be said for the other methods FFill and Linear Interpolation. These methods
cannot be used to fill in values at the edges of a dataset which might be problematic if
there are many consecutive values. Table 4.3 shows the amount of values that could be
repaired with FFill and Linear Interpolation. In the case of Linear Interpolation, the
metrics measured per core all had roughly 93% of their missing values filled in. How-
ever, because of the large size of these metrics, a large absolute number of values remains
missing. For all of the four metrics, there are still roughly 240,000 values left that could
not be repaired. In total, the number of missing values of the metrics measured per
core was reduced from 8.9% to 0.27%. For the other two measurements RAPL Power
and the Memory Bandwidth, things look very di↵erent. For both, only 2.3% of their
missing values could be repaired. The most likely explanation would be that the major-
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Figure 4.1: Plot of the number of missing values across the time series for metrics RAPL
Power, Memory Bandwidth and Flops DP.

ity of missing values is at the edges of the measurement period since FFill and Linear
Interpolation require the surrounding valid values to fill in the NaN values. Both met-
rics only had 0.68% of their data missing and 0 impossible values. It appears that the
missing values for the two metrics were not as spread out and more concentrated at the
edges. To confirm this, I plotted the number of missing values for each timestamp for
the Memory Bandwidth and for RAPL Power, shown in Fig. 4.1. For comparison I also
included the metrics Flops DP in the graph. In the plots RAPL Power and Memory
Bandwidth behave exactly the same. They both are missing exactly one missing data
point from the beginning of the timeframe up until the middle where they have a short
peak of 2 missing values and after that there are no more missing values. Assuming that
these values are all missing from the same node, this would explain why so many values
could not be filled with FFill and Linear Interpolation. The most likely explanation
why so many values from the same node are missing consecutively, is that a job is being
executed on that node that wants to use Likwid manually. If users use Likwid manually
during a job, the performance counter monitoring will be disabled during the runtime
of the job. It is also possible for individual nodes to be missing from the monitoring
data for extended periods of time when they are undergoing maintenance. Temporarily
missing nodes are relatively common in the monitoring data, as can be seen in Fig. 4.2
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Figure 4.2: Number of missing nodes in Memory Bandwidth in four di↵erent one week
timeframes.

which shows the number nodes for the metric Memory Bandwidth in the surrounding
weeks of the usual timeframe. Unfortunately, it is not possible for the Memory Band-
width and RAPL Power to be filled because there are no valid values for these metrics
at the beginning of the timeframe. This result matches quite well with the number
of unchanged values when applying the two methods which was 4896. The timeframe
contains 7 days ⇤ 24 hours ⇤ 60 minutes = 10800 data points per node and since one
node is missing its values for roughly the first half of the timeframe, these values should
be the 4896 values that could not be corrected through FFill and Linear Interpolation.

To compare the impact of the reparation strategies on the metrics, I first compared
the means of the metrics before and after applying the three strategies, as can be seen
in Table 4.4. The metrics RAPL Power and Memory Bandwidth only show minor devi-
ations within their mean for all three strategies, for all the three the mean value deviates
less than 1% from the initial value. This minor di↵erence stems from the fact that these
metrics only had 0.68% of their data missing. FFill and Linear Interpolation also had
less of an impact on the mean value than Constant Fill did which can be explained by
the fact that these methods could only repair around 2% of the missing values of these
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metrics.

For the other metrics, the mean deviates much more for all three methods than it
did with RAPL Power and Memory Bandwidth. Especially Constant Fill mean values
deviate much from the initial mean values, close to 10% in fact.
The mean values of the Clock Frequency, Flops DP and SP all change similarly. Con-
stant Fill reduced the mean the most, of course. But the mean of FFill and Linear
Interpolation was also decreased and both are actually closer to the Constant Fill value
than to the original. The Flops values deviate between 6 and 7% while the Clock
Frequency deviates around 3%. In general, the mean values of FFill and Linear Inter-
polation are very close to each other for almost every metric. The only metric, where
the di↵erence in deviation of FFill and Linear Interpolation is more than 1%, is the
CPI. The CPI stands out in general, as it is also the only metric where FFill and Linear
Interpolation increase the mean value and not decrease it. FFill increases the mean
value by 18.25% while Linear Interpolation increases it by 13.06%. These deviations
are also the largest absolute deviations of all the metrics. With Constant Fill however,
the mean decreases, as it does for the other metrics. If FFill and Linear Interpolation
increase the mean value, then this must mean that the majority of missing values had
surrounding values above the initial mean. To confirm this, I plotted the distribution
of only the formerly missing CPI values after applying the methods FFill and Linear
Interpolation. The results can be seen in figure Fig. 4.3. The figure shows that the
distributions when applying FFill or Linear Interpolation both look quite similar. In
both histograms, the occurrences of values above the original mean of 1.64 increases
considerably. At the same time, the amount of values between 0 and 1 does not appear
to increase at all. The mean of only the reconstructed values is 1.98 for both methods
which is higher than the mean value of the raw values, being 1.64.
To gain more information about the changes that come with the reparations strategies I
compared the Five-Number Summary Statistics before and after applying the strategies
FFill and Linear Interpolation, especially to find out more about what might cause the
decrease of the mean values. The results can be seen in Table 4.5.

Table 4.4: Overview of deviations to the mean value caused by Constant Fill, FFill and
Linear Interpolation.

Metric Unit Initial Mean Constant Fill FFill Lin. Inter.

RAPL W 286.34W �0.68% �0.0067% �0.0067%
Flops DP MFlop/s 443.60MFlop/s �9.06% �7.17% �7.90%
Flops SP MFlop/s 83.96MFlop/s �8.89% �6.37% �7.80%
CPI 1.64 �10.17% 18.25% 13.06%
Clock Frequency MHz 2563.61MHz �9.26% �3.21% �3.03%
Read Bandwidth MB/s 24,310.97MB/s �0.68% �0.0085% �0.0085%
Write Bandwidth MB/s 6783.47MB/s �0.68% �0.0084% �0.0084%
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Figure 4.3: Histogram showing the distribution of CPI values after the preprocessing
during the timeframe. The original mean is 1.64. The CPI metric has
0.0217% impossible values and 9.06% missing values.
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Table 4.5: Overview of deviations in the five-number summary statistics after applying
Constant Fill, FFill and Linear Interpolation.

Metric Method Unit 0% 25% 50% 75% 100%

RAPL Raw W 36.87 289.78 324.72 332.69 392.12
Power FFill W 36.87 289.76 324.72 332.69 392.12

Interpolation W 36.87 289.76 324.72 332.69 392.12
Read BW Raw MB/s 4.22 2095.42 17399.32 40245.69 209262.64

FFill MB/s 4.22 2092.09 17396.50 40244.67 209262.64
Interpolation MB/s 4.22 2092.09 17396.50 40244.67 209262.64

Write BW Raw MB/s 4.33 628.12 4902.65 11010.30 76420.14
FFill MB/s 4.33 628.12 4902.65 11010.30 76420.14
Interpolation MB/s 4.33 628.12 4902.65 11010.30 76420.14

Flops DP Raw MFlop/s 0.00 32.30 102.34 215.26 96103.72
FFill MFlop/s 0.00 11.45 87.03 203.78 96103.72
Interpolation MFlop/s 0.00 11.69 87.03 203.72 96103.72

Flops SP Raw MFlop/s 0.00 0.00 0.00 0.00 38953.84
FFill MFlop/s 0.00 0.00 0.00 0.00 38953.84
Interpolation MFlop/s 0.00 0.00 0.00 0.00 38953.84

CPI Raw 0.25 0.55 0.66 0.97 3990.49
FFill 0.25 0.56 0.68 1.26 59.99
Interpolation 0.25 0.56 0.68 1.30 59.99

Clock Raw MHz 644.00 2554.70 2639.23 2717.46 3942.43
Frequency FFill MHz 644.00 2529.84 2632.13 2716.52 3500.00

Interpolation MHz 644.00 2527.38 2630.73 2714.82 3500.00
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The five-number summary of the metrics RAPL Power, Flops SP, Clock Frequency and
the Read and Write Memory Bandwidth remains almost entirely the same when apply-
ing the methods, deviating less than 1% from the original values if at all. The metric
Flops SP stands out from the others, as the majority of values appear to be zero, in-
dicated by the 75% quantile of 0MFlop/s. This is most likely caused by the fact that
users of the cluster typically prefer double precision datatypes for their calculations.
The maximum values of Clock Frequency and CPI is reduced from implausible values
and now matches their respective limit. The distribution of values only changes signifi-
cantly for Flops DP and for the CPI. The upper quartile of the CPI increased from 0.97
to 1.26 and 1.3, meaning that the repaired values are on average slightly higher than the
median of the original value. For Flops DP the opposite is true, the lower and upper
quantiles and the median have all been decreased with the biggest change in the lower
quartile which is almost reduced to a third from 32MFlop/s to roughly 11MFlop/s in
both cases.
Overall, the preprocessing methods FFill and Linear Interpolation keep the distribution
of most metrics very similar. These two methods are certainly preferable to Constant
Fill which seems much more likely to falsify the distribution of metrics. In theory, Lin-
ear Interpolation should yield more accurate results by blending between the previous
and next valid value. However, the method is limited, as it requires both a previous
and next valid value. Especially the next valid value might not always be available, e.g.
when applying the preprocessing methods to the most recent monitoring data during
predictive modeling. Going forward, it might be advantageous to combine FFill and
Linear Interpolation. Linear Interpolation could be used first for more accurate results.
Afterwards FFill could be used to fill invalid values without a previous valid value.

4.4 Sanity Checks

In this section, I will go over the results of the sanity checks which were discussed in
Section 3.4. The first subsection will cover the di↵erences in the power consumption
measured by the PDUs, PSUs and with RAPL. The second subsection will focues on
the comparison of the di↵erent sidecooler temperatures. The third and final section
will show the comparison of node temperatures at di↵erent heights. While these sanity
checks cannot prove the absolute correctness of the data, they can help to determine
whether or not the data aligns with our expectations on the rack level. If these data
do not behave as expected, it would greatly diminish the confidence in the reliability of
the data.

4.4.1 Comparison of Power Consumption

Fig. 4.4 shows the di↵erences in power consumption between the three di↵erent metrics.
The PDUs consistently measured the highest power consumption across the entire time-
frame. For the entire time period, the PSU values are only slighty smaller than those of
the PDUs. The mean of the PDU metric is 33,564.39W, while the mean PSU value is
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Figure 4.4: Comparison of power consumption metrics: PDU, PSU and RAPL.

6.5% lower at 31,387.76W. The RAPL Power values are significantly lower than both
the PDU at and PSU values throughout the entire timeframe. This is reflected in the
mean RAPL Power value of 20,476.12W which is 39% lower than the mean PDU value.
When only examining the graph, it is not possibly to say exactly that the PDU values
are always higher than the PSU values. Throughout the entire timeframe there are 49
timestamps out of the total 1440 timestamps with higher PSU power consumption than
PDU. This means that 3.4% of the timestamps do not show the desired behavior. This
unexpected behavior might be caused by fluctuations in the exact timing of measure-
ment readings between PSU and PDU. Overall, the power consumption metrics align
with the expectations that were established in Section 3.4.1.

4.4.2 Comparison of Sidecooler Temperatures

The bar plot in Fig. 4.5 shows the mean temperatures of the water and air in the cooling
cycle of the sidecoolers. The cold air metric refers to the air temperature measured at
the front of the rack where the fans are, the warm air temperature to the air measured
at the back. The cold water temperature is taken where water enters the rack, the
warm one is taken when water leaves the rack. The mean of the cold air temperature
is roughly 11 degrees lower than the warm temperature. For the water temperature,
the cold value is roughly 12 degrees lower than the warm temperature. When looking
at the five-number summary of the temperatures in Table 4.6, it can be observed, that
in both cases the minimum of the warm temperatures is several degrees higher than
the maximum cold temperature. This shows that the sidecooler temperatures meet the
expectations established in Section 3.4.2. When comparing the cold air and water and
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Figure 4.5: Plot of the mean sidecooler temperatures of rack 605.

Table 4.6: Five-number summary of sidecooler temperatures (in Celsius).

Metric Min 25% Quantile Median 75% Quantile Max

Air Cold 31.9 32.9 33 33.1 34.2
Air Warm 46.3 53.2 55 55.4 56.5
Water Cold 19.6 22.1 22.1 22.2 23.6
Water Warm 32.3 33.9 34 34.2 35.3
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Figure 4.6: Mean node temperatures at di↵erent chassis heights.

the warm air and water temperature, it is clear that the air temperature is significantly
higher than its water temperature counterpart. This is also in line with the expectations
for the sidecooler data.

4.4.3 Comparison of Node Temperatures

Fig. 4.6 and Fig. 4.7 shows the mean and maximum node temperatures of each chassis
of rack 605 plotted against the physical height of the chassis. While there there is
a general trend of the mean temperature rising with the chassis height, as seen in the
regression line, it is far less linear than initially expected, which is most likely caused by
the outlier values of inactive nodes. The maximum values display an even stronger trend
upwards. However, the graph still displays multiple instances of temperatues at higher
chassis heights being lower than those of lower chassis heights. This e↵ect could also
be caused by those nodes being inactive for some time during the week. Another factor
might be the placement of the sidecooler fans. Each sidecooler has 6 evenly spaced fans
which would likely result in an uneven cooling of the 18 chassis in one rack. However,
in general, these finding still meet the expectation from Section 3.4.3.
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Figure 4.7: Maximum node temperatures at di↵erent chassis heights.

4.5 Correlation Matrix

Fig. 4.8 shows the Pearson correlation coe�cients between the power consumption met-
rics and the performance-related metrics in the form of a matrix which was created in
Section 3.5. The metrics with the highest correlation to the power metrics are the Node
Temperature, the CPU Usage, the number of active cores and the Clock Frequency. This
makes sense because the number of active cores, CPU Usage, the Clock Frequency can
be viewed as direct indicators of the activity level and performance of the cluster which
should causally be related to the power consumption. On the other hand, the Node
Temperature can be seen as the result of high power consumption and performance
which explains the high correlation. The L3 Miss Rate stands as the only metric with
strong negative correlation of up to �0.83 since a high miss rate will slow down the
execution of instructions and thereby decrease the power consumption. The CPI has
a lower but still significant amount of negative correlation. This can be explained by
the fact that a higher CPI value means the CPU is idling while waiting for memory
and therefore not able to perform instructions which should cause a decrease in power
consumption. The Memory and Infiniband Bandwidth show similar levels of moderate
positive correlation.

4.5.1 Comparison of Correlations after applying Repairs

Previously, I only looked at the correlations of the performance data with the power
consumption before applying the preprocessing methods. Table 4.7 shows the Pearson
correlation coe�cient of the metrics that were repaired during the preprocessing. For
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simplicity, the table only shows the correlation coe�cients with the power consumption
metric PDU since the di↵erences of the coe�cients between the power consumption met-
rics were only minor in Section 4.5. The changes when applying the di↵erent methods
are mostly minor. Constant Fill does not change any of the coe�cients in a significant
manner. FFill and Linear Interpolation also only show minor e↵ects on most metrics.
Both slightly increase the negative correlation of Flops DP. Otherwise, the CPI and
Clock Frequency stand out. The correlation changes from �0.32 to �0.48 with FFill
and �0.49 with Interpolation which is almost a 50% increase. The Clock Frequency
coe�cient decreases from 0.83 to 0.77 with both methods. These two metrics whose
coe�cients change the most are also the only two that possess impossible values and
both have roughly 9% missing values which explains the larger deviations relative to
other metrics.

Table 4.7: Pearson correlation coe�cient with the PDU consumption before and after
filling missing and impossible values.

Metric Raw Constant Fill FFill Interpolation

Flops DP -0.026 -0.026 -0.03 -0.028
Flops SP 0.23 0.23 0.23 0.23
Mean CPI -0.32 -0.32 -0.48 -0.49
Mean Frequency 0.83 0.83 0.77 0.77
Mean Read Bandwidth 0.53 0.53 0.53 0.53
Mean Write Bandwidth 0.42 0.43 0.42 0.42
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Figure 4.8: Heatmap of Pearson correlation coe�cients between performance-related
and power consumption metrics.
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5 Conclusion

This work presents the results of the exploratory data analysis of the CLAIX-2018 moni-
toring data. The analysis focusses on the completeness and correctness of the data. Data
of individual racks was analyzed within limited timeframes, usually a one-week period,
to represent the overall data characteristics, as conducting a cluster-wide analysis across
the entire time series was considered impractical. While the quantity of missing values
for most metrics was either zero or very close to it, the metrics measured with Likwid
per CPU core which are Flops DP and SP, CPI and Clock stood out with high quantities
of missing values up to 9.06%. Whenever possible, the maximum performance values
for various metrics were determined, either with theoretical limitations of the hardware
or through experimental benchmark measurements. These values were then used as lim-
its to search the metrics for impossible values. The majority of the metrics contained
exactly zero impossible values. The metrics CPI and Clock Frequency were the only
ones which had impossible values in the selected timeframes and both contained less
then 0.5% impossible values.
Both missing and impossible values were repaired by applying the fill methods Constant
Fill, Forward Fill and Linear Interpolation to the timeseries data. The e↵ects of the
repair on the distribution of the values were only minor. However, the repairs were
successful in increasing the completeness and quality of the data and should from now
on always be used as a preprocessing step before processing the monitoring data.
Besides the impossible values, the correctness of the data was also investigated through
various sanity checks. Some metrics, for which no peak performance value could be
determined, were compared either against directly related metrics or against general
expectations which were formulated based on the knowledge about the cluster architec-
ture. Overall, the behavior of the metrics matched the expectations. While the sanity
checks cannot definitively prove the correctness of the metrics, their alignment with
expectations at the rack level strongly supports their general accuracy.
The metrics were also investigated for linear correlations amongst each other. Specif-
ically, the data was searched for correlations between the power consumption metrics
and performance-related metrics.
The metrics with the highest degree of correlation were the Clock Frequency with

0.86, Active Cores with 0.94, the CPU Usage with 0.93 and Node Temperature with
0.89. The L3 Miss Rate also stood out with a high amount of negative linear corre-
lation of �0.83. Apart from these metrics, most metrics showed a medium amount of
correlation to the power metrics. While some performance metrics show far less corre-
lation than expected, the majority showed some amount of correlation with a select few
showing very strong linear correlation with the power consumption. In general, most
performance metrics act as indicators of power consumption and thus give hope for the
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potential of predictive modeling approaches of future works.
My subsequent bachelor thesis will cover the creation of such predictive statistical mod-
els for power consumption and heat dissipation. The benchmark suite SPEC-HPC will
be used to collect a representative data sample with varying load characteristics to cap-
ture all relevant types of system behavior in a condensed timeframe. The preprocessing
methods introduced in this thesis will be used to improve the data quality of the sample.
Afterwards, the bachelor thesis will aim to highlight the di↵erences of multiple modeling
approaches as well as di↵erences between the artificially collected data sample compared
to organically collected time series data.
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