Aufgaben zur Veranstaltung Lineare Algebra 2

Jaqueline Gottowik, Matthias Grajewski, Sina Mattfeld

Übungsblatt 2

Präsenzaufgaben

Aufgabe 1

Ein lineare Funktion $f: \mathbb{R}^3 \to \mathbb{R}^3$ sei definiert durch

$$f(x_1, x_2, x_3) = (2x_1, 4x_1 - x_2, 2x_1 + 3x_2 - x_3)^{\top}.$$

- (a) Zeigen Sie, dass f ein Isomorphismus ist.
- (b) Bestimmen Sie die Umkehrabbildung $f^{-1}(x_1, x_2, x_3)$.

Aufgabe 2

Es sei P^n der Vektorraum der Polynome vom $\operatorname{Grad} \leq n$ und

$$f: \begin{cases} P^n \to P^{n-1} &: n \in \mathbb{N} \\ P^0 \to P^0 &: n = 0, \end{cases}, \quad f(p) = p'.$$

Es ist also f die Abbildung, die einem Polynom seine Ableitungsfunktion zuordnet.

- (a) Zeigen Sie: f ist linear.
- (b) Untersuchen Sie f auf Injektivität und Surjektivität.
- (c) Bestimmen Sie Bild(f) und ker(f).

Aufgabe 3

Es sei $T: \mathbb{R}^3 \to \mathbb{R}^3$ die lineare Abbildung, die durch

$$T(x_1, x_2, x_3) = \begin{pmatrix} -x_1 + 2x_2 + x_3 \\ x_1 + x_2, \\ -2x_1 + x_2 + x_3 \end{pmatrix}$$

definiert ist. Geben Sie eine Basis und die Dimension von Bild(T) an.

Aufgabe 4

Die lineare Abbildung $f:\mathbb{R}^4 \to \mathbb{R}^3$ werde definiert durch

$$f(x_1, x_2, x_3, x_4) = \begin{pmatrix} 3x_1 - x_2 + x_4 \\ 4x_1 - 4x_2 - x_3 + 3x_4 \\ 2x_1 + 2x_2 + x_3 - x_4 \end{pmatrix} .$$

- (a) Geben Sie die Abbildungsmatrix von f an.
- (b) Bestimmen Sie die Dimension und eine Basis von Bild(f).

(c) Bestimmen Sie die Dimension und eine Basis von ker(f).

Hausaufgaben

Aufgabe 5

Geben Sie die Abbildungsmatrizen der folgenden linearen Abbildungen an.

(a)
$$f_1(x_1, x_2) = \begin{pmatrix} -x_2 \\ 3x_1 + 2x_2 \\ x_1 - x_2 \end{pmatrix}$$
 (b) $f_2(x_1, x_2) = \begin{pmatrix} x_2 \\ 0 \\ x_1 - x_2 \end{pmatrix}$

Aufgabe 6

Es sei $\lambda \in \mathbb{R}$ und $x \in \mathbb{R}^n$. Der Ausdruck λx kann als lineare Abbildung interpretiert werden:

- (a) $\mathbb{R}^n \to \mathbb{R}^n : x \mapsto \lambda x$
- (b) $\mathbb{R}^1 \to \mathbb{R}^n : \lambda \mapsto \lambda x$

Wie lauten in jedem Fall die Matrizen der zugehörigen Abbildungen?

Aufgabe 7

Sei

$$F\left(\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}\right) = \begin{pmatrix} x_1 + 2x_2 + 2x_3 \\ x_2 - x_3 \\ -x_1 + 2x_2 - 6x_3 \end{pmatrix}$$

- (a) Bestimmen Sie die Abbildungsmatrix von F.
- (b) Bestimmen Sie $\ker(F)$ und dessen Dimension.
- (c) Bestimmen Sie mit Hilfe der Dimensionsformel $\dim(\operatorname{Bild}(F))$.
- (d) Geben Sie eine Basis des Bildes an.

Aufgabe 8

Sei $0 \neq v \in \mathbb{R}^n$ gegeben. Die Abbildung

$$S: x \to x - 2 \frac{\langle v, x \rangle}{\|v\|^2} v$$

heißt Spiegelung an der Hyperebene $\langle x,v\rangle=0$. Hierbei stehen $\langle\cdot,\cdot\rangle$ für das Standardskalarprodukt und $\|\cdot\|$ für die euklidische Norm.

- (a) Verifizieren Sie durch eine Skizze im Fall n=2, dass es sich in der Tat bei S um eine Spiegelung handelt (Was sind Hyperebenen im Fall n=2?).
- (b) Zeigen Sie: S ist linear.
- (c) Das dyadische Produkt zweier Vektoren $v, w \in \mathbb{R}^n$ ist definiert als die Matrix A mit den Komponenten $a_{ij} = v_i w_j, \ 1 \le i, j \le n$. Sei weiter f(x) := Ax. Zeigen Sie: $\operatorname{rg}(f) = 1$.
- (d) Bestimmen Sie die Abbildungsmatrix von S. Verwenden Sie dazu das dyadische Produkt.
- (e) Ist S ein Isomorphismus? Wenn ja, bestimmen Sie die Umkehrabbildung. Andernfalls bestimmen Sie $\ker(S)$ und $\operatorname{Bild}(S)$!