
Essay
Aachen,
7th January, 2025

Essay

Development of remote control func-
tionalities and a long-term measurement
option for the handheld field strength
measurement device VIAVI ONA-800

by Marvin Rosenplänter
Matr.-Nr. 3592458

Supervised by:
Prof. Dr. Hans-Joachim Krause
Thanh Tam Julian Ta, M.Sc.

Eidesstattliche Erklärung

Hiermit versichere ich, dass ich die Seminararbeit mit dem Thema

Development of remote control functionalities and a long-term
measurement option for the handheld field strength measurement

device VIAVI ONA-800

selbstständig verfasst und keine anderen als die angegebenen Quellen und
Hilfsmittel benutzt habe, alle Ausführungen, die anderen Schriften wörtlich
oder sinngemäß entnommen wurden, kenntlich gemacht sind und die Arbeit
in gleicher oder ähnlicher Fassung noch nicht Bestandteil einer Studien- oder
Prüfungsleistung war. Ich verpflichte mich, ein Exemplar der Seminararbeit
fünf Jahre aufzubewahren und auf Verlangen dem Prüfungsamt des Fachbere-
iches Medizintechnik und Technomathematik auszuhändigen.

Name: Marvin Rosenplänter

Aachen, den Saturday 28th December, 2024

Unterschrift des Studenten

Rosenplanten

Summary

1 Abstract

The goal of this essay is the development of an application that extends and enhances
the functionalities provided by the field strength measurement device VIAVI ONA-800.
The device is used during the Institute of High Frequency Technology’s research on elec-
tromagnetic environmental impact and offers multiple measurement modes. However, the
functionalities of some could be expanded upon, which will be a central goal of the ap-
plication. This essay will discuss the devices functionalities, as well as its shortcomings,
in greater detail and will thereby derive requirements and constraints for the application.
Whereafter, the framework choice will be discussed and the eventual choice of Qt [Qt2]
will be substantiated. Specific implementation details will also be discussed in this es-
say, including, but not limited to, the internal representation of measurement options and
specific data structures necessary to efficiently render a spectrogram for the real-time spec-
trum visualization. Finally, this essay will show that the application, while satisfying all
requirements, outperforms the device’s logging functionality, which can be used to record
measurements.

Contents

1 Abstract

2 Motivation 1

3 Requirement Analysis 1
3.1 VIAVI ONA-800 . 1
3.2 Requirements and Constraints . 2

4 Identification and Choice of Tooling 6
4.1 Framework . 6
4.2 Language Selection . 7

5 Implementation 8
5.1 Remote Connection . 8
5.2 Operating the Device . 9

5.2.1 Persistence of Measurement Data . 11
5.2.2 Persistence of Measurement-Setups . 12

5.3 Graphical Representation . 13
5.3.1 Spectrum Analysis . 13
5.3.2 Real-time Spectrum Analysis . 15
5.3.3 5G NR Beam Analysis . 16

6 Conclusion 16

Bibliography 22

2 Motivation

The VIAVI ONA-800 is a handheld field strength measurement device, which is used
during research at the Institute of High Frequency Technology (IHF). It provides multi-
ple measurement modes, of which the Real-time Spectrum Analysis, Spectrum Analysis
and 5G NR Beam Analysis are particularly relevant for said research. In the Real-time
Spectrum Analysis and Spectrum Analysis modes, the device measures signals in an ad-
justable frequency spectrum. While long-term measurements for these modes would aid
the IHF’s research, the device does not support them for either. It instead allows users to
save the current measurement or record measurements using a logging function. However,
both functionalities are insufficient. Even though the 5G NR Beam Analysis mode does
support long-term measurements, the device displays the data in a way which requires
researchers to manually take notes. The device can be controlled remotely, which includes
reading its raw sensor data. It is therefore feasible to develop an application that en-
ables long-term measurements and visualizes 5G NR Beam Analysis measurements in the
desired way.

3 Requirement Analysis

3.1 VIAVI ONA-800

The IHF conducts research on electromagnetic environmental impact. Its current focus is
mobile telephony, specifically the current generation, 5G. In its research, the IHF uses the
VIAVI ONA-800, a modular measuring device produced by VIAVI Solutions ([Via]) that
provides multiple measurement and analysis modes. Only the following are relevant to this
essay: Spectrum Analysis, Real-time Spectrum Analysis and 5G NR Beam Analysis. The
Spectrum Analyser measures signals in an adjustable frequency spectrum. Additionally,
the resolution bandwidth (RBW) and video bandwidth (VBW) can be adjusted. Neither
will be discussed in greater detail, however both of them have an effect on the time
it takes for the device to measure the entire spectrum (sweep time). Larger sweep times
may result in shorter pulses not being detected correctly. The Real-time Analyser (RTSA)
offers a persistent power measurement in real time of an adjustable spectrum. It is used
to characterize signals with respect to their power, frequency and time. It can for example
be used to locate 5G signals. The 5G NR Beam Analysis’ EMF Analyser measures the
field strength of 5G Synchronization Signal Blocks (SSB) of a station. Additionally, it
decodes them and maps them to their respective Physical Cell IDs (PCI). While the device

1

3 Requirement Analysis

does allow for measurements to manually be saved in different formats, only the current
measurement can be saved this way. The device does offer a logging mode, which is only
available in certain measurement modes. The log file mostly contains binary data, which
the device can use to replay measurements like a video. Extracting the measurement data
from the log file into a useful format for analysis is not possible, as VIAVI Solutions does
not provide a tool to do so. While an application that allows users to operate the device
remotely does exist, it only allows for a remote-desktop connection and therefore does not
offer any functionality beyond what is already provided by the device. This means that
neither the device itself nor an application provided by the manufacturer offers a way to
measure field strength changes over time. In order to remedy this major drawback of the
device, an application, which allows for long-term measurements and their visualization,
should be developed.

3.2 Requirements and Constraints

In the following section, requirements and constraints of the application will be derived,
while their implementation will be discussed in chapter 5. Figure 3.1 shows an Unified

application

Make Measurement Load SetupApply Setup

Record Data

Save Data Query Data

Save Setup

Visualize Data Set Options

Researcher

VIAVI-ONA 800

«Dev i ce»

«include»

«include»«include»

«include» «include»

«include»

Fig. 3.1: Use case diagram of the application.

Modeling Language (UML) diagram, modelling the application’s use cases, which can be
grouped into three major functionalities that the application has to provide. The first of
these is enabling long-term measurements, which applies to the Spectrum Analysis and
Real-time Spectrum Analysis modes, as the device does not provide the functionality for

2

3.2 Requirements and Constraints

either. The processes that make up the first functionality are coloured in red. The second
functionality is the visualization of measurement data, coloured in green, while the third
is the handling of measurement setups, which includes saving, loading and applying the
setups. Processes belonging to the third functionality are coloured in blue. From these
functionalities, the first three requirements can be derived.

Functional Requirement 1: functional perspective

The application should enable the user to make long-term measurements.

Functional Requirement 2: functional perspective

The application should visualize measurement data during measurements.

Functional Requirement 3: functional perspective

The application should enable the user to handle measurement setups.

In the following, additional requirements, grouped by the aforementioned major function-
alities, will be derived, beginning with F.R. 1. As extensions of F.R. 1, the application
should allow the user to set a measurement’s duration (F.R. 4), as well as stop a currently
running measurement (F.R. 5), in case it was started erroneously. Furthermore, stopping
a measurement should not result in a loss of measurement data in case the measurement
was stopped manually.

Functional Requirement 4: functional perspective

The application should enable the user to set a measurement’s duration.

Functional Requirement 5: functional perspective

The application should enable the user to stop a running measurement, without
measurement data being lost.

In order to allow for intuitive operation and simplify the application’s visualization aspect,
it should include a Graphical User Interface (GUI). This GUI should provide input ele-
ments for the most used options (F.R. 6). However, it should not limit the options that can
be set to those that have a dedicated input element. In order to maximize the application’s
functionality, the GUI should instead provide an input field through which all commands
relevant to the current measurement mode, can be sent to the device (F.R. 7).

Functional Requirement 6: functional perspective

The application should contain input fields for the most used measurement options.

3

3 Requirement Analysis

Functional Requirement 7: functional perspective

The application should enable the user to send any command, valid in a relevant
measurement mode, to the device.

After specifying requirements pertaining to how the application can facilitate the process
of recording measurements, the following will explore how the application should persist
measurement data in order to simplify its analysis. From lightweight databases such as
SQLite to text based formats, there is a multitude of ways to store tabular data. However,
one format perfectly fits this use case, as it is extensively supported, simple and human-
readable, and is therefore easy to work with. The comma-seperated values (CSV) format
is used to store tables of data in textual form and can be imported in most programs
concerned with data analysis. While there is a standard for the format, in practice many
variants of the format are used, leading to some ambiguity as to what is and is not allowed
within CSV files. One ambiguity, especially relevant to this essay, is whether CSV files
may contain multiple tables. In this essay, files containing multiple tables are considered
valid CSV, as in this case post-processing is simplified by having the measurement option
table and measurement data both be contained in one file. The data should be saved at
regular intervals during a running measurement in order to prevent data-loss due to for
example loss of power (F.R. 10).

Functional Requirement 8: functional perspective

The application should store measurement-data in CSV files.

Functional Requirement 9: functional perspective

The application should store options that have an input field in the GUI, as well as
custom options that were used during a measurement in the beginning of the CSV
file.

Functional Requirement 10: functional perspective

The application should regularly save measurement data while it is being recorded.

After having specified more requirements related to making measurements, additional
requirements related to the application’s visualization capabilities will now be derived
(F.R. 2). Measurement data should be visualized by the application, in order to enable
users to immediately see abnormalities in the measurement and minimize the necessary
direct interactions with the device. During default real-time spectrum measurements,
the device visualizes the data as a line plot, however, the application should enable a
visualization similar to the spectrogram.

Functional Requirement 11: functional perspective

The application should visualize real-time spectrum measurements as a spectrogram.

4

Functional Requirement 12: functional perspective

The application should visualize spectrum measurements as a line plot.

Functional Requirement 13: functional perspective

The application should visualize emf-beam measurements as a table.

As the first two major functionalities have now been expanded upon, leaving only the
handling of measurement settings to be explored further, it will now be discussed in greater
detail. As stated in F.R. 3, the application should allow for the reuse of measurement
settings. Therefore, it must enable the user to save and load measurement setups. Setups
should consist of the mode they are meant to be used for, the measurement options required
by the GUI and the custom options provided by the user. Additionally, the application
should enable the user to apply the currently selected settings to the device in order to
ensure that they have the desired effect.

Functional Requirement 14: functional perspective

The application should enable the user to save setup files.

Functional Requirement 15: functional perspective

The application should enable the user to load previously saved setup files.

Functional Requirement 16: functional perspective

The application should enable the user to apply a setup to the device.

Functional Requirement 17: data perspective

The application should store the measurement mode, as well as required options
and custom options alongside their values in setup files.

After working out the requirements, the constraints will now be discussed. The application
should be able to run on a diverse set of platforms, as the type of device the application
needs to run on may change in the future. In order to ensure that the application can
run on many devices, a cross-platform framework should be used. Additionally, external
dependencies should only be used when strictly necessary, as they would also have to be
platform independent in order to satisfy Con. 1, and deploying them increases complex-
ity.

Einschränkung 1

The application should be able to run on Windows 10/11 (x86_64), Linux (x86_64,
arm64).

5

Einschränkung 2

The application should only use external libraries if it is not feasible to implement
the functionality manually.

4 Identification and Choice of Tooling

4.1 Framework

Given the considerable range of GUI frameworks, selecting an appropriate one can be
challenging. The number of frameworks is already greatly reduced by Con. 1, as frame-
works that are not cross-platform do not need to be evaluated. By only considering well
established frameworks, this number can be reduced further. As this project may be
expanded upon in the future, it is important to identify those that are likely to do so.
The only groups that are likely to work on the application in the future are the IHF’s
research assistants and mathematical-technical software development trainees. In order
to reduce the amount of frameworks that need to be considered even further, those that
do not support a language the trainees are likely to learn during their training are elim-
inated from consideration. Due to all trainees also studying Applied Mathematics and
Computer Science (B.Sc.) at the FH-Aachen, languages prevalent during the course of
study are particularly relevant to this discussion. Specifically Java and JavaScript are a
required part of it. In addition to these, trainees are likely to be sufficient in C++ and
Python, as learning C++ is encouraged and Python is used in multiple modules. Thus,
only well established frameworks available in Java, C++, JavaScript or Python remain in
consideration. The frameworks that will be considered are Qt (C++) [Qt2], GTK (C++)
[Tea], Kivy (Python) [Kiv], Electron (JavaScript) [Ele] and JavaFX (Java) [Jav], as all
are well-established and each relevant language is represented. Furthermore, criteria that
can be used to evaluate the aforementioned options need to be defined. The language
proficiency of trainees and research assistants may be used as such, as both might need to
extend the application in the future. Another important criterion is the degree to which
trainees or research assistants have experience with a framework. In order to estimate the
language proficiencies of research assistants and trainees, the relevant groups were asked
to rate their proficiency in the relevant languages on a scale from zero to three. They were
also asked to rate their level of experience with the preselected frameworks on the same
scale. Three trainees and two research assistants were questioned. Each groups language
proficiency results were summed up and are presented in table 4.1. Similarly, the results
of the framework experience survey are shown in table 4.2. As the criteria are deemed
equally important, a framework’s viability score is the unweighted sum of the language
proficiency score and the framework experience score that were just derived. The results
of this evaluation are shown in table 4.3 and indicate that Qt is the framework that should
be given precedence.

6

4.2 Language Selection

C++ Java JavaScript Python
Trainees 5 8 7 4

Research assistants 4 2 0 3
Sum 9 10 7 7
Table 4.1: Language proficiency survey results

Qt GTK Kivy Electron JavaFX
Trainees 2 0 0 2 0

Research assistants 1 0 0 0 1
Sum 3 0 0 2 1

Table 4.2: Framework experience survey results

Qt GTK Kivy Electron JavaFX
Language proficiency 9 9 7 7 10

Prior experience 3 0 0 2 1
Sum 12 9 7 9 11

Table 4.3: Framework comparison

4.2 Language Selection

Qt [Qt2] is primarily a C++ framework but provides Python bindings as well [Qtp].
Therefore, the language that best fits the requirements needs to be determined. With
languages as dissimilar as C++ and Python, differences in performance and memory con-
sumption have to be considered as criteria for language selection. Whether the amount
of measurement points per second that can be observed using Python differs from the
amount observable with C++ is of particular interest. This will be tested by continuously
querying the device for data while the device is set up to measure with a low sweep time
for five minutes. Because the device is queried much more frequently than it generates
new data, two things are being tracked during the measurements: firstly, the total number
of values received; secondly, the number of unique values received. As table 4.4 shows,

Unique measurements Total measurements Time (ms) Total points per second
Python 7499 16238 300009 54.125
C++ 7563 17129 300004 57.096

Table 4.4: Querying speed comparison in a five-minute interval Python vs. C++.

C++ only recorded slightly more points than Python. However, this can be explained by
the communication via TCP taking a majority of the time. The socket package [Pytb]
directly calls operating system APIs, thus the actual networking is handled by the op-
erating system, which is written in a much faster language. Therefore, the bulk of the
Python program’s runtime is not spend executing actual Python code. Taking this into
account, the difference between the two languages is more significant than it appears.
The result, however, is not surprising, given that Python can be orders of magnitude

7

5 Implementation

slower, as the benchmarks game made by the benchmarks game team at Debian shows
[Pyta]. In addition to performance criteria, the development process must also be exam-
ined. Development with Qt is primarily done in the Qt Creator [Qtd], a cross-platform
integrated development environment. The creator contains the design tab, where graph-
ical user interfaces can be designed. These designs are stored in .ui files, a XML based
format. During building, the .ui files need to be converted to C++ or Python files. Qt
Creator automatically handles these conversions, meaning neither language provides any
benefit in this area. When developing a C++ application with Qt Creator, compile times
can quickly be multiple minutes long when a full compilation is triggered, while Python
startup times remain fairly consistent. This can become an issue when changes to the
build pipeline need to be made, as is may become necessary to repeatedly recompile the
program. However, these changes rarely need to be made, and full compilations are also
rarely necessary, meaning Python has only a negligible advantage in this area. Given the
reasons outlined above, the application will be written in C++.

5 Implementation

5.1 Remote Connection

A connection to the device may be established via USB or by TCP connection using
either Ethernet or WIFI. Only the TCP connection via Ethernet will be discussed in
this essay. Qt already provides a class that handles the TCP connection; its QTcpSocket
class. It provides blocking functions that wait for specific events, such as receiving data.
However, their use is discouraged in the framework’s documentation, as they are unreliable
in certain circumstances, like the application running on Windows. As stated in Con. 1,
the application should explicitly be able to run on Windows, therefore, the aforementioned
functions will not be used. Instead, the connections state will be modelled as a finite state
machine. This approach is easily extendable and allows for simple state management
and automated reconnection, should the connection be lost unexpectedly. A complete
visualization of the states can be found in figure 5.1. The initial state is the Connecting
state, in which an attempt to connect to the device is made. This attempt may time
out, resulting in a change of state to ConnectionTimeout, which, when entered, aborts
the connection attempt and re-enters the Connecting state. The QTcpSocket may also
notice that an error occurred or that it is disconnected. In case of an error occurring, the
state changes to Error. When the Error -state is entered, an attempt to disconnect from
the device is made. If successful, the state changes to connecting and a new connection
attempt is made, else the DisconnectionTimeout-state is entered. When entering this
state, the socket is deleted and a new socket is created. Afterwards the Connecting-
state is entered and a new connection attempt is made. Deleting the socket is necessary,
because the framework’s event loop may otherwise become stuck in a state that does not
allow further connection attempts to succeed. If a connection attempt is successful, the
Connected -state is entered, from which, depending on calls to the classes methods, either

8

5.2 Operating the Device

Connecting

ConnectionTimeout

Error Disconnected

Connected

Reading Writing

DisconnectionTimeout

Read Written

Fig. 5.1: Connection State Diagram

the Reading- or Writing-state will be entered. Afterwards, in case the reading or writing
operation succeeds the Read - or Written-state is entered. From both the state is changed
to Connected. When in the Reading-, Write-, Read -, Written- or Connected -state a state
change to Error or Disconnected may occur.

5.2 Operating the Device

The device can be controlled remotely by sending commands to it. These commands
are documented and have a consistent structure. An exemplary command which sets the
real-time measurements starting frequency to 5 GHz is: REALtime:FREQuency:STARt 5
GHz. The commands consist of fragments separated by “:”. Commands that set an options
value are followed by the desired value. Those that query an options value are instead
followed by a “?”. A command must end with a newline character in order to be recognized.
Each fragment may consist of upper- and lowercase letters, however, only the uppercase
letters are necessary to identify the fragment. The device’s documentation specifies that
the lower case letters may be omitted, thus shortening the commands. However, in order
to increase readability, both for the user and during development, only the complete form
will be used. Malformed commands may result in the device no longer responding to
any other command. Sending them must therefore be avoided. The GUI provides input
fields for the most used settings; therefore, a setup file must include a value for these

9

5 Implementation

settings. Since there are relatively few required options, it is feasible to enforce their
correctness. Required options are represented internally by the class hierarchy shown in
figure 5.2. Some general classes, that are useful for adding additional required options are
already provided. OptionWithUnit, for example, provides a class from which other classes,
that represent options whose values have a unit, can inherit. The FrequencyOption class
is used to represent the FREQuency:STARt, FREQuency:STOP, FREQuency:CENTer
and FREQuency:SPAN options; additionally, it handles conversion between units. These
options are modelled together in the wrapper class RtsaFreqOptions, which automatically
updates the other options when one of them is changed. For example, in case the starting
frequency is changed the center frequency and frequency span need to be adjusted as well
in order to keep all options consistent. To enable users to use the full functionality of the

Option

name: QByteArray
getSetCommand(): QByteArray
getName(): QByteArray
serialized(): QString

ValueOption

value: QByteArray
parseValue(): void {const QByteArray&}
query(): QString

CommandOnlyOption

serialized(): QString

NumericOption
T

T numericValue

OptionWithUnit
T

asBaseUnit(): T
asPair(): pair<T,QString>
unit(): QString
parse(): void {const T, const QString&}
toUnit() : void {const QString&}

FrequencyOption

asBaseUnit(): T
asPair(): pair<T,QString>
unit(): QString
parse(): void {const T, const QString&}
toUnit() : void {const QString&}

Fig. 5.2: UML class diagram of the Option classes

device, as well as allowing them to save their complete measurement setups within the
application (F.R. 14), the GUI also provides a text input field through which the user can
enter additional commands (F.R. 7). The input field allows entering arbitrary text. In
order to reduce the likelihood of sending malformed commands, user-provided commands
are validated. During validation, each provided line is verified to be one of the possible
commands, by comparing it to a pre-generated list of all possibly relevant commands.
The list was generated using a Python script by parsing the command documentation
and isolating the commands that belong to one of the relevant modes. However, it is not
feasible to validate the arguments of each user-provided command within the scope of this
essay.

10

5.2 Operating the Device

5.2.1 Persistence of Measurement Data

Measurement data is saved as CSV files (F.R. 8) in the application’s savedata subdirectory.
The files consist of two tables, which are separated by a blank line. The first table contains
the measurement options that were used, including their values, as per F.R. 9. It is
prefixed accordingly by the header “option,value”. In addition to measurement options,
this table also contains additional information such as its duration and starting datetime.
The second table contains the measurements values, prefixed by a fitting header. In
the Real-time Spectrum Analysis and Spectrum Analysis modes, the data has headers
consisting of the frequencies the measurements were taken at. When in 5G NR Beam
Analysis mode, the header consists of all SSB and PCI pairs that occurred during the
measurement. Exemplary save files of a real-time analysis and a 5G NR beam analysis
can be seen in listings 5.1 and 5.2 respectively. In order to satisfy F.R. 10, 5G NR Beam
Analysis data is written to file after every measurement. Even though writing to disk
is a slow process, doing so does not risk missing new measurements because the device
generates new data only once every two seconds in this mode. Saving every measurement
immediately is not possible for the other modes, as the device generates data much more
frequently. The application buffers the measurements and only writes to a file when the
buffer size surpasses one megabyte, thereby still offering protection against data loss. The
specific buffer size ensures that in practice at most the last ten seconds of a measurement
are lost, which is deemed exceptable.

1 option ,value
2 datetime ,Thu Dec 5 15:35:05 2024
3 duration ,300
4 MODE ,realtimeAnalyzer
5 REALtime:FREQuency:CENTer ,5325
6 REALtime:FREQuency:SPAN ,50
7 REALtime:FREQuency:STARt ,5300
8 REALtime:FREQuency:STOP ,5350
9 REALtime:RBW ,3

10 REALtime:TRAce:SELect ,Trace01
11
12 5300000000 ,5300062500 ,5300125000 ,5300187500 ,...
13 -69.6990620900936 ,-69.7224995900936 ,-69.7576558400936 ,

-69.7928120900936 ,...
14 -68.3826558400936 ,-68.3826558400936 ,-68.3943745900936 ,

-68.4178120900936 ,...
15 -69.4178120900936 ,-69.4764058400936 ,-69.5232808400936 ,

-69.5701558400936 ,...
16 ...

Listing 5.1: Real-time Spectrum Analysis save file example

1 option ,value
2 datetime ,Mon Dec 9 11:32:50 2024
3 duration ,300
4 EMF:FREQuency:CENTer ,3574.56
5 EMF:FREQuency:STARt ,3524.56
6 EMF:FREQuency:STOP ,3624.56
7

11

5 Implementation

8 260(1) ,260(2) ,260(0) ,260(3) ,260(4) ,260(6) ,260(5)
9 -86.21258004893201 ,-98.58935289370777 ,-100.4800816729178 ,

-105.6342560308601 ,-108.305205842014 ,-110.0361573080027 ,
-110.1330062275053

10 -86.21258004893201 ,-98.58935289370777 ,-100.4800816729178 ,
-105.6342560308601 ,-106.7800828905056 ,-110.0361573080027 ,
-109.0955254409092

11 -86.21258004893201 ,-98.58935289370777 ,-100.4800816729178 ,
-105.6342560308601 ,-106.2261475232816 ,-108.5728725027861 ,
-108.783421286506

12 -86.21258004893201 ,-98.58935289370777 ,-100.4800816729178 ,
-105.6342560308601 ,-106.2261475232816 ,-108.5728725027861 ,
-107.2354536215282

13 ...

Listing 5.2: 5G NR Beam Analysis save file example

5.2.2 Persistence of Measurement-Setups

Measurement setups have to be stored persistently in order to satisfy requirements F.R. 15
and F.R. 14. They are stored in the subdirectory setup_files of the application’s directory.
Each setup is saved in a file prefixed by spectrum, realtime, or emfbeam, depending on the
setup’s measurement mode, followed by the setup’s name and the .txt file extension. This
makes it easier to find a specific file in the GUI’s dropdown menu. Setups are saved in a text
based format, as listing 5.3 shows. The first line begins with #mode , followed by either
REALtime, SPECtrum, or EMF:NRBEam, identifying the measurement mode the file can
be used for. The commands following the first line are those that have a corresponding
input field in the GUI, such as the starting frequency REALtime:FREQuency:STARt.
These are followed by #customOptions, marking the end of the specifically implemented
command and the beginning of the custom commands that users may provide in the GUI.
Commands are separated by “=” from their value; if a command does not set a value, the
“=” is immediately followed by a newline character. In addition to satisfying F.R. 17, this
makes for an easily human-readable format.

1 #mode REALtime
2 REALtime:FREQuency:STARt=5.3 GHz
3 REALtime:FREQuency:STOP=5.35 GHz
4 REALtime:FREQuency:CENTer=5.325 GHz
5 REALtime:FREQuency:SPAN=50 MHz
6 REALtime:RBW=3 MHz
7 REALtime:SCALe:AUTO=
8 #customOptions
9 REALtime:TRAce:SELect Trace01

Listing 5.3: Setup file example

12

5.3 Graphical Representation

5.3 Graphical Representation

After examining how the device is operated remotely, this section will outline how mea-
surement data is visually represented in the application. First, however, the GUIs general
structure will be examined. As figure 5.3 shows, the GUI consists of two major sections:
the visualization section to the left and the settings bar on the right. The latter consists
of multiple sections, that are shown in figure 5.4 as coloured boxes. The connection’s sta-
tus is shown at the top, highlighted by the yellow box. At the bottom the measurement
settings, such as its save file, are grouped together, highlighted by the green box. It also
includes fields that allow the user to set a measurement’s duration, as required in F.R. 4,
and a button to stop an ongoing measurement, as per F.R. 5. Options pertaining to the
measurement setup can be found in the blue box, as well as a button that enables the
user to apply the setup to the device (F.R. 16). It also contains the setup options that
have their own input fields as specified in F.R. 6, which are shown in the red box. These
are the only element, of the sidebar that are subject to change, depending on the selected
measurement mode. After examining the GUI’s general structure, the following sections
will explore how the measurement data is visualized in each mode.

Fig. 5.3: GUI in Spectrum Analysis mode (Linux version)

5.3.1 Spectrum Analysis

Drawing the spectrum modes plot is more complex because the plotting modules Qt pro-
vides are too slow to keep up with the incoming data. While there are libraries that
provide plots for technical applications such as Qwt [Qwt], Con. 2 states that external

13

5 Implementation

Fig. 5.4: Sidebar close up (Linux version)

dependencies should only be used when necessary. Therefore, the plot must be drawn
manually using features already provided by Qt. Qt provides multiple classes for handling
image data; of these QPixmap is the class best suited to this particular use case, as it is
optimized to show images on screen [Qtqc]. It can be displayed by setting it as the pixmap

14

5.3 Graphical Representation

property of a QLabel [Qtqa]. As the data should be visualized as a line plot (F.R. 12),
it can be decomposed into two parts: the background consisting of the axes, their labels
and a grid meant to increase readability, and the line connecting the measured points.
While the background only has to be updated when the user changes the plots scale, the
line has to be redrawn for each measurement. Not re-rendering the background at every
frame greatly increases performance. Since the background can be reused, it is stored in a
separate QPixmap. When a new measurement is registered, the background is copied into
the display QPixmap and the lines connecting the data points are rendered on top, using
the drawLines function provided by QPainter. In addition to the plot, the display section
for spectrum measurements also contains input fields that allow the user to update the
section of the y-axis that is shown. The entire section can be seen in figure 5.5.

Fig. 5.5: Spectrum measurement (Windows version)

5.3.2 Real-time Spectrum Analysis

The Real-time Spectrum Analysers data has to be visualized as a heatmap, as specified by
F.R. 11. Since Qt does not provide a module to draw heatmaps, the heatmap will have to
be rendered manually as well. Like the previous section, this will be done by drawing on
a QPixmap and displaying it in a label. Unlike the plot in previous section, the real-time
spectrums heatmap does not require axes. It consists solely of points coloured according
to the signal strength of the corresponding frequency at a point in time. Qt does not
provide a way to generate the type of colour gradient required, thus, a colour gradient
needs to be generated. In order to generate the gradient, colours are treated as points
in a colour space with (red, green, blue) coordinates. A gradient of n colours, between
colours �⃗� and �⃗� can then be generated by taking colours spaced across the line connecting
them. This results in (⃗𝑎+ 𝑖/(𝑛−1)* (⃗𝑏− �⃗�))𝑛−1

𝑖=0 as the sequence of colours in the gradient.

15

However, as figure 5.6 shows, this method results in gradients with a very narrow range
of colours, making them difficult to read. In order to remedy this, the following method
is used. An array of different colours the gradient should contain is defined. Then,
beginning with the second colour, the gradient from the previous to the current colour is
generated using the method outlined above. The generated gradients are then merged in
the order they were generated in, resulting in a final gradient that smoothly transitions
between the colours defined above. This method results in gradients that are much more
readable by providing a greater variety of colours, as figure 5.7 shows. As the gradients
size is determined during development and the gradient does not need to be modified
after initialization, it can be generated at compile time. This means that the generated
gradient will be contained in the executable and does not need to be generated at runtime.
To efficiently render the measurement points, they need to be grouped by colour and be

Fig. 5.6: Gradient from yellow to red Fig. 5.7: Gradient between multiple colours

stored contiguously in memory to facilitate the use of the drawPoints function provided
by QPainter [Qtqb]. Since only a certain number of measurements should be rendered, a
data structure which allows for efficient deletion of old measurements and adding of new
measurements is necessary. One such structure is a queue. Specifically, an implementation
that uses a circular buffer, since the data has to be laid out contiguously. When storing
the points for each colour separately in circular buffers, one only needs to keep track of the
amount of points that were added to each colour per measurement in order to drop the
correct amount of points from each colour and add the newest points afterwards. Similarly,
the point count for each colour per measurement is also stored in a circular buffer. The
display section of the real-time mode also includes input elements in addition to the plot.
These enable the user to either set the plots scale statically or enable dynamic scaling.
The section is shown in figure 5.8.

5.3.3 5G NR Beam Analysis

Representing the 5G NR Beam Analysis data is the simplest as it can simply be represented
in a table (F.R. 13). The data will not need to be updated many times per second, thus,
the table class provided by the framework is sufficient. The table consists of three columns:
the first simply being an index, the second being the PCI and SSB index and the third
being the maximum, as can be seen in figure 5.9. This representation is easily extendable,
as one can simply add another column if, e.g., the average value should also be tracked.

16

Fig. 5.8: Real-time measurement (Windows version)

Fig. 5.9: 5G NR Beam measurement section (Windows version)

17

6 Conclusion

6 Conclusion

After deriving requirements for the application in chapter 3, choosing a framework in
chapter 4 and discussing the implementation of the application in chapter 5, this chapter
will provide this essay’s conclusion and give an outlook on future work. The application
fully satisfies the requirements that were derived in chapter 3. Furthermore, the applica-
tion satisfies both constraints, as Con. 1 was a major factor during framework selection
and the choice to manually draw the necessary plots, instead of relying on an external
library, was made in order to satisfy Con. 2. However, in order to evaluate the applica-
tion’s usefulness for making long term measurements, a comparison to the device itself is
needed. Comparing the application’s performance to the device’s is challenging, as the
device does not provide the same functionality. Nevertheless, as stated in section 3.1, it
provides logging functionality that records measurements and can therefore be compared
to the application’s ability to make long term measurement. In order to compare them,
each recorded a persistent real-time spectrogram for a duration of five minutes. Even
though the data recorded by the device can not be accessed directly, the number of mea-
surements is displayed in its Real-time Spectrum Replayer. While the device recorded
1528 measurements during a five-minute period, the application was able to record 2998
measurements. Therefore, the application would be superior to the devices logging mode
even if the manufacturer published a tool which allowed users to extract measurement data
from the log files. It can therefore be concluded that the application represents a major
improvement of the VIAVI ONA-800’s functionality. While the application fully satisfies
the requirements, there are additional functionalities that could be implemented, leaving
room for future work. For example more of the measurement options could be integrated
into the GUI. As mentioned in section 5.2, sending malformed commands to the device
must be avoided. However, the application still allows for some malformed commands to
be sent to the device, as it does not validate the arguments of custom commands. This
could be remedied in the future. Furthermore, the application could be extended to allow
users to select the unit in which measurement data should be represented in a save file, as
the device supports multiple units as well.

18

List of Figures

3.1 Use case diagram of the application. 2

5.1 Connection State Diagram . 9
5.2 UML class diagram of the Option classes . 10
5.3 GUI in Spectrum Analysis mode (Linux version) 13
5.4 Sidebar close up (Linux version) . 14
5.5 Spectrum measurement (Windows version) 15
5.6 Gradient from yellow to red . 16
5.7 Gradient between multiple colours . 16

5.8 Real-time measurement (Windows version) 17
5.9 5G NR Beam measurement section (Windows version) 17

19

List of Tables

4.1 Language proficiency survey results . 7
4.2 Framework experience survey results . 7
4.3 Framework comparison . 7
4.4 Querying speed comparison in a five-minute interval Python vs. C++. . . 7

20

Listings

5.1 Real-time Spectrum Analysis save file example 11
5.2 5G NR Beam Analysis save file example 11
5.3 Setup file example . 12

21

Bibliography

[Ele] Build cross-platform desktop apps with JavaScript, HTML, and CSS | Electron — elec-
tronjs.org. https://www.electronjs.org/. [Accessed 16-12-2024].

[Jav] JavaFX — openjfx.io. https : / / openjfx . io/. [Accessed 16-12-2024]. (Visited on
12/16/2024).

[Kiv] Kivy: Cross-platform Python Framework for NUI — kivy.org. https://kivy.org/.
[Accessed 16-12-2024]. (Visited on 12/16/2024).

[Pyta] Python 3 vs C++ g++ - Which programs are fastest? (Benchmarks Game) —
benchmarksgame-team.pages.debian.net. https : / / benchmarksgame - team . pages .
debian.net/benchmarksgame/fastest/python3- gpp.html. [Accessed 26-11-2024].
(Visited on 11/26/2024).

[Pytb] socket — Low-level networking interface — docs.python.org. https://docs.python.
org/3/library/socket.html. [Accessed 26-11-2024]. (Visited on 11/26/2024).

[Qt2] Qt | Tools for Each Stage of Software Development Lifecycle. en. url: https://www.
qt.io/ (visited on 11/04/2024).

[Qtd] Embedded Software Development Tools & Cross Platform IDE | Qt Creator — qt.io.
https://www.qt.io/product/development-tools. [Accessed 26-11-2024]. (Visited on
11/26/2024).

[Qtp] Python UI | Design GUI with Python | Python Bindings for Qt — qt.io. [Accessed 04-
11-2024]. url: https://www.qt.io/qt-for-python (visited on 11/04/2024).

[Qtqa] QLabel Class | Qt Widgets 6.8.0 — doc.qt.io. https://doc.qt.io/qt-6/qlabel.html.
[Accessed 28-11-2024]. (Visited on 11/28/2024).

[Qtqb] QPainter Class | Qt GUI 6.8.0 — doc.qt.io. https://doc.qt.io/qt-6/qpainter.html.
[Accessed 11-11-2024].

[Qtqc] QPixmap Class | Qt GUI 6.8.0 — doc.qt.io. https://doc.qt.io/qt-6/qpixmap.html.
[Accessed 28-11-2024]. (Visited on 11/28/2024).

[Qwt] Qwt User’s Guide: Qwt - Qt Widgets for Technical Applications — qwt.sourceforge.io.
https://qwt.sourceforge.io/. [Accessed 28-11-2024]. (Visited on 11/28/2024).

[Tea] The GTK Team. The GTK Project - A free and open-source cross-platform widget toolkit
— gtk.org. https://www.gtk.org/. [Accessed 16-12-2024]. (Visited on 12/16/2024).

[Via] VIAVI Solutions Inc. | — viavisolutions.com. https : / / www . viavisolutions . com.
[Accessed 11-12-2024]. (Visited on 12/11/2024).

22

https://www.electronjs.org/
https://openjfx.io/
https://kivy.org/
https://benchmarksgame-team.pages.debian.net/benchmarksgame/fastest/python3-gpp.html
https://benchmarksgame-team.pages.debian.net/benchmarksgame/fastest/python3-gpp.html
https://docs.python.org/3/library/socket.html
https://docs.python.org/3/library/socket.html
https://www.qt.io/
https://www.qt.io/
https://www.qt.io/product/development-tools
https://www.qt.io/qt-for-python
https://doc.qt.io/qt-6/qlabel.html
https://doc.qt.io/qt-6/qpainter.html
https://doc.qt.io/qt-6/qpixmap.html
https://qwt.sourceforge.io/
https://www.gtk.org/
https://www.viavisolutions.com

	1 Abstract
	2 Motivation
	3 Requirement Analysis
	3.1 VIAVI ONA-800
	3.2 Requirements and Constraints

	4 Identification and Choice of Tooling
	4.1 Framework
	4.2 Language Selection

	5 Implementation
	5.1 Remote Connection
	5.2 Operating the Device
	5.2.1 Persistence of Measurement Data
	5.2.2 Persistence of Measurement-Setups

	5.3 Graphical Representation
	5.3.1 Spectrum Analysis
	5.3.2 Real-time Spectrum Analysis
	5.3.3 5G NR Beam Analysis

	6 Conclusion
	Bibliography

