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1 Vorwort

In der vorliegenden Arbeit wird die Kryptographie mit elliptischen Kurven vor-
gestellt. Insbesondere wird das Diffie-Hellman-Protokoll betrachtet. Dabei wird
ausgenutzt, dass auf den Kurven eine algebraische Struktur (Gruppenstruktur)
besteht. Somit kann man mit Punkten auf der Kurve

”
plus rechnen“, ähnlich

wie man es intuitiv mit ganzen Zahlen tut. In der Kryptographie ist die Kor-
rektheit der Algorithmen von äußerster Bedeutung. Das motiviert eine rigorose
mathematische Auseinandersetzung mit den elliptischen Kurven. Darüber hin-
aus soll eine zufriedenstellende Antwort auf das

”
Warum“ hinter der Struktu-

reigenschaft gegeben werden. Hierzu wurde ein Beweisansatz ausgewählt, der
eine ausgewogene Kombination aus Effizienz, Allgemeingültigkeit und Klarheit
bietet.

Elliptische Kurven werden als Objekte der algebraischen Geometrie ein-
geführt. Dazu werden Gruppen definiert (das ist die Rechengrundlage, mit der
z. B. der öffentliche Schlüssel berechnet wird) sowie anschließend Körper und
Polynome. Körper sind algebraische Strukturen, auf denen elliptische Kurven
überhaupt erst allgemein definiert werden können.

Dann folgt ein Abschnitt zur algebraischen Geometrie. Geometrische Objek-
te (z. B. Geraden) werden nun nicht mehr im Reellen, sondern über Körpern
definiert. Des Weiteren wird der projektive Raum eingeführt. Das hat den
Zweck, dass die Gruppenstruktur auf elliptischen Kurven einen zusätzlichen
Punkt benötigt (siehe unten): den Punkt im Unendlichen. Im affinen Raum
(z. B. Rd) wird das Unendliche (negativ) als Unbeschränktheit definiert, was
die Handhabung erschwert. Der projektive Raum stellt eine Kompaktifizierung
des affinen Raums dar: Der Punkt im Unendlichen ist wohldefiniert, und man
kann damit einfacher rechnen, und eben auch die Gruppeneigenschaft nachwei-
sen. Für Beweis werden die allgemeine Kurven in den projektiven Raum und
in einen erweiterten Körper eingebettet, wobei die Resultate dann weiterhin für
die ursprüngliche Kurve gelten.

Es folgen einige technische Bemerkungen zur Implementierung des Diffie-
Hellman-Protokolls mit elliptischen Kurven. Hier werden optimierte Additions-
formeln hergeleitet. Diese Formeln per Hand zu verifizieren ist aufwendig; Daher
wird ein weiterer Korrektheitsbeweis vorgestellt, mit dem man konkrete For-
meln verifizieren kann. Diesmal wird ein anderer Ansatz verwendet, bei dem ein
Computeralgebrasystem zum Einsatz kommt. Dazu werden weitere algebraische
Strukturen eingeführt (Ringe und Ideale). Für die Legitimierung wird darüber
hinaus der Begriff des Isomorphismus definiert.
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2 Kryptographie

2.1 Grundsätze

Unter einem Kryptosystem1 versteht man die Gesamtheit des kryptographischen
Sachverhalts: Einen Klartext- und Chiffretextraum, einen Schlüsselraum und die
Abbildungen chiffriere und dechiffriere.

Klartext

chiffriere

Chiffretext

dechiffriere

Schlüssel

Abbildung 1: Kryptosystem

Ein Kryptosystem ist gut2, wenn die Chiffren-Abbildung bijektiv ist, und
man den Chiffretext ohne den Schlüssel mit praktischen Mitteln nicht dechif-
frieren kann. Ein wichtiges Maß dafür ist die Laufzeitkomplexität. Wenn ein
gemeinsamer Schlüssel benutzt wird, heißt das Kryptosystem symmetrisch. Ali-
ce und Bob könnten im Vorhinein einen gemeinsamen Schlüssel festlegen. Wenn
jede Partei einen eigenen Schlüssel oder mehrere Schlüssel hat, spricht man von
asymmetrischen Systemen. Beim Diffie-Hellman-Schlüsselaustausch wird ein ge-
meinsamer Schlüssel vereinbart, indem ein öffentlicher Schlüssel ausgetauscht
und dann mit einem privaten Schlüssel verrechnet wird (wobei letztere danach
verworfen werden): Man spricht von einem hybriden Kryptosystem. Asymme-
trische Kryptosysteme beruhen meistens auf einer sogenannten mathematischen
Einwegfunktion. Das sei eine Funktion, deren Ausführung eine geringe Lauf-
zeitkomplexität hat, deren Umkehrfunktion jedoch eine sehr hohe Laufzeitkom-
plexität hat. Die vorliegende Arbeit behandelt lediglich die Korrektheit von
Einwegfunktionen und nicht die Laufzeitanalyse.

2.2 Die Vigenère-Chiffre

Die Vigenère-Chiffre ist ein Beispiel für eine Chiffrierfunktion. Sie beruht auf
verschobenen Alphabeten: Der Schlüssel ist eine Folge von Buchstaben K =

1Für die Definition des Kryptosystems, RSA, der Vigenère Chiffre und Diffie Hellman vgl.
[Wätjen 2018].

2[Wätjen 2018] beschreibt in Abschnitt 1.2 Authentizitätsanforderungen und Geheimhal-
tungsanforderungen. Gut heißt hier: erfüllt diese.
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(k1, · · · , kd), wobei ki, i = 1, . . . , d die Größe der Verschiebung im i-ten Alpha-
bet angibt. Es sei fi(a) := (a + ki) mod n, wobei n die Länge des Alphabets
ist. Man definiert die Chiffrierfunktion, als dass fi auf jeden Buchstaben mi des
Klartextes angewendet wird. Wenn man beim letzten Buchstaben kd angekom-
men ist, macht man mit k1 weiter:

chiffriere : K(M) := f1(m1) . . . fd(md)f1(md+1) . . . fd(m2d) . . . fa(mld+a)

mit a ∈ 1, . . . , d, n ∈ N0. Moderne Chiffren werden auf Bit-Ebene durchgeführt3.

2.3 Das RSA-Kryptosystem

Das Rivest-Shamir-Adleman-Verfahren (RSA-Verfahren) ist ein asymmetrisches
Kryptosystem. Es gibt einen öffentlichen Schlüssel und einen privaten Schlüssel
pro Teilnehmer. Das Ziel ist, dass Alice die Nachricht M mit Bobs öffentlichem
Schlüssel chiffriert. Nur mit dem privaten Schlüssel ist Bob dann in der Lage, die
Nachricht zu lesen. Die Faktorisierung einer großen Zahl in ihre Primfaktoren
und das Berechnen des diskreten Logarithmus sind Beispiele für mathematische
Einwegfunktionen, die hierbei eine Rolle spielen. Im Folgenden werden kurz
die zahlentheoretischen Grundlagen aufgeführt, die dann die kryptographischen
Routinen legitimieren.

Definition und Proposition 2.3.1 (Wätjen 2018, 3.3 und 3.8, Eulersche
φ-Funktion). φ(n) := #{x ∈ {1, . . . , n} : ggT(x, n) = 1}. Sei p eine Primzahl.
Dann ist einfach zu sehen dass φ(p) = (p− 1). □

Theorem 2.3.2 (Wätjen 2018, Satz 3.9, Satz von Euler). Es sei n ∈ N
und a ∈ Z mit ggT(a, p) = 1. Dann gilt

aφ(n) mod n = 1.

Wird hier nicht Bewiesen. □

Theorem 2.3.3 (Wätjen 2018, Satz 5.2). Es sei n = pq mit Primzahlen
p ̸= q und weiter e, d ∈ N mit ed mod φ(n) = 1 und schließlich M ∈ {1, . . . n}.
Dann ist

(Me mod n)d mod n =M.

Wird hier nicht Bewiesen. □

Die folgenden Algorithmen werden u. A. im RSA-System benutzt:

3vgl. [Wätjen 2018], Einleitung Kapitel 4
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Algorithmus 2.3.4: RSA-Schlüsselerzeugung

Input: Zwei große Primzahlen p und q
Output: Öffentlicher Schlüssel (e, n), Privater Schlüssel (d, n)

1 n← p · q
2 ϕ← (p− 1)(q − 1)
3 Wähle e mit 1 < e < ϕ und gcd(e, ϕ) = 1
4 Berechne d mit e · d ≡ 1 mod ϕ (dazu z. B. Wätjen 2018, Algorithmus

3.3)
5 return (e, n), (d, n)

Algorithmus 2.3.5: RSA-Chiffrierung

Input: Klartext m, Öffentlicher Schlüssel (e, n)
Output: Chiffretext c

1 c← me mod n
2 return c

Algorithmus 2.3.6: RSA-Dechiffrierung

Input: Chiffretext c, Privater Schlüssel (d, n)
Output: Klartext m′

1 m′ ← cd mod n
2 return m′

2.4 Der Diffie-Hellman-Schlüsselaustausch

In der ersten Fassung des Diffie-Hellman-Austausches finden die Rechnung auf
endlichen MengeM = {1, . . . , p} mit Multiplikation Modulo p, d. h. a⊗b := a ·b
mod p. Das Protokoll ist auf beliebigen Gruppen möglich, insbesondere auch auf
der Gruppenstruktur von elliptischen Kurven (dazu s. u.).

Definition 2.4.1 (Diffie-Hellman-Protokoll). Gegeben sind eine Primzahl
p, und g ∈M . Alice und Bob wählen zwei private Schlüssel XA und XB . Beide
berechnen

DHA : PA = gXA mod p = (g ⊗ g)⊗ g . . . , DHB : PB = gXB mod p.

Die beiden P s werden dann über einen öffentlichen Kanal ausgetauscht, und
schließlich die Operation DE darauf wiederholt ausgeführt. Das Resultat YA =
YB wird folglich als Chiffre genutzt. Die Anforderungen an den Algorithmus sind
geringer als bei RSA, da der Schlüssel bloß ausgetauscht werden muss. Wichtig
ist lediglich, dass die Funktionen DHA, DHB kommutieren.

Bemerkung 2.4.2. Es ist sinnvoll, g so zu wählen, das g ein Generator der
zyklischen Gruppe (Z/pZ,⊗) (vgl. 6.2.1 und das folgende Kapitel) ist. Dann
kommen für einen Angreifer beliebige Werte X in Frage. Weil p eine Primzahl
ist gilt das für jedes g ∈M .
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Theorem 2.4.3 (Korrektheit von Diffie-Hellman). Beweis.

DHA(DHB(M)) = PXA

B mod p = (gXB mod p)XA mod p = gXAXB mod p

= (gXA mod p)XB mod p = PXB

A mod p

= DHB(DHA(M))

Bemerkung 2.4.4 (mathematische Einwegfunktion). Die mathematische
Einwegfunktion der Potenzierung auf Gruppen endlicher Ordnung nennt man
auch diskretes Logarithmus-Problem. Gemeint ist die Schwierigkeit, aus einer
Gleichung xd = y auf x zu schließen, sofern d, y gegeben sind. Statt xd wird
auch [d]x geschrieben.

3 Algebra und algebraische Geometrie

Im Folgenden werden Gruppen4 und Körper definiert sowie ausgewählte Ei-
genschaften und Erweiterungen beschrieben. Ein wesentliches Ziel dieser Arbeit
ist es, elliptische Kurven als Gruppen zu definieren und dies als Grundlage für
das Diffie-Hellman-Protokoll zu nutzen. Dafür betrachtet man den Graphen der
impliziten Funktion, die eine elliptische Kurve darstellt. Zwei Punkte zu addie-
ren bedeutet, beide mit einer Geraden zu verbinden, den dritten Schnittpunkt
von Kurve und Gerader zu finden und diesen anschließend an der X-Achse zu
spiegeln (siehe Abschnitt 4.2, Abbildung 2).

Körper bilden eine weitere Grundlage: Das sind algebraische Strukturen, die
sich aus zwei Gruppen zusammensetzen: Addition und Multiplikation werden
erklärt. Dies ermöglicht eine allgemeine Definition von Polynomen (mit n Ko-
effizienten), aus denen elliptische Kurven hergeleitet werden. Das Prinzip des
algebraisch abgeschlossenen Körpers5 wird eingeführt, um auf solchen Körpern
Aussagen über Polynome zu beweisen, insbesondere den Satz von Bézout. Dieser
trifft eine Aussage über die Anzahl der Schnittpunkte von Kurven was offenbar
relevant für die Gruppenaktion ist. Eine abgeschwächte Version davon lässt sich
dann wieder auf allgemeine Körper übertragen.

3.1 Gruppen

SeiM eine nicht-leere Menge und ⊕ :M×M →M eine Abbildung. (M,⊕) heißt
Gruppe, wenn gilt: (1) ∃e ∈M : a⊕ e = e⊕ a = a∀a ∈M (neutrales Element);
(2) ∀a ∈ M∃a−1 ∈ M : a ⊕ a−1 = e; (3) (a ⊕ b) ⊕ c = a ⊕ (b ⊕ c)∀a, b, c ∈ M
(Assoziativität). Eine Gruppe heißt abelsch oder kommutativ wenn a⊕ b = b⊕
a∀a, b ∈M . ⊕ nennt man Gruppenaktion undM Basismenge. #M (Mächtigkeit
der Basismenge) nennt man Ordnung der Gruppe. Im Gruppenkontext bedeutet

4Für die folgenden Definitionen vgl. [Karpfinger 2024] oder ein anderes Lehrbuch zur Al-
gebra.

5Bemerkung. Die komplexen Zahlen sind ein algebraisch abgeschlossener Körper. Mit dem
Lefschetz-Prinzip [Eklof 1973] kann man somit Ergebnisse aus der Funktionentheorie in die
algebraische Geometrie übertragen.
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xn die n-fache Ausführung der Gruppenaktion auf das Element x (auf sich
selbst). Man schreibt auch [n]x. Gibt es ein d ∈ M so dass M = {dn : n ∈ N}
spricht man von einer zyklischen Gruppe mit Generator d.

3.2 Körper

Sei K eine nicht-leere Menge. Weiter seien ⊕ : K ×K → K und ⊗ : K ×K →
K Abbildungen. (K,⊕,⊗) heißt Körper, wenn (1) (K,⊕) eine Gruppe ist, (2)
(K \ {e⊕},⊗) eine Gruppe ist, und (3) das Distributivgesetz a ⊗ (b ⊕ c) =
a⊗b⊕a⊗c; (b⊕c)⊗a = b⊗a⊕c⊗a gilt. Eine Teilmenge L ⊆ K mit e+, e· ∈ L,
so dass (L,⊕,⊗) wieder ein Körper ist nennt man Teilkörper zu K. Man nennt
K Erweiterungskörper zu L. Man definiert die Charakteristik eines Körpers, als
die kleinste natürliche Zahl n, mit der [n]⊕e⊕ = e⊗ gilt. Das heißt: Wie oft
muss man die 1 auf sich selbst addieren, damit sich 0 ergibt. Für den Körper
R geht das nicht und man setzt char(R) = ∞. Ein Körper K heißt algebraisch
abgeschlossen, wenn jedes nicht-konstante Polynom (s. u.) mit Koeffizienten in
K eine Nullstelle in K hat. Dort zerfällt das Polynom in Linearfaktoren. Der
kleinste Erweiterungskörper J =: K̄ zu K, so dass J algebraisch abgeschlossen
ist, nennt man algebraischen Abschluss zu K. Nach dem Fundamentalsatz der
Algebra gilt R̄ = C. Ganze Zahlen stellen in der Praxis endliche Körper da,
Stichwort Integer Overflow.

3.3 Polynome

K[X1, . . . , Xn] bezeichnet die Menge der Polynome in n Variablen über K. Das
ist

{F : K × · · · ×K → K,

(X1, . . . , Xn) 7→
∑

(i1,...,in),ij∈{0,...n}

ai1,...,inX
i1
1 . . . Xin

n

|ai1,...,in ∈ K, ij ∈ {0, . . . n}}

natürlich bezogen auf die Körper-Addition und -Multiplikation. Wenn alle
bis auf ein ai1,...,im = 0 sind, und das restliche aj = 1, nennt man F Monom.
K[X1, . . . , Xn] besteht folglich aus den Linearkombinationen der Monome über
K. Ein Polynom f ∈ K[X1, . . . , Xn] heißt irreduzibel in K[X1, . . . , Xn] falls es
keine nicht-konstanten Polynome g, h ∈ K[X1, . . . , Xn] gibt so dass f = g · h.
Man sagt ein Polynom E teilt F , wenn bei der Polynomdivision ein Polynom D
entsteht. Irreduzible Polynome bilden somit ein Analogon zu den Primzahlen,
weil sie nicht teilbar sind.

3.4 Äquivalenzrelationen

Eine Relation ∼ heißt Äquivalenzrelation, falls sie reflexiv, transitiv und symme-
trisch ist. Sei M eine nicht-leere Menge und ∼ eine Äquivalenzrelation auf M .
Für ein x ∈M bezeichnet [x]∼ := {y ∈M : x ∼ y} die Äquivalenzklasse von x.
Dann bezeichnet M/ ∼:= {[x]∼ : x ∈M} die Menge der Äquivalenzklassen von
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∼. Oft werden durch Äquivalenzklassen Eigenschaften der MengeM übertragen,
zum Beispiel eine Metrik. Dann nennt man M/ ∼ Quotientenraum. Die Abbil-
dung π :M →M/ ∼,m 7→ [m] nennt man kanonische Projektion. Ein Element
a ∈ [x] nennt man Repräsentanten von [x]. Mit Äquivalenzrelationen wird im
Folgenden der projektive Raum konstruiert, in den die elliptischen Kurven ein-
gebettet werden.

Beispiel 3.4.1 (Möbiusband). Sei B = {(x, y) ∈ R×R : |x| ≤ 10, |y| ≤ 2} ein
Rechteck. B ist mit der euklidischen Metrik d(a, b) =

√
(ax − bx)2 + (ay − by)2

ein metrischer Raum. Sei ∼ eine (leicht überprüfbare) Äquivalenzrelation mit

a ∼ b :⇐⇒ a = b ∨ (ay = −by ∧ ax ̸= bx ∧ |ax| = |bx| = 10)

Man erhält das Möbiusband6 als Quotientenraum B/ ∼. Wobei eine Metrik
induziert wird durch

d([a], [b]) = min
a∈[a],b∈[b]

(d(a, b)).

Die Äquivalenzrelation klebt die Ränder des Rechtecks verdreht aneinander.

Abbildung 2: Visualisierung Möbiusband

3.5 Der projektive Raum

Zwei parallele Graden treffen sich im Unendlichen, nämlich im Fluchtpunkt. Im
Folgenden wird eine Anschauungsweise vorgestellt, in der der Fluchtpunkt, den
man nun den

”
Punkt im Unendlichen“ nennt, konkret verortet ist. Der Fall, dass

auf der elliptischen Kurve Punkte addiert werden, so dass Verbindungsgrade und
Kurve parallel sind, wird somit elegant abgehandelt. Ebenfalls wichtig ist das
Konzept von homogenen Polynomen.

6vgl. [Jänich 1990], Kap. 3, §7, Beispiel 4
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Definition 3.5.1 (Washington 2008, Der projektive Raum). Man defi-
niert den projektiven Raum Pn

R als Quotientenraum der Relation ∼: y ∼ x ⇐⇒
(x = λy) auf Rn+1, also die Menge der Äquivalenzklassen (aber kein Körper).
Die Äquivalenzklassen [x]∼ entsprechen den Graden durch den Ursprung. Koor-
dinaten im projektiven Raum schreibt man (x1 : x2 : · · · : xn+1). Die kanonische
Projektion ist h([x]∼) = (x1/xn+1, . . . , xn/xn+1)

T , falls xn+1 ̸= 0. Die Punkte
(x1 : · · · : xn : 0) nennt man Punkte im unendlichen. Statt R wählt man oft be-
liebige Körper K. Man nennt Pn

K den n-dimensionalen projektiven Raum über
K. An

K = Kn heißt affiner Raum über K. Der Prägnanz halber wird auch An

und Pn geschrieben, falls K nicht weiter relevant ist. Man kann An als Teil-
raum von Pn betrachten mit (x1, . . . , xn) ∼ (x1 : · · · : xn : 1). (0 : 0 : 0) ist im
projektiven Raum ausgeschlossen. Man erhält die Definition Pn

K = (K\{0})/ ∼.

Bemerkung 3.5.2. Im Folgenden wird Punkten (X : Y : Z) wie mit cartesi-
schen Koordinaten gerechnet, nicht explizit mit Äquivalenzklassen. Ggf. wird
der Koordinatenpunkt in Beweisen skaliert, da im Quotientenraum (x, y, z) ≡∼
λ(x, y, z).

Bemerkung 3.5.3 (Motivation des projektiven Raums). Man sagt, Punk-
te im projektiven Raum sind in homogenen Koordinaten geschrieben. Man kann
sich den Übergang zu homogenen Koordinaten anhand dem perspektivischen
Zeichnen vorstellen. Die Graden durch den Ursprung sind dann Sichtlinien, und
die Hyperebene {(X,Y, Z)T : Z = 1} ⊂ K3 ist die Landschaft. Um sich die
Menge der Graden (s. o.) besser vorzustellen, kann man sie auf eine Sphäre (s.
Abb. 4) projizieren. Man betrachtet somit den projektiven Raum als eine solche
Sphäre. Die Punkte im unendlichen bilden in der Analogie den Horizont. Das
sind genau die Graden, bei denen Z = 0 ist. Da diese Punkte einen konkreten
Ort auf der Sphäre darstellen (und nicht bloß einen Grenzwert), spricht man
von einer Kompaktifizierung des affinen Raums. Offenbar schneiden die Gra-
den die Sphäre aber in einem zweiten Punkt, hier ist das der Hinterkopf des
Malers. Man muss diese Punkte auf der Sphäre folglich identifizieren, was man
sich dann nicht mehr so leicht vorstellen kann. Auch die kanonische Projektion
π wird durch diese Ansichtsweise motiviert. Weil (X : Y : Z) = λ(X : Y : Z)
wählt man λ = 1

Z für die nicht-unendlichen Punkte (Z ̸= 0). Man erhält Punkte
auf der Landschaft zurück. Das wird in Abbildung 5 verdeutlicht.
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Abbildung 3: Perspektive

Abbildung 4: Visualisierung des projektiven Raums - Das Auge des Malers

Abbildung 5: Die kanonische Projektion
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Definition 3.5.4 (Washington 2008, homogene Polynome). Ein Polynom
f(X,Y, Z) =

∑n
i=1 aiX

jiY kiZli heißt homogen mit Grad m falls m = ji +
ki + li,∀i = 1, . . . , n. Homogene Polynome werden auch Formen genannt (als
geometrische Objekte, s.u.). Jedes Monom hat dort also den gleichen Grad.
Homogene Polynome haben wohldefinierte Nullstellen im projektiven Raum: Es
gilt f(λX, λY, λZ) = λmf(X,Y, Z). Ist (x : y : z) also eine Nullstelle von f ,
so verschwindet f bei (x2, y2, z2) ∼ (x, y, z) ebenso. Beliebige Polynome in AK

können zu homogenen Polynomen in PK umgewandelt werden: (1) Wähle m als
die maximale Potenz (2) ergänze jeweils zl mit l = m− i1 − · · · − im. Beispiel:
f̃(X,Y ) = Y 2−X3, f(X,Y, Z) = Y 2Z−X3. Man nennt das Homogenisierung.
Somit kann man Polynome im affinen Raum in den projektiven Raum fortsetzen,
so dass sie homogen sind. Weil der affine Raum in den projektiven Raum durch

(x1, . . . , xn) ∼ (x1 : · · · : xn : 1) eingebettet ist, erhält man durch xn+1
!
= 1

(im P 2
K also Z = 1) im homogenen Polynom das affine Ursprungspolynom. Man

nennt das Dehomogenisierung.

Proposition 3.5.5 (Linearfaktoren von homogenen Polynomen in zwei
Variablen). Sei h(X,Y ) ∈ K[X,Y ] ein homogenes Polynom vom Grad d ≥ 1
und (ξ : η) ∈ P 1

K̄
mit H(ξ, η) = 0. Dann ist (ηX − ξY ) ein Teiler von H

in K̄[X,Y ]. Beweis. Ohne Einschränkung sei η ̸= 0. Dann gilt: h(ξ, η) = ηd ·
h
(

ξ
η , 1
)
= 0, also ist x− ξ

η ein Teiler von h̃(x) := h(x, 1) (Dehomogenisierung).

Daher ist h(X,Y ) = Y d · h̃(X/Y ) durch (X − ξ
ηY ) teilbar, also auch durch

(ηX − ξY ).

3.6 Algebraische Varietäten

Definition 3.6.1. Sei im Folgenden K ein Körper, und und L ⊃ K ein Erwei-
terungskörper. Man sagt eine Funktion f : An

K → K verschwindet bei a, falls
f(a) = e+ = 0. Die Menge V (f) := {a ∈ An

K |f(a) = 0} heißt Verschwindungs-
menge7 von f . Wenn f ein irreduzibles Polynom ist, heißt V (f) Varietät. Im
Folgenden werden Varietäten z. B. mit C,D,E notiert. Man definiert den pro-
jektiven Abschluss von Varietäten als die Verschwindungsmenge im projektiven
Raum, wobei das Polynom zuerst homogenisiert wird.8. Varietäten im A2 wer-
den auch Kurven genannt. Man sagt E hat den Grad n, wenn n die maximale
Potenz der Monome ist. Die Verschwindungsmenge einer Varietät E wird auch
E(K) geschrieben. Man nennt eine Varität E : f = 0 glatt im Punkt p, wenn
nicht alle partiellen Ableitungen in p verschwinden, d. h. ∇f(p) ̸= (0, . . . , 0).
Eine Varität E heißt glatt, wenn E in jedem p ∈ E(K) glatt ist, sonst heißt E
singulär.

7Bemerkung. Es gilt z. B. V (f · g) = V (f) ∪ V (g) oder auch V (f + g) ⊇ V (f) ∩ V (g). Das
Polynom ist nicht eindeutig bei gegebener Verschwindungsmenge: betrachte h nicht-konstant,
sonst beliebig und V (h2) = V (h) ∪ V (h) = V (h)

8Für die Definition von algebraischen Varietäten vgl. [Cox, Little und O’Shea 2015 Kap.
1, §2, für den projektiven Abschluss Kap. 5, §4]
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Bemerkung 3.6.2 (Synopse). Im Folgenden wird eine vereinfachte Version
des Satzes von Bézout bewiesen. Der Satz besagt, dass sich eine Grade und eine
elliptische Kurve insgesamt drei mal treffen. Dafür werden die geometrischen
Objekte als Varietäten im projektiven Raum betrachtet. Begründung: Dabei
verändert sich die Kurve im eingebetteten affinen Raum nicht. Man ergänzt
also den affinen Raum formal zum projektiven, wobei effektiv bloß der Punkt
im unendlichen hinzugenommen wird. Der Satz dient später als Hilfsresultat
im Beweis der Assoziativität auf elliptischen Kurven. Man kann ihn als Ver-
allgemeinerung des Fundamentalsatzes der Algebra auffassen. Zur Erinnerung:
Ein Polynom vom Grad n besitzt (unter Berücksichtigung der Multiplizitäten)
genau n komplexe Nullstellen. Der vereinfachte Satz von Bézout besagt ana-
log: Eine algebraische Kurve vom Grad d schneidet eine Gerade (Grad 1) in
genau d Punkten, ebenfalls unter Berücksichtigung der Multiplizitäten9 (d.h.
Schnittzahlen).

Dieses Resultat ist nützlich für Existenzbeweise, insbesondere dann, wenn
bekannt ist das alle Schnittzahlen gleich eins sind.

Des Weiteren wird der Begriff des Morphismus eingeführt, basierend auf
der Definition rationaler Abbildungen. Morphismen sind Abbildungen zwischen
Kurven. Dies ist notwendig, da im Beweis der Assoziativität folgendes Resul-
tat über Morphismen verwendet wird: Nicht-konstante Morphismen zwischen
glatten Kurven (auf algebraisch abgeschlossenen Körpern) sind surjektiv (siehe
unten). Ein Beweis dieser Aussage wird im Rahmen dieser Arbeit jedoch nicht
geführt. Der Zweck ist der Folgende: Betrachtet man eine endliche Menge von
Sonderfällen und findet einen Morphismus, der auf allen Punkten außerhalb
der Menge gleich Null ist, sieht man leicht das dieser nicht surjektiv sein kann,
wenn die Zielmenge groß genug ist. Somit erledigen sich die Sonderfälle, da der
Morphismus folglich konstant ist.

Zuerst wird aber das motivierende Beispiel der parallelen Graden aufgegrif-
fen.

Proposition 3.6.3 (Washington 2008, 2.3, Geraden im projektiven
Raum). Beliebige Graden treffen sich im P 2

K .
Beweis. Für zwei parallele Geraden f1 : y = mx + b1, f2 : y = mx + b2,
b1 ̸= b2 ∈ K ist die homogene Form

F1 : y = mx+ b1z, F2 : y = mx+ b2z

und deren Schnittpunkt ist (x : mx : 0) = (1 : m : 0) = ∞. Da sich nicht-
parallele Graden offenbar auch einmal treffen, gilt die Aussage allgemein □

Definition 3.6.4 (Stoll 2020, 4.1, Schnittzahlen, vereinfacht). Sei P =
(ξ : η : ζ) ∈ P 2

K ein Punkt, G : aX + bY + cZ = 0 eine projektive Grade und
C : F (X,Y, Z) = 0 eine projektive Kurve über K, so dass G kein Teiler von
C ist. Man definiert i(G,C;P ) als die Vielfachheit oder auch Multiplizität des

9Die allgemeine Version des Satzes behandelt zwei beliebige Kurven vom Grad p bzw.
q: Die Anzahl ihrer Schnittpunkte (mit Multiplizitäten) beträgt dann p · q. Für den Beweis
benötigt man Ergebnisse der lokalen Algebra [Fulton 2008], 5.3.
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Schnittpunkts P von G und C: Im Fall P /∈ C(L) ∩G(L) sei i = 0. Andernfalls
löst man die Gleichung von G nach einer der Variablen auf, etwa Z = −a

cX−
b
cY

(ohne Einschränkung c ̸= 0) und setzen diesen Ausdruck in F ein. Man erhält
ein homogenes Polynom H(X,Y ), dass durch (ξY − ηX) teilbar ist. Für den
Fall das oben Y oder X eliminiert wurde, (ξZ− ζX) oder (ηZ− ζY ). Man setzt
i als die Vielfachheit des Faktors (ξY − ηX) in H.

Bemerkung 3.6.5 (Eindeutigkeit der Schnittzahlen). Die Schnittzahl ist
unabhängig davon, welche Variablen man oben zur Umformung wählt. Beweis.
Ohne Einschränkung sei P = (0 : 0 : 1) (durch eine lineare Koordinatentrans-
formation10 aus PGL3(K)). Dann ist c = 0, und formt man G nach X,Y um
ergibt sich X = − b

aY oder Y = −a
bX, die aber Äquivalent sind.

Theorem 3.6.6 (Stoll 2020, Satz 4.3, Bézout, vereinfacht). Sei C :
F (X,Y, Z) = 0 eine projektive Kurve vom Grad d über K, so wie G : aX +
bY + cZ eine projektive Grade über K die nicht in C enthalten ist. Dann gilt∑

P∈C(K̄)∩G(K̄)

i(G,C, P ) = d

Beweis. Sei ohne Einschränkung c ̸= 0 und seien a′ = −a/c, b′ = −b/c; Dann ist
die Geradengleichung Z = a′X + b′Y . Setzt man die Punkte in F ein bekommt
man H(X,Y ) = F (X,Y, a′X + b′Y ); das ist ein homogenes Polynom vom Grad
d in K[X,Y ]. In K̄[X,Y ] ergeben sich Linearfaktoren:

H(X,Y ) = α(η1X − ξ1Y )d1 · · · (ηkX − ξkY )dk .

P = (ξ : η : ζ) ∈ P2
K(K̄) ist genau dann ein Schnittpunkt von C und G, wenn

H(ξ, η) = 0 und ζ = a′ξ + b′η gilt. Die Schnittpunkte sind somit

(ξ1 : η1 : a′ξ1 + b′η1), . . . , (ξk : ηk : a′ξk + b′ηk),

und deren Vielfachheiten sind per Definition d1, . . . , dk mit d1 + · · ·+ dk = d. □

Korollar 3.6.7. Aus K ⊆ K̄ folgt direkt dass∑
P∈C(K)∩G(K)

i(G,C, P ) ≤ d

wenn G kein Faktor von C ist.

Bemerkung 3.6.8 (allgemeiner Beweis). Für die allgemeine Version der
Schnittzahl und einen entsprechenden Beweis von Bézout wird auf [Fulton 2008],
Kapitel 5.3 verwiesen.

10Die Schnittzahl ist invariant in linearen Transformationen. vgl. [Cox, Little und O’Shea
2015] Kap. 8, § 7, Theorem 7. Im projektiven Raum sind affine Verschiebungen linear.
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Beispiel 3.6.9. Seien a : y = x2 − 4 und b : y = −4 affine Kurven in C. Nach
Bézout ist die Schnittzahl im Punkt p = (0,−4) gleich 2. Nachweis. Man erhält
den projektiven Punkt P = (0 : −4 : 1) ≡ (0 : −1 : 1

4 ) und die homogenen
Polynome

A : 0 = −Y Z +X2 − 4Z2, B : 0 = Y + 4Z.

Löse B nach Z auf: B : Y = −4Z und setze in A ein:

H(X,Z) = 4Z2 +X2 − 4Z2 = X2

welches von (0Z − (−1)X) = X zweifach geteilt wird. □

Definition 3.6.10 (Stoll 2020, 6.1, rationale Abbildungen). Seien C :
F (X,Y, Z) = 0 und D : G(X,Y, Z) = 0 irreduzible projektive Kurven über ei-
nem KörperK. Eine rationale Abbildung von C nachD ist eine Äquivalenzklasse
von Tripeln (R1, R2, R3), wo die Rj ∈ K[X,Y, Z] homogen, vom gleichen Grad
und nicht alle durch F teilbar sind und außerdem G(R1, R2, R3) durch F teilbar
ist. Dabei gilt (R1, R2, R3) ∼ (S1, S2, S3) genau dann wenn F |RiSj − RjSi für
alle i, j gilt, d. h. F ist durch RiSj−RjSi teilbar. Sei ϕ eine rationale Abbildung
von C nach D und P = (α : β : γ) ∈ C(K). ϕ heißt regulär oder definiert in
P , wenn ϕ einen Repräsentanten (R1, R2, R3) hat, sodass nicht alle Rj(α, β, γ)
verschwinden. In diesem Fall ist

ϕ : P 7→ (R1(P1, P2.P3), R2(P1, P2.P3), R3(P1, P2.P3))

wohldefiniert, und man erhält Abbildungen ϕ : {P ∈ C(K)|ϕ definiert in P} →
D(K).

Definition 3.6.11 (Stoll 2020, 6.1, Morphismen). Rationale Abbildungen,
die auf ganz C(K) regulär sind, nennt manMorphismen. In den beiden folgenden
Beweisen spielt die Tatsache eine Rolle, dass die Gruppenaddition auf einer
elliptischen Kurve ein Morphismus ist.

Theorem 3.6.12 (Hulek 2012, Satz 6.34, Surjektivität von Morphis-
men). Ist f : C → C ′ ein nicht-konstanter Morphismus zwischen glatten pro-
jektiven Kurven, dann ist f surjektiv. Wird hier nicht bewiesen. □

Theorem 3.6.13 (Fulton 2008, Kap. 6 Prop. 7, Stetigkeit von Morphis-
men). Sind f, g : C → C ′ zwei Morphismen zwischen den Varietäten C,C ′, die
auf einer Teilmenge D ⊂ C mit D̄ = C übereinstimmen, gilt f ≡ g auf C. Wird
hier nicht bewiesen □

Bemerkung 3.6.14. Oben ist D̄ der Abschluss bezüglich der Zariski-Topologie.
Das ist die Menge aller Varietäten, die einen topologischen Raum bildet.

Das Stetigkeitsresultat wird im vorliegenden Beweis zur Assoziativität nicht
genutzt, kann aber 3.6.12 ersetzen. mAllerdings ist die Anwendung im Rahmen
dieser Arbeit aufwändig zu begründen, wohingegen man die Surjektivitätsaussage
einfach so verwenden kann.

15



4 Elliptische Kurven

4.1 Definition von elliptischen Kurven

Eine elliptische Kurve ist eine glatte algebraische Varietät dritten Grades. In
der Kryptographie beschränkt man sich aber meistens auf eine spezielle Dar-
stellung (z. B. Montgomery-Form) oder sogar auf eine spezielle Kurve (z. B.
beim Verfahren Curve2551911).

Definition und Proposition 4.1.1 (Washington 2008, 2.1, kurze Wei-
erstrass Form). Sei K ein Körper mit char(K) ̸= 2, 3. Eine glatte Varietät

E : y2 = x3 +Ax+B

nennt man elliptische Kurve in kurzer Weierstrass Form. Die Bedingung der
Glattheit erfordert ∇(x3 +Ax+B− y2) ̸= 0 auf dem Bild E(K). Man definiert
eine Kennzahl der Kurve, die Diskriminante: ∆ := 4A3 + 27B2. ∆ ̸= 0 ist
Äquivalent zur Glattheit der Kurve. Beweis.

∇E =

(
3x2 +A
−2y

)
!
=

(
0
0

)
=⇒ 0 = y2 = x(

−A
3

+A) +B

=⇒ x =
3B

2A

=⇒ 9B2

4A2
=
−A
3

⇐⇒ 4A3 + 27B2 = 0

char(K) ̸= 2, 3 ist an der Stelle wichtig, da somit 0 ̸= 2, 3 in K.

Bemerkung 4.1.2 (weitere Darstellungen). Es gibt weitere Darstellungen
von elliptischen Kurven, z. B. die Montgomery Form, oder die lange Weierstrass-
Gleichung, die nicht unbedingt äquivalent sind. Kryptographisch relevante Dar-
stellungen werden in der Explicit-Formulas-Database (EFD) aufgelistet. Die fol-
genden Berechnungen beschränken sich auf die kurze Weierstrass-Form.

4.2 Die Gruppenaddition

Proposition 4.2.1 (Washington 2008, 2.2, Elliptische Kurven als abel-
sche Gruppen). Auf der elliptischen Kurve wird eine Gruppenstruktur defi-
niert. Zwei Punkte zu addieren bedeutet, beide mit einer Grade zu verbinden,
den dritten Schnittpunkt von Kurve und Grade zu finden, und diesen dann
an der X-Achse zu spiegeln. Wird ein Punkt auf sich selbst addiert ([2]P ),
verwendet man die Tangente als Verbindungsgrade. Das kann man mit einem
Grenzwertargument motivieren.

In manchen Fällen sieht man gleich, dass es scheinbar keinen dritten Punkt
gibt, zum Beispiel wenn man in Abbildung 6. [2]P+R rechnet. Man definiert die

11vgl [Kleppmann 2022]
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Abbildung 6: Das Gruppengesetz

Gruppe also auf E(K)∪{∞}, und setzt in solchen Fällen P+Q =∞. Betrachtet
man die Kurve im projektiven Raum verhält sich ∞ wie ein regulärer Punkt.

Abbildung 7: Gruppenaddition im affinen und projektiven Raum

Dass die Abbildung wohldefiniert ist, und dass die Axiome gelten wird im
folgenden bewiesen, zunächst aber der Additionsvorgang formal definiert. Bei
den expliziten Formeln beschränkt sich die Arbeit auf den affinen Fall.

Proposition 4.2.2 (Washington 2008, 2.2, Formeln zur Berechnung von
Schnittpunkten im affinen Raum). Es ergeben sich die folgenden Fälle: (1)
Ohne Einschränkung sei Q =∞; setze Q+ P = P +Q := P . (2) Angenommen
p1 ̸= q1. Dann ergibt sich die folgende Geraden-Gleichung: y = m(x− p1) + p2.
wobei

m =
q2 − p2
q1 − p1
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ist. Um den Punkt auf E zu finden, setze ein:

(m(x− p1) + p2)
2 = x3 + ax+ b

durch Umformen ergibt sich:

0 = x3 −m2x2 + . . .

Linearfaktoren: r1, p1, q1

= (x− r1)(x− p1)(x− q1)
= x3 − (r1 + p1 + q1)x

2 + . . .

durch Koeffizientenvergleich ergibt sich

m2 = r1 + p1 + q1 ⇐⇒ r1 = m2 − q1 − p1

und aus der Geradengleichung und X-Spiegelung folgt r2 := m(p1 − r1) − p2.
(3) Sei nun p1 = q1 und p2 ̸= q2 dann ist die Gerade vertikal und schneidet E
am Punkt ∞. Man setzt in dem Fall P + Q = ∞. (4) Im letzten Fall P = Q
legt man eine Tangente an E an: Ohne Einschränkung sei p2 ̸= 0, sonst setze
wieder R :=∞ (die Tangente ist vertikal). Implizites ableiten12 ergibt

E′ : 2y
dy

dx
= 3x2 + a =⇒ m =

dy

dx
=

3p21 + a

2p2

p1 ist diesmal eine doppelte Nullstelle, weil die Tangente die elliptische Kurve
berührt. Wie oben folgt r1 := m2 − 2p1 und wieder r2 := m(p1 − r1) − p2 und
P +Q := R = (r1, r2).

Theorem 4.2.3 (Zusammenfassung der Gruppeneigenschaft bis auf
Assoziativität). Das neutrale Element sei e = ∞ und man setze P−1 :=
(p1,−p2) als das inverse Element. Die Abgeschlossenheit und die Kommuta-
tivität folgen aus der Konstruktion oben13

P+Q :=


∞, q1 = p1, q2 ̸= q2

Q,P =∞
P,Q =∞
R, sonst

, R :=



(
m2 − q1 − p1

m(2p1 + q1 −m2)− p2

)
,m := q2−p2

q1−p1
, p1 ̸= q1(

m2 − 2p1

m(3p1 −m2)− p2

)
,m :=

3p2
1+a
2p2

, P = Q

□
12Differenzierbarkeit auf allgemeinen Körpern ist nicht trivial. Ggf. reicht es aus, die Formel

als axiomatische Definition zu betrachten.
13Alternativ kann man direkt den Satz von Bézout anwenden, wenn nicht die Weierstrass

Form vorliegt: Aus der Glattheit folgt nämlich, dass die Schnittzahl immer Eins ist, und somit
muss ein dritter Punkt existieren. vgl. [Stoll 2020] Satz 9.1
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4.3 Beweis der Assoziativität

Für die Kryptographie reicht es, die Eigenschaften der Gruppenoperation mit
einem Computeralgebraprogramm zu verifizieren. Das passiert im Kapitel 6. Im
Folgenden wird aber ein rein mathematischer Beweis mit dem Lemma vom neun-
ten Punkt geführt, das auf einer vereinfachten Version des Satzes von Bézout
beruht. Weil die Abgeschlossenheit im ursprünglichen Körper bereits gezeigt
wurde, kann man für den Beweisen Körper ohne Einschränkung erweitern. Sei
also K algebraisch abgeschlossen.

Proposition 4.3.1 (Stoll 2020, Lemma 9.2, Lemma vom neunten Punkt).
Seien Gi, G

′
j , i, j = 1, 2, 3 paarweise verschiedene projektive Graden, sodass die

neun Schnittpunkte Pij paarweise verschieden sind. Sei weiter C eine ebene pro-
jektive Varietät vom Grad 3, die die acht Punkte Pij mit (i, j) ̸= (3, 3) enthält.
Dann enthält C auch P33.

Beweis. Seien Gi und G
′
j Varietäten gegeben durch lineare Polynome Li, Lj .

Es gibt 10 Monome vom Grad 3 in drei Variablen. Die Bedingung Pij ∈ C liefert
eine homogene lineare Gleichung für die zehn Koeffizienten von C. Der Raum
der homogenen Polynome vom Grad 3, die in den acht gegebenen Punkten ver-
schwinden ist also mindestens 2-dimensional. In diesem Fall liegen die Polynome
L = L1L2L3 und L′ = L′

1L
′
2L

′
3 in diesem Raum und sind linear Unabhängig. Im

Folgenden wird durch Kontraposition gezeigt, dass die Dimension genau 2 ist. D.
h. der Raum wird von L,L′ aufgespannt. Angenommen dim ≥ 3, dann existieren
Pij ̸= A,B ∈ C so dass A ∈ G1 und B /∈ G1, G2, G3. Sei C : F (X,Y Z) = 0 eine
Varietät vom Grad 3, die alle Pij und P,Q enthält. Da G1 diese Varietät in den
vier Punkten Pij , P schneidet folgt mit den Satz von Bézout dass L1 ein Teiler
von F ist. Es gilt F = L1F

′ mit einem homogenen Polynom F ′ vom Grad 2.
Für F ′ gilt des weiteren F ∩G2 = {P2j , j = 1, 2, 3}. Folglich muss L2 ein Teiler
von F ′ sein: F ′ = L2F

′′. Letztlich gilt noch F ′′ ∩G3 = {P31, P32}, die Graden
sind identisch, d. h. F = cL, c ∈ K. Das ist aber ein Widerspruch zu Q ∈ C.

Sei nun C : F = 0 eine Kurve vom Grad 3 durch die acht Punkte. Wie oben
gezeigt gilt F = cL + c′L′, c, c′ ∈ K. Da die rechte Seite in P33 verschwindet
(P33 liegt ja auf den Graden) ist das Lemma bewiesen □
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Abbildung 8: Graden-Gitter auf
der elliptischen Kurve. Hier
wird O :=∞ notiert.

Theorem 4.3.3 (Stoll 2020, Satz 9.1,
Assoziativität auf elliptischen Kurven)
Es gilt

(P +Q) +R = P + (Q+R)

Beweis. Wichtig sind die folgenden Objekte:
G1 sei die Gerade durch P und Q (von nun
an geschrieben PQ);
X sei ihr dritter Schnittpunkt mit E(K)
G′

1 :=∞X; und
P +Q der dritte Schnittpunkt mit E(K);
G′

2 := QR; und
Y der dritte Schnittpunkt mit E(K);
G2 :=∞Y ; und
Q+R der dritte Schnittpunkt mit E(K);
G3 := (P +Q)R; und
Z1 der dritte Schnittpunkt mit E(K);
G′

3 := (Q+R)P ; und
Z2 der dritte Schnittpunkt mit E(K);
letztlich sei Z der Schnittpunkt von G3 und
G′

3.

Hier ist zu Bemerken, dass sich zwei beliebige Graden genau einmal Schnei-
den, und es genau 3 Schnittpunkte (respektive Multiplizität) von E(K) und
einer beliebigen Graden gibt (Satz von Bézout). Hier ist Z per Konstruktion
assoziativ. Es bleibt zu zeigen, dass Z der gesuchte Punkt ist. Angenommen
dass die Punkte ∞, P,Q,R,X, Y, P + Q,Q + R,Z paarweise verschieden sind.
Man wendet nun das Lemma von neunten Punkt an, und sieht dass Z ∈ E(K),
was zu zeigen war.

Aus Theorem 3.6.12 folgt, dass, wenn die Gleichung ψ(S) = T für alle bis
auf endlich viele S ∈ E(K) gilt, ψ konstant ist, und die Gleichung folglich für
alle S ∈ E(K) gilt. Dafür muss die Kurve lediglich genug Punkte enthalten.
Beweis. Seien nun P,R ̸= ∞, P ̸= R (sonst folgt die Assoziativität aus der
Kommutativität). Dann folgt, dass es nur endlich viele Q geben kann, für die
Q,R, P nicht paarweise verschieden sind (der Fall dass sie verschieden sind wur-
de bewiesen). Des weiteren gilt P̃ − Q̃ =∞ ⇐⇒ P̃ = Q̃. Der Morphismus

ϕP,R : Q 7→ ((P +Q) +R)− (P + (Q+R))

verschwindet demnach alle für fast alle Q ∈ E(K). Es folgt ϕP,R konstant und
die Assoziativität ist bewiesen. □
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5 Technische Bemerkungen

5.1 Das Diffie Hellman Protokoll auf elliptischen Kurven

Statt Z/qZ kann man auch E(Fp) für den Diffie-Hellman-Schlüsselaustausch ver-
wenden. Man nennt das dann Elliptic-Curve-Diffie-Hellman (ECDH ). Im Ver-
gleich zum regulären Diffie-Hellman ermöglichen die elliptischen Kurven eine
geringere Schlüssellänge bei gleicher Sicherheit14.

5.2 Das Double-And-Add Verfahren

Bemerkung 5.2.1. Um das Diffie-Hellman-Protokoll mit elliptischen Kurven
auszuführen, muss man offenbar [d]P, d ∈ N, P ∈ E(K) berechnen. Ein naiver
Ansatz hat die Zeitkomplexität O(d), weil etwa die Additionsformeln aus Al-
gorithmus 3.3.2 d-mal ausgeführt werden. Das ist für große d ungünstig; Eine
wesentliche Laufzeitverbesserung folgt jedoch aus der Gruppenassoziativität:

Proposition 5.2.2 (Schnellere Berechnung von Skalaren). Schreibe

d =

n∑
k=0

ak · 2k, n ≥ log2(d), ai ∈ {0, 1}

(also in Binärdarstellung). Dann berechne 2kP , in dem P immer wieder ver-
doppelt wird (Pk+1 = 2Pk, P0 = P ), und addiere diejenigen Pk für die ak ̸= 0
ist:

[d]P =

n∑
k=0

ak · Pk

Der neue Ansatz läuft mit O(log2(d)) und ist damit praxistauglich.

Bemerkung 5.2.3 (Sidechannel Angriffe). Unter einem Sidechannel-Angriff
versteht man Angriffe auf Kryptosysteme, die das System nicht algorithmisch
oder mathematisch lösen, sondern Umgebungsaffekte ausnutzen, wie z. B. den
Leistungsverbrauch eines Prozessors. Der naive Double-And-Add-Algorithmus
genau dafür anfällig15: Bei der Iteration wird nur dann eine Multiplikation
durchgeführt, wenn das Bit im Schlüssel 1 ist. Wenn ein Angreifer nun den
Leistungsverbrauch überwacht, kann dieser erhöhte Spannungen ablesen und
auf den geheimen Schlüssel rekonstruieren. Ein Verfahren dazu ist die Simple
Power Analysis (SPA), das in Abbildung 9 demonstriert wird.

5.3 Die Montgomery-Ladder

Die Montgomery-Ladder ist ein Additionsalgorithmus der gegen SPA resistent
ist16. Es wird garantiert, das unabhängig vom Schlüssel immer eine der gleiche
Typ von Operation durchgeführt wird, was den Sidechannel-Angriff erschwert.

14vgl. z. B. [Bundesamt für Sicherheit in der Informationstechnik 2025]
15vgl. [Walter 2004]
16vgl. [Kocher 1996]
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Abbildung 9: SPA eines RSA Systems mit Double-And-Add

Algorithmus 4: Montgomery-Ladder17

Input: g, k = (kt−1, . . . , k0)2
Output: y = gk

1 R0 ← 1
2 R1 ← g
3 for j = t− 1 to 0 do
4 if kj = 0 then
5 R1 ← R0 ·R1

6 R0 ← R2
0

7 else
8 R0 ← R0 ·R1

9 R1 ← R2
1

10 return R0

6 Computer-assistierter Korrektheitsbeweis

Im Folgenden wird ein weiterer Beweisansatz vorgestellt, der diesmal nicht zur
Intuition beitragen soll, sondern in der Praxis18 dazu dient, (ggf. optimierte)
Additionsformeln zu verifizieren. Dazu wird das Computeralgebrasystem (CAS)
SageMath verwendet. Die hauptsächliche Schwierigkeit dieses Ansatzes besteht
darin, dem CAS die Struktur der elliptischen Kurve effizient zu kommunizieren.
Dazu werden weitere algebraische Grundlagen benötigt19. Insbesondere werden
nun nicht mehr einzelne Punkte, sondern rationale Funktionen auf der ellipti-
schen Kurve betrachtet. Dazu werden weitere algebraische Objekte definiert:

6.1 Ringe

SeiM eine nicht-leere Menge. Weiter seien ⊕ :M ×M →M und ⊗ :M ×M →
M Abbildungen. (M,⊕,⊗) heißt Ring, wenn gilt: (M,⊕) bilden eine Gruppe;

17vgl. [Kleppmann 2022]
18z. B. in der Explicit Formulas Database [Daniel J. Bernstein o.D.]
19Für die Definition von Ringen etc vgl. [Cox, Little und O’Shea 2015]
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⊗ ist abgeschlossen und assoziativ; Es gilt (a ⊕ b) ⊗ c = a ⊗ c ⊕ b ⊗ c und
a⊗ (b⊕ c) = a⊗ b⊕a⊗ c∀a, b, c ∈M (Distributivgesetz ). Eine Teilmenge I ⊆ R
heißt Ideal, wenn (I,⊕) eine Teilgruppe von (R,⊕) ist, und I Multiplikationen
absorbiert. D. h. falls i ∈ I und r ∈ R so gilt i · r ∈ I und auch r · i ∈ I.
Man schreibt I ◁ R. Ideale können durch eine endliche Menge S ⊆ R generiert
werden: ⟨S⟩ bezeichnet das kleinste Ideal, das S ganz enthält. Das ist die Menge
der (endlichen) Linearkombinationen mit Koeffizienten in R: ⟨S⟩ = {s1 · r1 +
· · ·+sn ·rn : ri ∈ R, si ∈ S, n ∈ N, i ∈ {1, . . . n}}. Die Menge der Polynome über
einem Körper bildet mit Körper-Addition und -Multiplikation einen Ring.

6.2 Isomorphismen

Unter einer isomorphen oder strukturerhaltenden Abbildung versteht man eine
Abbildung zwischen algebraischen Strukturen gleicher Klasse, die (1) bijektiv
ist und (2) die algebraische Struktur erhält. Das heißt, dass sich die Abbildung
linear bezüglich additiver oder multiplikativer Verknüpfungen verhält, also z. B.
ϕ(x + ay) = ϕ(x) + aϕ(y). Isomorphismen können z. B. zwischen Ringen und
Gruppen definiert werden20.

6.3 Quotientenringe

Es wurde bereits ein Quotientenraum behandelt, nämlich der projektive Raum.
Gegeben sei ein Ring R und ein Ideal I◁R. Man erhält eine Äquivalenzrelation ∼
auf R mit A ∼ B ⇐⇒ B−A ∈ I und damit den Quotientenring R/I. Für einen
polynomialen Quotientenring gilt z. B. dass beliebige Linearkombinationen von
Generator-Polynomen mit Null identifiziert werden.

Beispiel 6.3.1 (Restklassenring auf den ganzen Zahlen). Sei R = Z und
I = ⟨p⟩ für eine Primzahl p. I enthält somit alle ganzzahlige Vielfache von p.
Man schreibt auch pZ. Betrachte Z/I = Z/pZ: man erhält eine Struktur, in der
alle ganzen Zahlen, die sich um ein vielfaches Unterscheiden identifiziert sind.
Mit der Additiven Verknüpfung, die sich von R und I überträgt erhält man
eine Gruppe, die sich ähnlich (isomorph) zur endlichen Gruppe auf {1, . . . , p}
mit Addition Modulo p verhält.

6.4 Beweis der Assoziativität

Der Idee ist die Folgende: Die Punkte Q,P,R werden als rationale Funktionen in
zwei Variablen (insgesamt Px, Py, Qx, Qy, Rx, Ry) betrachtet, und jegliche Addi-
tionen genauso. Der Implementierung halber werden aber Polynome betrachtet,
was ausreicht: rationale Funktionen sind offenbar genau dann identisch, wenn

ac = bd ⇐⇒ a

b
=
c

d
.

20Bemerkung. Silverman beweist die Assoziativität auf elliptischen Kurven, in dem die Exis-
tenz eines Isomorphismus zwischen der bekannten Verknüpfung auf E und der Picard-Gruppe
Pic0(E) gezeigt wird. vgl. [Silverman 2009], Proposition 3.4.
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Statt den Polynomen in K sollen aber nur die Polynome auf E(K) betrachtet
werden. Um das zu erreichen werden genau die Polynome auf K gleichgesetzt,
die auf E(K) übereinstimmen. Dann wird die Identität der Additionen P+(Q+
R) und (P +Q)+R in der Kurve kontrolliert, in dem SageMath die Ausdrücke
algorithmisch vereinfacht. Um die Aussage auf beliebigen kurzen Weierstrass-
Kurven zu zeigen, werden A und B als Variablen dazu genommen.

Proposition 6.4.1. Es werden drei Funktionen gleichzeitig betrachtet, daher
sei I = ⟨P 2

y −P 3
x +APx +B,Q2

y −Q3
x +AQx +B,R2

y −R3
x +ARx +B⟩. Um zu

überprüfen, ob diese Funktionen auf der elliptischen Kurve identisch sind, wird
der Quotientenring K[Px, Py, Qx, Qy, Rx, Ry, A,B]/I betrachtet21. Dort sind
Polynome identisch, wenn sie auf der Kurve identisch sind, was zu erreichen war.
Genauso wie etwa 7 ≡ 2 auf Z/⟨5⟩ gilt, ist hier P 2

y ≡ P 3
x+APx+B. Insbesondere

existiert ein Isomorphismus zwischen dem Quotientenring K[X1, . . . , Xn]/I(E)
und den Polynomen E(K)→ K d. h. K[X1, . . . , Xn]/I(E) ∼= K[E] 22.

Theorem 6.4.2. Es folgt eine Implementierung in SageMath23. Hier werden
Polynome mit über 500 Koeffizienten verglichen.

Listing 1: Verifizierung der Assoziativität von Elliptischen Kurven

RR.<Px ,Py,Qx,Qy ,Rx,Ry ,A,B> = PolynomialRing(ZZ ,8)

P=(Px,Py); Q=(Qx ,Qy); R=(Rx,Ry)

I=RR.ideal(Py^2-Px^3-A*Px-B, Qy^2-Qx^3-A*Qx -B, Ry^2-Rx^3-A*Rx -B)

SS=RR.quotient(I)

def add(P,Q):

x1=P[0]; y1=P[1]; x2=Q[0]; y2=Q[1];

m = (y2-y1)/(x2 -x1)

x3 = m^2-x1-x2

y3 = m*(x1-x3)-y1

return (x3 ,y3)

def reduced_fractions_equal(p, q):

return SS(p.numerator ()*q.denominator ()-p.denominator ()*q.

numerator ()) == 0

def equal(P,Q):

return reduced_fractions_equal(P[0],Q[0]) and

reduced_fractions_equal(P[1],Q[1])

print("Confirmed associativity:", equal(add(add(P,Q),R),add(P,add(Q

,R))))

Um z. B. das Verfahren Curve25519 zu verifizieren, kann man GF(2 ** 255

- 19) statt ZZ einsetzen, um den endlichen Körper F2255−19 zu nutzen auf dem
Curve25519 basiert24.

21vgl. [Friedl 2017]
22vgl. [Cox, Little und O’Shea 2015] Kap. 5, § 2, Theorem 7
23Der Quellcode ist eine Vereinfachung von [Sutherland 2021]. Man muss noch Sonderfälle

betrachten.
24vgl. [Kleppmann 2022]
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7 Ausblick

Das diskrete Logarithmus-Problem, und damit auch ECDH, gilt als quanten-
unsicher. Mit Shors Algorithm und einem hinreichend performanten Quanten-
computer (d.h. ca. 2000 Qubits) kann das Problem in realistischer Zeit (O(n2))
gelöst werden25. Elliptische Kurven spielen in Isogenie basierten Kryptosyste-
men eine zentrale Rolle, die grundsätzlich für die Post-Quantum-Cryptography
in Frage kommen26.

25vgl. [Proos und Zalka 2004]
26siehe dazu z. B. [Feo 2017]
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