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1 Vorwort

In der vorliegenden Arbeit wird die Kryptographie mit elliptischen Kurven vor-
gestellt. Insbesondere wird das Diffie-Hellman-Protokoll betrachtet. Dabei wird
ausgenutzt, dass auf den Kurven eine algebraische Struktur (Gruppenstruktur)
besteht. Somit kann man mit Punkten auf der Kurve ,plus rechnen®, dhnlich
wie man es intuitiv mit ganzen Zahlen tut. In der Kryptographie ist die Kor-
rektheit der Algorithmen von #uflerster Bedeutung. Das motiviert eine rigorose
mathematische Auseinandersetzung mit den elliptischen Kurven. Dariiber hin-
aus soll eine zufriedenstellende Antwort auf das ,, Warum* hinter der Struktu-
reigenschaft gegeben werden. Hierzu wurde ein Beweisansatz ausgewahlt, der
eine ausgewogene Kombination aus Effizienz, Allgemeingiiltigkeit und Klarheit
bietet.

Elliptische Kurven werden als Objekte der algebraischen Geometrie ein-
gefiihrt. Dazu werden Gruppen definiert (das ist die Rechengrundlage, mit der
z. B. der offentliche Schliissel berechnet wird) sowie anschliefflend Koérper und
Polynome. Korper sind algebraische Strukturen, auf denen elliptische Kurven
iiberhaupt erst allgemein definiert werden koénnen.

Dann folgt ein Abschnitt zur algebraischen Geometrie. Geometrische Objek-
te (z. B. Geraden) werden nun nicht mehr im Reellen, sondern iiber Kérpern
definiert. Des Weiteren wird der projektive Raum eingefithrt. Das hat den
Zweck, dass die Gruppenstruktur auf elliptischen Kurven einen zusétzlichen
Punkt benétigt (siehe unten): den Punkt im Unendlichen. Im affinen Raum
(z. B. R%) wird das Unendliche (negativ) als Unbeschrinktheit definiert, was
die Handhabung erschwert. Der projektive Raum stellt eine Kompaktifizierung
des affinen Raums dar: Der Punkt im Unendlichen ist wohldefiniert, und man
kann damit einfacher rechnen, und eben auch die Gruppeneigenschaft nachwei-
sen. Fiir Beweis werden die allgemeine Kurven in den projektiven Raum und
in einen erweiterten Korper eingebettet, wobei die Resultate dann weiterhin fiir
die urspriingliche Kurve gelten.

Es folgen einige technische Bemerkungen zur Implementierung des Diffie-
Hellman-Protokolls mit elliptischen Kurven. Hier werden optimierte Additions-
formeln hergeleitet. Diese Formeln per Hand zu verifizieren ist aufwendig; Daher
wird ein weiterer Korrektheitsbeweis vorgestellt, mit dem man konkrete For-
meln verifizieren kann. Diesmal wird ein anderer Ansatz verwendet, bei dem ein
Computeralgebrasystem zum Einsatz kommt. Dazu werden weitere algebraische
Strukturen eingefiihrt (Ringe und Ideale). Fiir die Legitimierung wird dariiber
hinaus der Begriff des Isomorphismus definiert.



2 Kryptographie

2.1 Grundsitze

Unter einem Kryptosystenﬂ versteht man die Gesamtheit des kryptographischen
Sachverhalts: Einen Klartext- und Chiffretextraum, einen Schlisselraum und die
Abbildungen chiffriere und dechiffriere.

={ chiffriere J
T 4
Klartext Schliissel Chiffretext

[ L

L dechiffriere J‘

Abbildung 1: Kryptosystem

Ein Kryptosystem ist gwﬂ wenn die Chiffren-Abbildung bijektiv ist, und
man den Chiffretext ohne den Schliissel mit praktischen Mitteln nicht dechif-
frieren kann. Ein wichtiges Mafl dafiir ist die Laufzeitkomplexitdt. Wenn ein
gemeinsamer Schliissel benutzt wird, heifit das Kryptosystem symmetrisch. Ali-
ce und Bob koénnten im Vorhinein einen gemeinsamen Schliissel festlegen. Wenn
jede Partei einen eigenen Schliissel oder mehrere Schliissel hat, spricht man von
asymmetrischen Systemen. Beim Diffie-Hellman-Schliisselaustausch wird ein ge-
meinsamer Schliissel vereinbart, indem ein offentlicher Schliissel ausgetauscht
und dann mit einem privaten Schliissel verrechnet wird (wobei letztere danach
verworfen werden): Man spricht von einem hybriden Kryptosystem. Asymme-
trische Kryptosysteme beruhen meistens auf einer sogenannten mathematischen
Einwegfunktion. Das sei eine Funktion, deren Ausfiihrung eine geringe Lauf-
zeitkomplexitdt hat, deren Umkehrfunktion jedoch eine sehr hohe Laufzeitkom-
plexitidt hat. Die vorliegende Arbeit behandelt lediglich die Korrektheit von
Einwegfunktionen und nicht die Laufzeitanalyse.

2.2 Die Vigenere-Chiffre

Die Vigenére-Chiffre ist ein Beispiel fiir eine Chiffrierfunktion. Sie beruht auf
verschobenen Alphabeten: Der Schliissel ist eine Folge von Buchstaben K =

IFiir die Definition des Kryptosystems, RSA, der Vigenere Chiffre und Diffie Hellman vgl.
[Witjen [2018].

2[Witjen [2018] beschreibt in Abschnitt 1.2 Authentizititsanforderungen und Geheimhal-
tungsanforderungen. Gut heifit hier: erfiillt diese.



(k1,--- ,kq), wobei k;,i =1,...,d die Grofie der Verschiebung im i-ten Alpha-
bet angibt. Es sei f;(a) := (a + k;) mod n, wobei n die Linge des Alphabets
ist. Man definiert die Chiffrierfunktion, als dass f; auf jeden Buchstaben m; des
Klartextes angewendet wird. Wenn man beim letzten Buchstaben k; angekom-
men ist, macht man mit k; weiter:

chiffriere : K(M) := fi(mq) ... fa(ma) fr(max1) - - fa(maq) - .. fa(Migea)

mita € 1,...,d,n € Ng. Moderne Chiffren werden auf Bit-Ebene durchgefﬁhrtﬂ

2.3 Das RSA-Kryptosystem

Das Rivest-Shamir-Adleman- Verfahren (RSA-Verfahren) ist ein asymmetrisches
Kryptosystem. Es gibt einen 6ffentlichen Schliissel und einen privaten Schliissel
pro Teilnehmer. Das Ziel ist, dass Alice die Nachricht M mit Bobs offentlichem
Schliissel chiffriert. Nur mit dem privaten Schliissel ist Bob dann in der Lage, die
Nachricht zu lesen. Die Faktorisierung einer groflen Zahl in ihre Primfaktoren
und das Berechnen des diskreten Logarithmus sind Beispiele fiir mathematische
Einwegfunktionen, die hierbei eine Rolle spielen. Im Folgenden werden kurz
die zahlentheoretischen Grundlagen aufgefiihrt, die dann die kryptographischen
Routinen legitimieren.

Definition und Proposition 2.3.1 (Witjen 2018, 3.3 und 3.8, Eulersche
p-Funktion). p(n) := #{z € {1,...,n} : ggT(z,n) = 1}. Sei p eine Primzahl.
Dann ist einfach zu sehen dass ¢(p) = (p—1). O

Theorem 2.3.2 (Witjen [2018, Satz 3.9, Satz von Euler). Es sei n € N
und a € Z mit ggT(a,p) = 1. Dann gilt

a?™ modn=1.
Wird hier nicht Bewiesen. [J

Theorem 2.3.3 (Witjen 2018, Satz 5.2). Es sei n = pg mit Primzahlen
p # ¢ und weiter e,d € N mit ed mod ¢(n) = 1 und schliefllich M € {1,...n}.
Dann ist

(M¢ mod n)? modn= M.

Wird hier nicht Bewiesen. J

Die folgenden Algorithmen werden u. A. im RSA-System benutzt:

3vgl. [Witjen [2018|, Einleitung Kapitel 4



Algorithmus 2.3.4: RSA-Schliisselerzeugung
Input: Zwei grofle Primzahlen p und ¢
Output: Offentlicher Schliissel (e,n), Privater Schliissel (d,n)
1n+p-q
29 (p—1)(¢—1)
3 Wiihle e mit 1 < e < ¢ und ged(e, ¢) =1
4 Berechne d mit e-d =1 mod ¢ (dazu z. B. Wiitjen |2018, Algorithmus
3.3)
5 return (e,n), (d,n)

Algorithmus 2.3.5: RSA-Chiffrierung

Input: Klartext m, Offentlicher Schliissel (e,n)
Output: Chiffretext ¢

1 c+ m® modn

2 return c

Algorithmus 2.3.6: RSA-Dechiffrierung
Input: Chiffretext ¢, Privater Schliissel (d,n)
Output: Klartext m’

1 m +— ¢® modn

2 return m’

2.4 Der Diffie-Hellman-Schliisselaustausch

In der ersten Fassung des Diffie-Hellman-Austausches finden die Rechnung auf
endlichen Menge M = {1,...,p} mit Multiplikation Modulo p, d. h. a®b := a-b
mod p. Das Protokoll ist auf beliebigen Gruppen moglich, insbesondere auch auf
der Gruppenstruktur von elliptischen Kurven (dazu s. u.).

Definition 2.4.1 (Diffie-Hellman-Protokoll). Gegeben sind eine Primzahl
p, und g € M. Alice und Bob wiéhlen zwei private Schliissel X 4 und Xp. Beide
berechnen

DHy:Py=g¢% modp=(g®¢g)®g..., DHp:Pg=g*" mod p.

Die beiden Ps werden dann iiber einen offentlichen Kanal ausgetauscht, und
schliellich die Operation DE darauf wiederholt ausgefiihrt. Das Resultat Y4 =
Yp wird folglich als Chiffre genutzt. Die Anforderungen an den Algorithmus sind
geringer als bei RSA, da der Schliissel blof§ ausgetauscht werden muss. Wichtig
ist lediglich, dass die Funktionen DH 4, DH g kommutieren.

Bemerkung 2.4.2. Es ist sinnvoll, g so zu wéhlen, das g ein Generator der
zyklischen Gruppe (Z/pZ,®) (vgl. 6.2.1 und das folgende Kapitel) ist. Dann
kommen fiir einen Angreifer beliebige Werte X in Frage. Weil p eine Primzahl
ist gilt das fiir jedes g € M.



Theorem 2.4.3 (Korrektheit von Diffie-Hellman). Beweis.

DH4(DHp(M)) = P3* mod p= (¢*% mod p)*4 mod p=g*4*5 mod p

= (¢** mod p)*# mod p = PffB mod p

= DHp(DHA(M))

Bemerkung 2.4.4 (mathematische Einwegfunktion). Die mathematische
Einwegfunktion der Potenzierung auf Gruppen endlicher Ordnung nennt man
auch diskretes Logarithmus-Problem. Gemeint ist die Schwierigkeit, aus einer
Gleichung 2? = y auf x zu schlieBen, sofern d,y gegeben sind. Statt 2 wird
auch [d]x geschrieben.

3 Algebra und algebraische Geometrie

Im Folgenden werden Grupperﬁ und Korper definiert sowie ausgewéhlte Ei-
genschaften und Erweiterungen beschrieben. Ein wesentliches Ziel dieser Arbeit
ist es, elliptische Kurven als Gruppen zu definieren und dies als Grundlage fiir
das Diffie-Hellman-Protokoll zu nutzen. Dafiir betrachtet man den Graphen der
impliziten Funktion, die eine elliptische Kurve darstellt. Zwei Punkte zu addie-
ren bedeutet, beide mit einer Geraden zu verbinden, den dritten Schnittpunkt
von Kurve und Gerader zu finden und diesen anschlieflend an der X-Achse zu
spiegeln (siehe Abschnitt 4.2, Abbildung 2).

Korper bilden eine weitere Grundlage: Das sind algebraische Strukturen, die
sich aus zwei Gruppen zusammensetzen: Addition und Multiplikation werden
erklirt. Dies ermoglicht eine allgemeine Definition von Polynomen (mit n Ko-
effizienten), aus denen elliptische Kurven hergeleitet werden. Das Prinzip des
algebraisch abgeschlossenen K('jrperslﬂ wird eingefiihrt, um auf solchen Kérpern
Aussagen iiber Polynome zu beweisen, insbesondere den Satz von Bézout. Dieser
trifft eine Aussage iiber die Anzahl der Schnittpunkte von Kurven was offenbar
relevant fiir die Gruppenaktion ist. Eine abgeschwichte Version davon lésst sich
dann wieder auf allgemeine Korper iibertragen.

3.1 Gruppen

Sei M eine nicht-leere Menge und & : M x M — M eine Abbildung. (M, ®) heift
Gruppe, wenn gilt: (1) Je € M :a® e =e ® a = aVa € M (neutrales Element);
2)Vae MIat e M:adat=¢(3) (adb)@c=a®d (bdc)Va,b,c € M
(Assoziativitit). Eine Gruppe heiit abelsch oder kommutativ wenn a &b = b @
ava,b € M. @ nennt man Gruppenaktion und M Basismenge. #M (Michtigkeit
der Basismenge) nennt man Ordnung der Gruppe. Im Gruppenkontext bedeutet

4Fiir die folgenden Definitionen vgl. [Karpfinger [2024| oder ein anderes Lehrbuch zur Al-
gebra.

5Bemerkung. Die komplexen Zahlen sind ein algebraisch abgeschlossener Kérper. Mit dem
Lefschetz-Prinzip [Eklof [1973] kann man somit Ergebnisse aus der Funktionentheorie in die
algebraische Geometrie iibertragen.



x" die n-fache Ausfithrung der Gruppenaktion auf das Element z (auf sich
selbst). Man schreibt auch [n]x. Gibt es ein d € M so dass M = {d" : n € N}
spricht man von einer zyklischen Gruppe mit Generator d.

3.2 Korper

Sei K eine nicht-leere Menge. Weiter seien & : K x K - K und ® : K x K —
K Abbildungen. (K, ®,®) heifit Korper, wenn (1) (K, ®) eine Gruppe ist, (2)
(K \ {ea},®) eine Gruppe ist, und (3) das Distributivgesetz a ® (b @ ¢) =
a®@bda®c; (bdc)®a=bRadc®a gilt. Eine Teilmenge L C K mit ey, e. € L,
so dass (L, ®, ®) wieder ein Korper ist nennt man Teilkérper zu K. Man nennt
K FErweiterungskérper zu L. Man definiert die Charakteristik eines Korpers, als
die kleinste natiirliche Zahl n, mit der [n]ges = eg gilt. Das heifit: Wie oft
muss man die 1 auf sich selbst addieren, damit sich 0 ergibt. Fiir den Koérper
R geht das nicht und man setzt char(R) = co. Ein Koérper K heifit algebraisch
abgeschlossen, wenn jedes nicht-konstante Polynom (s. u.) mit Koeffizienten in
K eine Nullstelle in K hat. Dort zerféllt das Polynom in Linearfaktoren. Der
kleinste Erweiterungskorper J =: K zu K, so dass J algebraisch abgeschlossen
ist, nennt man algebraischen Abschluss zu K. Nach dem Fundamentalsatz der
Algebra gilt R = C. Ganze Zahlen stellen in der Praxis endliche Korper da,
Stichwort Integer Overflow.

3.3 Polynome

K[Xy,...,X,] bezeichnet die Menge der Polynome in n Variablen iiber K. Das
ist
{F:Kx---xK—=K,
(X1, Xn) = Z ailauwinXiil szzn
(i1,0vnvin) 33 €40, }
|ai17~~ain €K, ij € {07 i n}}

natiirlich bezogen auf die Korper-Addition und -Multiplikation. Wenn alle
bis auf ein a;, ... i, = 0 sind, und das restliche a; = 1, nennt man F' Monom.
K[Xy,...,X,] besteht folglich aus den Linearkombinationen der Monome iiber
K. Ein Polynom f € K[Xy,...,X,] heiit irreduzibel in K[X;,...,X,] falls es
keine nicht-konstanten Polynome g,h € K[X,...,X,] gibt so dass f = g h.
Man sagt ein Polynom FE teilt F', wenn bei der Polynomdivision ein Polynom D
entsteht. Irreduzible Polynome bilden somit ein Analogon zu den Primzahlen,
weil sie nicht teilbar sind.

3.4 Aquivalenzrelationen

Eine Relation ~ heifit Aquivalenzrelation, falls sie reflexiv, transitiv und symme-
trisch ist. Sei M eine nicht-leere Menge und ~ eine Aquivalenzrelation auf M.
Fiir ein € M bezeichnet [z]. := {y € M : z ~ y} die Aquivalenzklasse von z.
Dann bezeichnet M/ ~:= {[z]. : z € M} die Menge der Aquivalenzklassen von



~. Oft werden durch Aquivalenzklassen Eigenschaften der Menge M iibertragen,
zum Beispiel eine Metrik. Dann nennt man M/ ~ Quotientenraum. Die Abbil-
dung 7 : M — M/ ~,m — [m] nennt man kanonische Projektion. Ein Element
a € [z] nennt man Reprdsentanten von [x]. Mit Aquivalenzrelationen wird im
Folgenden der projektive Raum konstruiert, in den die elliptischen Kurven ein-
gebettet werden.

Beispiel 3.4.1 (M&biusband). Sei B = {(z,y) € RxR: |z]| <10, |y| < 2} ein
Rechteck. B ist mit der euklidischen Metrik d(a,b) = \/(az — bs)? + (ay — by)?
ein metrischer Raum. Sei ~ eine (leicht iiberpriifbare) Aquivalenzrelation mit

ar~b:<= a=0bV(ay=—byAagy # by Alag| = |by| = 10)

Man erhilt das Mébiusbandlﬂ als Quotientenraum B/ ~. Wobei eine Metrik
induziert wird durch

d(la], [b]) = (d(a,b)).

min
a€la],beb]

Die Aquivalenzrelation klebt die Rénder des Rechtecks verdreht aneinander.

Abbildung 2: Visualisierung Mobiusband

3.5 Der projektive Raum

Zwei parallele Graden treffen sich im Unendlichen, ndmlich im Fluchtpunkt. Im
Folgenden wird eine Anschauungsweise vorgestellt, in der der Fluchtpunkt, den
man nun den ,,Punkt im Unendlichen “ nennt, konkret verortet ist. Der Fall, dass
auf der elliptischen Kurve Punkte addiert werden, so dass Verbindungsgrade und
Kurve parallel sind, wird somit elegant abgehandelt. Ebenfalls wichtig ist das
Konzept von homogenen Polynomen.

6vgl. [Janich [1990|, Kap. 3, §7, Beispiel 4



Definition 3.5.1 (Washington 2008, Der projektive Raum). Man defi-
niert den projektiven Raum Fg als Quotientenraum der Relation ~: y ~ ¢ <=
(x = \y) auf R**! also die Menge der Aquivalenzklassen (aber kein Kérper).
Die Aquivalenzklassen [x]. entsprechen den Graden durch den Ursprung. Koor-

dinaten im projektiven Raum schreibt man (z1 : @9 : -+ - : Zp41). Die kanonische
Projektion ist h([z]<) = (1/Tns1s- -, Tn/Tni1)?, falls 2,41 # 0. Die Punkte
(x1: -+ :xy: 0) nennt man Punkte im unendlichen. Statt R wihlt man oft be-

liebige Korper K. Man nennt Pz den n-dimensionalen projektiven Raum iiber
K. A% = K™ heifit affiner Raum tiber K. Der Pragnanz halber wird auch A"
und P™ geschrieben, falls K nicht weiter relevant ist. Man kann A™ als Teil-
raum von P™ betrachten mit (z1,...,25) ~ (x1 1+ : 2, 2 1). (0:0:0) ist im
projektiven Raum ausgeschlossen. Man erhélt die Definition Py = (K\{0})/ ~.

Bemerkung 3.5.2. Im Folgenden wird Punkten __(X :Y : Z) wie mit cartesi-
schen Koordinaten gerechnet, nicht explizit mit Aquivalenzklassen. Ggf. wird
der Koordinatenpunkt in Beweisen skaliert, da im Quotientenraum (z,y, z) =~

Mz, y, 2).

Bemerkung 3.5.3 (Motivation des projektiven Raums). Man sagt, Punk-
te im projektiven Raum sind in homogenen Koordinaten geschrieben. Man kann
sich den Ubergang zu homogenen Koordinaten anhand dem perspektivischen
Zeichnen vorstellen. Die Graden durch den Ursprung sind dann Sichtlinien, und
die Hyperebene {(X,Y,2)T : Z = 1} C K3 ist die Landschaft. Um sich die
Menge der Graden (s. o.) besser vorzustellen, kann man sie auf eine Sphére (s.
Abb. 4) projizieren. Man betrachtet somit den projektiven Raum als eine solche
Sphére. Die Punkte im unendlichen bilden in der Analogie den Horizont. Das
sind genau die Graden, bei denen Z = 0 ist. Da diese Punkte einen konkreten
Ort auf der Sphére darstellen (und nicht blof§ einen Grenzwert), spricht man
von einer Kompaktifizierung des affinen Raums. Offenbar schneiden die Gra-
den die Sphire aber in einem zweiten Punkt, hier ist das der Hinterkopf des
Malers. Man muss diese Punkte auf der Sphére folglich identifizieren, was man
sich dann nicht mehr so leicht vorstellen kann. Auch die kanonische Projektion
7 wird durch diese Ansichtsweise motiviert. Weil (X : Y : Z) = AM(X : Y : Z)
wihlt man A = - fiir die nicht-unendlichen Punkte (Z # 0). Man erhélt Punkte
auf der Landschaft zuriick. Das wird in Abbildung [5| verdeutlicht.

10
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Abbildung 3: Perspektive

B i LB i - \
Line at infinity (Z =0

Abbildung 4: Visualisierung des projektiven Raums - Das Auge des Malers

(va’ Z) ~ (X/Z7Y/Z)

Abbildung 5: Die kanonische Projektion

11



Definition 3.5.4 (Washington 2008, homogene Polynome). Ein Polynom
f(X,Y,2) = Y a; X9 Y% Zli heiBt homogen mit Grad m falls m = j; +
ki +1;,¥Vi = 1,...,n. Homogene Polynome werden auch Formen genannt (als
geometrische Objekte, s.u.). Jedes Monom hat dort also den gleichen Grad.
Homogene Polynome haben wohldefinierte Nullstellen im projektiven Raum: Es
gilt fFAX,AY,AZ) = N f(X,Y,Z). Ist (z : y : z) also eine Nullstelle von f,
so verschwindet f bei (z2,y2,22) ~ (z,¥, 2) ebenso. Beliebige Polynome in Ag
kénnen zu homogenen Polynomen in P umgewandelt werden: (1) Wihle m als
die maximale Potenz (2) ergénze jeweils 2! mit [ = m —4; — - -+ — i,,. Beispiel:
f(X, Y)=Y?-X3 f(X,Y,Z)=Y?Z— X3 Man nennt das Homogenisierung.
Somit kann man Polynome im affinen Raum in den projektiven Raum fortsetzen,
so dass sie homogen sind. Weil der affine Raum in den projektiven Raum durch
(x1,...,xp) ~ (x1 : -+ : zp : 1) eingebettet ist, erhdlt man durch a,4 L
(im PZ also Z = 1) im homogenen Polynom das affine Ursprungspolynom. Man
nennt das Dehomogenisierung.

Proposition 3.5.5 (Linearfaktoren von homogenen Polynomen in zwei
Variablen). Sei A(X,Y) € K[X,Y] ein homogenes Polynom vom Grad d > 1
und (€ : n) € P mit H(¢,n) = 0. Dann ist (nX — £Y) ein Teiler von H
in K[X,Y]. Beweis. Ohne Einschrinkung sei 7 # 0. Dann gilt: h(&,n) = n? -
h (%, 1) =0, also ist z — % ein Teiler von h(z) := h(z,1) (Dehomogenisierung).

Daher ist h(X,Y) = Y% h(X/Y) durch (X — %Y) teilbar, also auch durch
(nX —&Y).

3.6 Algebraische Varietiten

Definition 3.6.1. Sei im Folgenden K ein Korper, und und L D K ein Erwei-
terungskorper. Man sagt eine Funktion f : A% — K verschwindet bei a, falls
f(a) = ex = 0. Die Menge V(f) := {a € A% |f(a) = 0} heifit Verschwindungs-
mengeﬂ von f. Wenn f ein irreduzibles Polynom ist, heiit V(f) Varietit. Im
Folgenden werden Varietéiiten z. B. mit C, D, E notiert. Man definiert den pro-
jektiven Abschluss von Varietéten als die Verschwindungsmenge im projektiven
Raum, wobei das Polynom zuerst homogenisiert Wirdﬂ Varietdten im A, wer-
den auch Kurven genannt. Man sagt F hat den Grad n, wenn n die maximale
Potenz der Monome ist. Die Verschwindungsmenge einer Varietdt E wird auch
E(K) geschrieben. Man nennt eine Varitit E : f = 0 glatt im Punkt p, wenn
nicht alle partiellen Ableitungen in p verschwinden, d. h. Vf(p) # (0,...,0).
Eine Varitiit E heiit glatt, wenn E in jedem p € E(K) glatt ist, sonst heifit E
singuldr.

"Bemerkung. Es gilt z. B. V(f-g) = V(f) UV(g) oder auch V(f +g) 2 V(f) NV (g). Das
Polynom ist nicht eindeutig bei gegebener Verschwindungsmenge: betrachte h nicht-konstant,
sonst beliebig und V(h?) = V(h) UV (k) = V(h)

8Fiir die Definition von algebraischen Varietiten vgl. [Cox, Little und O’Shea [2015| Kap.
1, §2, fiir den projektiven Abschluss Kap. 5, §4]
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Bemerkung 3.6.2 (Synopse). Im Folgenden wird eine vereinfachte Version
des Satzes von Bézout bewiesen. Der Satz besagt, dass sich eine Grade und eine
elliptische Kurve insgesamt drei mal treffen. Dafiir werden die geometrischen
Objekte als Varietdten im projektiven Raum betrachtet. Begriindung: Dabei
verdndert sich die Kurve im eingebetteten affinen Raum nicht. Man ergéinzt
also den affinen Raum formal zum projektiven, wobei effektiv blofl der Punkt
im unendlichen hinzugenommen wird. Der Satz dient spéter als Hilfsresultat
im Beweis der Assoziativitdt auf elliptischen Kurven. Man kann ihn als Ver-
allgemeinerung des Fundamentalsatzes der Algebra auffassen. Zur Erinnerung:
Ein Polynom vom Grad n besitzt (unter Beriicksichtigung der Multiplizitéiten)
genau n komplexe Nullstellen. Der vereinfachte Satz von Bézout besagt ana-
log: Eine algebraische Kurve vom Grad d schneidet eine Gerade (Grad 1) in
genau d Punkten, ebenfalls unter Beriicksichtigung der Multiplizitéiterﬂ (d.h.
Schnittzahlen).

Dieses Resultat ist niitzlich fiir Existenzbeweise, insbesondere dann, wenn
bekannt ist das alle Schnittzahlen gleich eins sind.

Des Weiteren wird der Begriff des Morphismus eingefiihrt, basierend auf
der Definition rationaler Abbildungen. Morphismen sind Abbildungen zwischen
Kurven. Dies ist notwendig, da im Beweis der Assoziativitit folgendes Resul-
tat iiber Morphismen verwendet wird: Nicht-konstante Morphismen zwischen
glatten Kurven (auf algebraisch abgeschlossenen Kérpern) sind surjektiv (siehe
unten). Ein Beweis dieser Aussage wird im Rahmen dieser Arbeit jedoch nicht
gefithrt. Der Zweck ist der Folgende: Betrachtet man eine endliche Menge von
Sonderfillen und findet einen Morphismus, der auf allen Punkten auflerhalb
der Menge gleich Null ist, sieht man leicht das dieser nicht surjektiv sein kann,
wenn die Zielmenge grofl genug ist. Somit erledigen sich die Sonderfille, da der
Morphismus folglich konstant ist.

Zuerst wird aber das motivierende Beispiel der parallelen Graden aufgegrif-
fen.

Proposition 3.6.3 (Washington {2008, 2.3, Geraden im projektiven
Raum). Beliebige Graden treffen sich im PZ.

Beweis. Fiir zwei parallele Geraden f1 : y = mx + b1, fo 1 y = ma + be,
b1 # by € K ist die homogene Form

Fi:y=mx+biz, F5:y=mzx+ bz

und deren Schnittpunkt ist (x : ma : 0) = (1 : m : 0) = oco. Da sich nicht-
parallele Graden offenbar auch einmal treffen, gilt die Aussage allgemein [

Definition 3.6.4 (Stoll 2020, 4.1, Schnittzahlen, vereinfacht). Sei P =
(€ :m:() € P2 ein Punkt, G : aX + bY + ¢Z = 0 eine projektive Grade und
C : F(X,Y,Z) = 0 eine projektive Kurve iiber K, so dass G kein Teiler von
C' ist. Man definiert i(G, C; P) als die Vielfachheit oder auch Multiplizitit des

9Die allgemeine Version des Satzes behandelt zwei beliebige Kurven vom Grad p bzw.
¢: Die Anzahl ihrer Schnittpunkte (mit Multiplizitidten) betrigt dann p - ¢. Fiir den Beweis
benétigt man Ergebnisse der lokalen Algebra [Fulton [2008], 5.3.
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Schnittpunkts P von G und C: Im Fall P ¢ C(L) N G(L) sei i = 0. Andernfalls
16st man die Gleichung von G nach einer der Variablen auf, etwa Z = —2X — %Y
(ohne Einschrinkung ¢ # 0) und setzen diesen Ausdruck in F' ein. Man erhélt
ein homogenes Polynom H(X,Y), dass durch (§Y — nX) teilbar ist. Fiir den
Fall das oben Y oder X eliminiert wurde, (£Z —(X) oder (nZ —(Y'). Man setzt
i als die Vielfachheit des Faktors (¢Y —nX) in H.

Bemerkung 3.6.5 (Eindeutigkeit der Schnittzahlen). Die Schnittzahl ist
unabhéngig davon, welche Variablen man oben zur Umformung w#hlt. Beweis.
Ohne Einschriankung sei P = (0 : 0 : 1) (durch eine lineare Koordinatentrans-
formatiorﬂ aus PGL3(K)). Dann ist ¢ = 0, und formt man G nach X,Y um
ergibt sich X = —SY oder Y = —¢X, die aber Aquivalent sind.

Theorem 3.6.6 (Stoll |2020, Satz 4.3, Bézout, vereinfacht). Sei C :
F(X,Y,Z) = 0 eine projektive Kurve vom Grad d iiber K, so wie G : aX +
bY + cZ eine projektive Grade iiber K die nicht in C' enthalten ist. Dann gilt

> iG,cP)=d

PeC(K)NG(K)

Beweis. Sei ohne Einschrinkung ¢ # 0 und seien o’ = —a/c¢, b’ = —b/c; Dann ist
die Geradengleichung Z = o’ X + b'Y. Setzt man die Punkte in F' ein bekommt
man H(X,Y) = F(X,Y,a’X +b'Y); das ist ein homogenes Polynom vom Grad
din K[X,Y]. In K[X,Y] ergeben sich Linearfaktoren:

H(X,Y) = a(mX —&Y)" - (X — &)™

P=(£:n:() € P%(K) ist genau dann ein Schnittpunkt von C und G, wenn
H(¢,n) =0und ¢ = a’§ + b'n gilt. Die Schnittpunkte sind somit

(Eim:d&+0m),. o (ke a4+ b)),
und deren Vielfachheiten sind per Definition di,...,dg mit di +---+dp = d. O

Korollar 3.6.7. Aus K C K folgt direkt dass

> i(G,C,P)<d

PEC(K)NG(K)
wenn G kein Faktor von C' ist.

Bemerkung 3.6.8 (allgemeiner Beweis). Fiir die allgemeine Version der
Schnittzahl und einen entsprechenden Beweis von Bézout wird auf [Fulton 2008|,
Kapitel 5.3 verwiesen.

10Die Schnittzahl ist invariant in linearen Transformationen. vgl. [Cox, Little und O’Shea
2015| Kap. 8, § 7, Theorem 7. Im projektiven Raum sind affine Verschiebungen linear.
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Beispiel 3.6.9. Seien a : y = 2 —4 und b : y = —4 affine Kurven in C. Nach
Bézout ist die Schnittzahl im Punkt p = (0, —4) gleich 2. Nachweis. Man erhalt
den projektiven Punkt P = (0 : —4 : 1) = (0 : —1 : 1) und die homogenen
Polynome

A:0=-YZ+X%?-422B:0=Y +4Z.

Lose B nach Z auf: B : Y = —4Z und setze in A ein:
H(X,Z)=4Z* + X? 47> = X?
welches von (0Z — (—1)X) = X zweifach geteilt wird. O

Definition 3.6.10 (Stoll 2020, 6.1, rationale Abbildungen). Seien C' :
F(X,Y,Z)=0und D : G(X,Y, Z) = 0 irreduzible projektive Kurven iiber ei-
nem Korper K. Eine rationale Abbildung von C nach D ist eine Aquivalenzklasse
von Tripeln (Ri, Ra, R3), wo die R; € K[X,Y, Z] homogen, vom gleichen Grad
und nicht alle durch F teilbar sind und aulerdem G(R;, Ra, R3) durch F' teilbar
ist. Dabei gﬂt (Rl, R27 Rg) ~ (Sl, SQ, S3) genau dann wenn F|Ri5j — RjSi fiir
alle 4, j gilt, d. h. F'ist durch R;S; — R;S; teilbar. Sei ¢ eine rationale Abbildung
von C nach D und P = (a : B : v) € C(K). ¢ heiit regulir oder definiert in
P, wenn ¢ einen Représentanten (R1, R, R3) hat, sodass nicht alle R;(«, §,7)
verschwinden. In diesem Fall ist

¢: P (Ri(P1, P.Ps), Ro(P1, P2.P3), R3(Py, Py.Ps3))

wohldefiniert, und man erhélt Abbildungen ¢ : {P € C(K)|¢ definiert in P} —
D(K).

Definition 3.6.11 (Stoll 2020, 6.1, Morphismen). Rationale Abbildungen,
die auf ganz C(K) regulir sind, nennt man Morphismen. In den beiden folgenden
Beweisen spielt die Tatsache eine Rolle, dass die Gruppenaddition auf einer
elliptischen Kurve ein Morphismus ist.

Theorem 3.6.12 (Hulek 2012, Satz 6.34, Surjektivitit von Morphis-
men). Ist f : C — C’ ein nicht-konstanter Morphismus zwischen glatten pro-
jektiven Kurven, dann ist f surjektiv. Wird hier nicht bewiesen. [J

Theorem 3.6.13 (Fulton 2008, Kap. 6 Prop. 7, Stetigkeit von Morphis-
men). Sind f,g: C — C’ zwei Morphismen zwischen den Varietiten C,C’, die
auf einer Teilmenge D C C mit D = C iibereinstimmen, gilt f = g auf C. Wird
hier nicht bewiesen [

Bemerkung 3.6.14. Oben ist D der Abschluss beziiglich der Zariski-Topologie.
Das ist die Menge aller Varietéten, die einen topologischen Raum bildet.

Das Stetigkeitsresultat wird im vorliegenden Beweis zur Assoziativitéit nicht
genutzt, kann aber 3.6.12 ersetzen. mAllerdings ist die Anwendung im Rahmen
dieser Arbeit aufwindig zu begriinden, wohingegen man die Surjektivitéitsaussage
einfach so verwenden kann.
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4 Elliptische Kurven

4.1 Definition von elliptischen Kurven

Eine elliptische Kurve ist eine glatte algebraische Varietét dritten Grades. In
der Kryptographie beschréinkt man sich aber meistens auf eine spezielle Dar-
stellung (z. B. Montgomery-Form) oder sogar auf eine spezielle Kurve (z. B.
beim Verfahren Curve255lﬂ.

Definition und Proposition 4.1.1 (Washington 2008, 2.1, kurze Wei-
erstrass Form). Sei K ein Korper mit char(K) # 2, 3. Eine glatte Varietét

E:y’=2>+Az+ B

nennt man elliptische Kurve in kurzer Weierstrass Form. Die Bedingung der
Glattheit erfordert V(2% + Az + B —y?) # 0 auf dem Bild F(K). Man definiert
cine Kennzahl der Kurve, die Diskriminante: A := 4A3 + 27B2. A # 0 ist
Aquivalent zur Glattheit der Kurve. Beweis.

2 _
VE = (3x +A) = <0> = 0=y2=x(—A+A)+B

—2y 0 3
3B
:>.I‘—ﬂ
o4
4A2 3

& 44 +27B% =0
char(K) # 2,3 ist an der Stelle wichtig, da somit 0 # 2,3 in K.

Bemerkung 4.1.2 (weitere Darstellungen). Es gibt weitere Darstellungen
von elliptischen Kurven, z. B. die Montgomery Form, oder die lange Weierstrass-
Gleichung, die nicht unbedingt dquivalent sind. Kryptographisch relevante Dar-
stellungen werden in der Explicit-Formulas-Database (EFD) aufgelistet. Die fol-
genden Berechnungen beschrianken sich auf die kurze Weierstrass-Form.

4.2 Die Gruppenaddition

Proposition 4.2.1 (Washington 2008, 2.2, Elliptische Kurven als abel-
sche Gruppen). Auf der elliptischen Kurve wird eine Gruppenstruktur defi-
niert. Zwei Punkte zu addieren bedeutet, beide mit einer Grade zu verbinden,
den dritten Schnittpunkt von Kurve und Grade zu finden, und diesen dann
an der X-Achse zu spiegeln. Wird ein Punkt auf sich selbst addiert ([2]P),
verwendet man die Tangente als Verbindungsgrade. Das kann man mit einem
Grenzwertargument motivieren.

In manchen Féllen sieht man gleich, dass es scheinbar keinen dritten Punkt
gibt, zum Beispiel wenn man in Abbildung@ [2] P+ R rechnet. Man definiert die

11ygl [Kleppmann [2022]
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Abbildung 6:

Das Gruppengesetz

Gruppe also auf E(K)U{oo}, und setzt in solchen Féllen P+ = oo. Betrachtet
man die Kurve im projektiven Raum verhélt sich co wie ein regulérer Punkt.

Elliptic Curve: y2 = x® - 2x + 2 with P + (-P) = O

Projective Visualization

— Curve
Infinity

P
e Q=P
L(P, Q)

Abbildung 7: Gruppenaddition im affinen und projektiven Raum

Dass die Abbildung wohldefiniert ist, und dass die Axiome gelten wird im
folgenden bewiesen, zunichst aber der Additionsvorgang formal definiert. Bei
den expliziten Formeln beschrinkt sich die Arbeit auf den affinen Fall.

Proposition 4.2.2 (Washington 2008}, 2.2, Formeln zur Berechnung von
Schnittpunkten im affinen Raum). Es ergeben sich die folgenden Félle: (1)
Ohne Einschrinkung sei Q) = oo; setze Q@ + P = P+ @ := P. (2) Angenommen
p1 # q1. Dann ergibt sich die folgende Geraden-Gleichung: y = m(x — p1) + pa.

wobei

q2 — P2
m =

91— P
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ist. Um den Punkt auf E zu finden, setze ein:
(m(z —p1) +p2)® = 2° +ax +b
durch Umformen ergibt sich:
0=2a3—m22?+...
Linearfaktoren: 71, p1, 1

=(z—r)(z—p)(z—q)
:x?’—(rl —|—p1—|—q1)m2+...

durch Koeffizientenvergleich ergibt sich
m'=ri+pi+q = ri=m’—q-—p

und aus der Geradengleichung und X-Spiegelung folgt ro := m(p; — 1) — pa.
(3) Sei nun p; = ¢ und ps # g2 dann ist die Gerade vertikal und schneidet E
am Punkt oco. Man setzt in dem Fall P 4+ Q = oo. (4) Im letzten Fall P = Q
legt man eine Tangente an F an: Ohne Einschrinkung sei ps # 0, sonst setze
wieder R := oo (die Tangente ist vertikal). Implizites ableiterﬂ ergibt

_dy _ 3pita
_dl‘_ 2])2

E’:2y§—y:3z2+a = m
T

p1 ist diesmal eine doppelte Nullstelle, weil die Tangente die elliptische Kurve
berithrt. Wie oben folgt 71 := m? — 2p; und wieder ry := m(py —r1) — p2 und
P+ Q =R= (7’1,7‘2).

Theorem 4.2.3 (Zusammenfassung der Gruppeneigenschaft bis auf
Assoziativitit). Das neutrale Element sei e = oo und man setze P~! :=
(p1, —p2) als das inverse Element. Die Abgeschlossenheit und die Kommuta-
tivitdt folgen aus der Konstruktion ober[”]

0, q1 = P1,G2 # G2 m® =g —p m = L=P2 p, £ gy
pig e | @P =00 R d \mCpit g —m?) —p ) n

P,Q = ’ m* — 2p; m = ®ite p_

R, sonst m@3py —m?) —py )T

O

12Differenzierbarkeit auf allgemeinen Kérpern ist nicht trivial. Ggf. reicht es aus, die Formel
als axiomatische Definition zu betrachten.

13 Alternativ kann man direkt den Satz von Bézout anwenden, wenn nicht die Weierstrass
Form vorliegt: Aus der Glattheit folgt ndmlich, dass die Schnittzahl immer Eins ist, und somit
muss ein dritter Punkt existieren. vgl. [Stoll |2020] Satz 9.1
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4.3 Beweis der Assoziativitit

Fiir die Kryptographie reicht es, die Eigenschaften der Gruppenoperation mit
einem Computeralgebraprogramm zu verifizieren. Das passiert im Kapitel 6. Im
Folgenden wird aber ein rein mathematischer Beweis mit dem Lemma vom neun-
ten Punkt gefiihrt, das auf einer vereinfachten Version des Satzes von Bézout
beruht. Weil die Abgeschlossenheit im urspriinglichen Korper bereits gezeigt
wurde, kann man fiir den Beweisen Korper ohne Einschrinkung erweitern. Sei
also K algebraisch abgeschlossen.

Proposition 4.3.1 (Stoll 2020, Lemma 9.2, Lemma vom neunten Punkt).
Seien G, G;-, 1,7 = 1,2, 3 paarweise verschiedene projektive Graden, sodass die
neun Schnittpunkte P;; paarweise verschieden sind. Sei weiter C' eine ebene pro-
jektive Varietéit vom Grad 3, die die acht Punkte P;; mit (4, j) # (3,3) enthélt.
Dann enthilt C auch Pss.

Beweis. Seien G; und G; Varietdten gegeben durch lineare Polynome L;, L;.
Es gibt 10 Monome vom Grad 3 in drei Variablen. Die Bedingung P;; € C liefert
eine homogene lineare Gleichung fiir die zehn Koeflizienten von C. Der Raum
der homogenen Polynome vom Grad 3, die in den acht gegebenen Punkten ver-
schwinden ist also mindestens 2-dimensional. In diesem Fall liegen die Polynome
L=1L1LyL3und L' = L} L, L% in diesem Raum und sind linear Unabhéngig. Im
Folgenden wird durch Kontraposition gezeigt, dass die Dimension genau 2 ist. D.
h. der Raum wird von L, L’ aufgespannt. Angenommen dim > 3, dann existieren
P;#ABeCsodass Ae Giund B ¢ G1,G2,G3. Sei C: F(X,YZ) =0 eine
Varietdt vom Grad 3, die alle P;; und P, @ enthélt. Da G diese Varietét in den
vier Punkten P;;, P schneidet folgt mit den Satz von Bézout dass L, ein Teiler
von F ist. Es gilt F' = L1 F’ mit einem homogenen Polynom F’ vom Grad 2.
Fir F’ gilt des weiteren F NGy = {P2j,j = 1,2, 3}. Folglich muss Ls ein Teiler
von F’ sein: F' = Lo F". Letztlich gilt noch F”' N G35 = {Ps1, P32}, die Graden
sind identisch, d. h. F' = cL,c € K. Das ist aber ein Widerspruch zu @ € C.

Sei nun C': F = 0 eine Kurve vom Grad 3 durch die acht Punkte. Wie oben
gezeigt gilt FF = cL + ¢'L’,¢c,¢t € K. Da die rechte Seite in P33 verschwindet
(Ps3 liegt ja auf den Graden) ist das Lemma bewiesen O
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Theorem 4.3.3 (Stoll 2020, Satz 9.1,
Assoziativitét auf elliptischen Kurven)
Es gilt

(P+Q)+R=P+(Q+R)

Beweis. Wichtig sind die folgenden Objekte:

G sei die Gerade durch P und @ (von nun

an geschrieben PQ);

X sei ihr dritter Schnittpunkt mit E(K)
| = 00X; und

P + @ der dritte Schnittpunkt mit F(K);
%= QR; und

Y der dritte Schnittpunkt mit E(K);

Gs 1= 0oY; und

Q@ + R der dritte Schnittpunkt mit F(K);

Gz = (P+ Q)R; und

Zy der dritte Schnittpunkt mit E(K);

G5 = (Q+ R)P; und

Zs der dritte Schnittpunkt mit E(K);

letztlich sei Z der Schnittpunkt von G3 und

Gf.

Abbildung 8: Graden-Gitter auf
der elliptischen Kurve. Hier
wird O := oo notiert.

Hier ist zu Bemerken, dass sich zwei beliebige Graden genau einmal Schnei-
den, und es genau 3 Schnittpunkte (respektive Multiplizitdt) von E(K) und
einer beliebigen Graden gibt (Satz von Bézout). Hier ist Z per Konstruktion
assoziativ. Es bleibt zu zeigen, dass Z der gesuchte Punkt ist. Angenommen
dass die Punkte oo, P,@Q, R, X, Y, P + Q,Q + R, Z paarweise verschieden sind.
Man wendet nun das Lemma von neunten Punkt an, und sieht dass Z € E(K),
was zu zeigen war.

Aus Theorem 3.6.12 folgt, dass, wenn die Gleichung ¢(S) = T fiir alle bis
auf endlich viele S € E(K) gilt, 1 konstant ist, und die Gleichung folglich fiir
alle S € E(K) gilt. Dafiir muss die Kurve lediglich genug Punkte enthalten.
Beweis. Seien nun P,R # oo, P # R (sonst folgt die Assoziativitit aus der
Kommutativitéit). Dann folgt, dass es nur endlich viele @ geben kann, fiir die
Q, R, P nicht paarweise verschieden sind (der Fall dass sie verschieden sind wur-
de bewiesen). Des weiteren gilt P— Q=0 < P =Q. Der Morphismus

¢pr: Q= (P+Q)+R)—(P+(Q+R))

verschwindet demnach alle fiir fast alle Q € E(K). Es folgt ¢p r konstant und
die Assoziativitét ist bewiesen. [J
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5 Technische Bemerkungen

5.1 Das Diffie Hellman Protokoll auf elliptischen Kurven

Statt Z/¢Z kann man auch E(F),) fiir den Diffie-Hellman-Schliisselaustausch ver-
wenden. Man nennt das dann Elliptic-Curve-Diffie-Hellman (ECDH). Im Ver-
gleich zum regulédren Diffie-Hellman ermoglichen die elliptischen Kurven eine
geringere Schliissellinge bei gleicher Sicherhei@

5.2 Das Double-And-Add Verfahren

Bemerkung 5.2.1. Um das Diffie-Hellman-Protokoll mit elliptischen Kurven
auszufithren, muss man offenbar [d]P,d € N, P € E(K) berechnen. Ein naiver
Ansatz hat die Zeitkomplexitdt O(d), weil etwa die Additionsformeln aus Al-
gorithmus 3.3.2 d-mal ausgefiihrt werden. Das ist fiir grofie d ungiinstig; Eine
wesentliche Laufzeitverbesserung folgt jedoch aus der Gruppenassoziativitét:

Proposition 5.2.2 (Schnellere Berechnung von Skalaren). Schreibe

d="> a2 n >log,(d),a; € {0,1}
k=0

(also in Binsirdarstellung). Dann berechne 2¥ P, in dem P immer wieder ver-
doppelt wird (Pyy+1 = 2Py, Py = P), und addiere diejenigen Py fiir die aj # 0
ist:

[d]P = Zak . Pk
k=0

Der neue Ansatz lduft mit O(log,(d)) und ist damit praxistauglich.

Bemerkung 5.2.3 (Sidechannel Angriffe). Unter einem Sidechannel- Angriff
versteht man Angriffe auf Kryptosysteme, die das System nicht algorithmisch
oder mathematisch 16sen, sondern Umgebungsaffekte ausnutzen, wie z. B. den
Leistungsverbrauch eines Prozessors. Der naive Double-And-Add-Algorithmus
genau dafiir anfélligiﬂ: Bei der Iteration wird nur dann eine Multiplikation
durchgefiihrt, wenn das Bit im Schliissel 1 ist. Wenn ein Angreifer nun den
Leistungsverbrauch iiberwacht, kann dieser erhchte Spannungen ablesen und
auf den geheimen Schliissel rekonstruieren. Ein Verfahren dazu ist die Simple
Power Analysis (SPA), das in Abbildung [9] demonstriert wird.

5.3 Die Montgomery-Ladder

Die Montgomery-Ladder ist ein Additionsalgorithmus der gegen SPA resistent
isﬂ Es wird garantiert, das unabhéngig vom Schliissel immer eine der gleiche
Typ von Operation durchgefiihrt wird, was den Sidechannel-Angriff erschwert.

ygl. z. B. [Bundesamt fiir Sicherheit in der Informationstechnik 2025|
15ygl. [Walter 2004]
16yvgl. [Kocher [1996]
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Abbildung 9: SPA eines RSA Systems mit Double-And-Add

Algorithmus 4: Montgomery—LaddeIE
InplIt: 9, k= (ktflu teey kO)Q
Output: y = ¢*

1 Ryp+1

2 Ri+g

3 forj=t—1to0do
4 if £; =0 then

5 Ry + Ry - Ry
6 R()(—R(Q)

7 else

8 Ro + Ry - Ry
9 LRl(*R%

10 return Ry

6 Computer-assistierter Korrektheitsbeweis

Im Folgenden wird ein weiterer Beweisansatz vorgestellt, der diesmal nicht zur
Intuition beitragen soll, sondern in der Praxiﬂ dazu dient, (ggf. optimierte)
Additionsformeln zu verifizieren. Dazu wird das Computeralgebrasystem (CAS)
SageMath verwendet. Die hauptsichliche Schwierigkeit dieses Ansatzes besteht
darin, dem CAS die Struktur der elliptischen Kurve effizient zu kommunizieren.
Dazu werden weitere algebraische Grundlagen benbtigﬁ Insbesondere werden
nun nicht mehr einzelne Punkte, sondern rationale Funktionen auf der ellipti-
schen Kurve betrachtet. Dazu werden weitere algebraische Objekte definiert:

6.1 Ringe

Sei M eine nicht-leere Menge. Weiter seien & : M x M — M und ® : M x M —
M Abbildungen. (M, ®, ®) heift Ring, wenn gilt: (M, ®) bilden eine Gruppe;

17vgl. [Kleppmann [2022

185, B. in der Explicit Formulas Database [Daniel J. Bernstein @\
9F{ir die Definition von Ringen etc vgl. [Cox, Little und O’Shea [2015|
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® ist abgeschlossen und assoziativ; Es gilt (¢ ®b) ® ¢ = a ® c® b ® ¢ und
a®(bdc)=abda®cVa,b,c € M (Distributivgesetz). Eine Teilmenge I C R
heifit Ideal, wenn (I, ®) eine Teilgruppe von (R, ®) ist, und I Multiplikationen
absorbiert. D. h. falls 4 € T und r € Rsogilt ¢ -7 € I und auch r -4 € I.
Man schreibt I < R. Ideale kénnen durch eine endliche Menge S C R generiert
werden: (S) bezeichnet das kleinste Ideal, das S ganz enthilt. Das ist die Menge
der (endlichen) Linearkombinationen mit Koeffizienten in R: (S) = {s; - r1 +
oot SpeTp i1 € Rys; € S;n e Nji € {1,...n}}. Die Menge der Polynome iiber
einem Korper bildet mit Korper-Addition und -Multiplikation einen Ring.

6.2 Isomorphismen

Unter einer isomorphen oder strukturerhaltenden Abbildung versteht man eine
Abbildung zwischen algebraischen Strukturen gleicher Klasse, die (1) bijektiv
ist und (2) die algebraische Struktur erhilt. Das heifit, dass sich die Abbildung
linear beziiglich additiver oder multiplikativer Verkniipfungen verhélt, also z. B.
o(x + ay) = ¢(x) + ad(y). Isomorphismen kénnen z. B. zwischen Ringen und
Gruppen definiert werde

6.3 Quotientenringe

Es wurde bereits ein Quotientenraum behandelt, ndmlich der projektive Raum.
Gegeben sei ein Ring R und ein Ideal T<R. Man erhilt eine Aquivalenzrelation ~
auf Rmit A ~ B <= B—A € I und damit den Quotientenring R/I. Fiir einen
polynomialen Quotientenring gilt z. B. dass beliebige Linearkombinationen von
Generator-Polynomen mit Null identifiziert werden.

Beispiel 6.3.1 (Restklassenring auf den ganzen Zahlen). Sei R = Z und
I = (p) fiir eine Primzahl p. I enthilt somit alle ganzzahlige Vielfache von p.
Man schreibt auch pZ. Betrachte Z/I = 7Z/pZ: man erhélt eine Struktur, in der
alle ganzen Zahlen, die sich um ein vielfaches Unterscheiden identifiziert sind.
Mit der Additiven Verkniipfung, die sich von R und [ iibertrégt erhdlt man
eine Gruppe, die sich #hnlich (isomorph) zur endlichen Gruppe auf {1,...,p}
mit Addition Modulo p verhélt.

6.4 Beweis der Assoziativitit

Der Idee ist die Folgende: Die Punkte @, P, R werden als rationale Funktionen in

zwel Variablen (insgesamt Py, Py, Qz, Qy, Ry, Ry) betrachtet, und jegliche Addi-

tionen genauso. Der Implementierung halber werden aber Polynome betrachtet,

was ausreicht: rationale Funktionen sind offenbar genau dann identisch, wenn
a ¢

ac =bd <— il

20Bemerkung. Silverman beweist die Assoziativitit auf elliptischen Kurven, in dem die Exis-
tenz eines Isomorphismus zwischen der bekannten Verkniipfung auf £ und der Picard-Gruppe
Pic?(E) gezeigt wird. vgl. [Silverman [2009], Proposition 3.4.

23



Statt den Polynomen in K sollen aber nur die Polynome auf E(K) betrachtet
werden. Um das zu erreichen werden genau die Polynome auf K gleichgesetzt,
die auf F(K) iibereinstimmen. Dann wird die Identitit der Additionen P+ (Q+
R) und (P + Q) + R in der Kurve kontrolliert, in dem SageMath die Ausdriicke
algorithmisch vereinfacht. Um die Aussage auf beliebigen kurzen Weierstrass-
Kurven zu zeigen, werden A und B als Variablen dazu genommen.

Proposition 6.4.1. Es werden drei Funktionen gleichzeitig betrachtet, daher
sei [ = (P? — P2+ AP, + B,Q; — Q3+ AQ, + B, R} — R} + AR, + B). Um zu
iiberpriifen, ob diese Funktionen auf der elliptischen Kurve identisch sind, wird
der Quotientenring K[P,, Py, Q4,Qy, Ry, Ry, A, B]/I betrachte@ Dort sind
Polynome identisch, wenn sie auf der Kurve identisch sind, was zu erreichen war.
Genauso wie etwa 7 = 2 auf Z/(5) gilt, ist hier P; = P2+ AP, + B. Insbesondere
existiert ein Isomorphismus zwischen dem Quotientenring K[ X1, ..., X,]/I(E)
und den Polynomen F(K) — K d. h. K[X;,...,X,]/I(E) = K[E] E

Theorem 6.4.2. Es folgt eine Implementierung in SageMath@ Hier werden
Polynome mit {iber 500 Koeffizienten verglichen.

Listing 1: Verifizierung der Assoziativitédt von Elliptischen Kurven

RR.<Px,Py,Qx,Qy,Rx,Ry,A,B> = PolynomialRing(ZZ,8)

P=(Px,Py); Q=(Qx,Qy); R=(Rx,Ry)

I=RR.ideal (Py"2-Px"3-A*Px-B, Qy~2-Qx"3-A*Qx-B, Ry“2-Rx"3-A*Rx-B)
SS=RR.quotient (I)

def add(P,Q):
x1=P[0]; y1=P[1]; x2=Q[0]; y2=Q[1];
m = (y2-y1)/(x2-x1)
x3 = m"2-x1-x2

y3 = m*(x1-x3)-y1

return (x3,y3)

def reduced_fractions_equal(p, q):
return SS(p.numerator ()*q.denominator () -p.denominator () *q.
numerator ()) ==

def equal(P,Q):
return reduced_fractions_equal(P[0],Q[0]) and
reduced_fractions_equal (P[1],Q[1])

print ("Confirmed associativity:", equal(add(add(P,Q),R),add(P,add(Q
,R)DD)

Um z. B. das Verfahren Curve25519 zu verifizieren, kann man GF(2 ** 255
- 19) statt ZZ einsetzen, um den endlichen Korper Fo2ss _19 zu nutzen auf dem
Curve25519 basiert?4]

21ygl. [Friedl|2017]

22ygl. [Cox, Little und O’Shea [2015] Kap. 5, § 2, Theorem 7

23Der Quellcode ist eine Vereinfachung von [Sutherland [2021]. Man muss noch Sonderflle
betrachten.

24vgl. [Kleppmann [2022]
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7 Ausblick

Das diskrete Logarithmus-Problem, und damit auch ECDH, gilt als quanten-
unsicher. Mit Shors Algorithm und einem hinreichend performanten Quanten-
computer (d.h. ca. 2000 Qubits) kann das Problem in realistischer Zeit (O(n?))
gelost werderﬁ Elliptische Kurven spielen in Isogenie basierten Kryptosyste-
men eine zentrale Rolle, die grundsétzlich fiir die Post-Quantum-Cryptography
in Frage komme

25ygl. [Proos und Zalka 2004]
26siehe dazu z. B. [Feo [2017]
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