wnwe | IRNNTTH i

Strukturmechanik
und Leichtbau

KONZEPTION EINER DATENMANAGEMENTSOFTWARE ZUR REALISIERUNG VON
BUCHHALTUNGSWORKFLOWS

Diese Seminararbeit wurde vorgelegt am

Fachbereich 9
Medizintechnik und Technomathematik
Fachhochschule Aachen, Campus Jiilich

von

Delvenne Tobias
Matrikelnummer: 3654037

und wurde betreut von:

1. Priifer 2. Priiferin

Prof. Dr. rer. nat. Alexander Vof3 Helena Heuser, M.Sc.

Fachbereich 9 Institut fiir Strukturmechanik und Leichtbau
FH Aachen RWTH Aachen University

Aachen, Dezember 2025

UNIVERSITY OF APPLIED SCIENCES

FH AACHEN

Eidesstattliche Erklirung

Hiermit versichere ich, dass ich die Seminararbeit mit dem Thema
Konzeption einer Datenmanagementsoftware zur Realisierung von Buchhaltungsworkflows

selbststindig verfasst und keine anderen als die angegebenen Quellen und Hilfsmittel benutzt habe, alle
Ausfithrungen, die anderen Schriften wortlich oder sinngemifl entnommen wurden, kenntlich gemacht
sind und die Arbeit in gleicher oder dhnlicher Fassung noch nicht Bestandteil einer Studien- oder Prii-
fungsleistung war.

Im Rahmen der Erstellung dieser Arbeit wurde das KI-System “KI.connect.nrw* unterstiitzend zur sprach-
lichen Uberarbeitung sowie zur fachlichen Reflexion und Prizisierung eigenstindig entwickelter Argu-
mente genutzt. Eine Ubernahme von KI-generierten Texten oder inhaltlichen Losungsvorschligen er-
folgte nicht. Sdmtliche fachlichen Aussagen, Bewertungen und Schlussfolgerungen wurden eigenstindig
erarbeitet und verantwortet. Die Nutzung erfolgte im Einklang mit der Zweckbestimmung des Systems
sowie unter Beachtung datenschutz- und urheberrechtlicher Vorgaben.

Ich verpflichte mich, ein Exemplar der Seminararbeit fiinf Jahre aufzubewahren und auf Verlangen dem
Priifungsamt des Fachbereiches Medizintechnik und Technomathematik auszuhindigen.

Name: Tobias Delvenne

Aachen, den 15. Dezember 2025

T 06\\/6\(\ Nne

Unterschrift des Studierenden

Kurzfassung

Buchhaltung ist ein essenzieller Bestandteil jeder Institution. Ohne eine verlissliche und aussagekriftige
Ubersicht iiber den Finanzhaushalt sind sowohl die Planung von Investitionen als auch die laufende
Verwaltung von Finanzmitteln kaum mdoglich. Fiir diese Aufgaben werden hiufig etablierte Systeme
eingesetzt, die zwar iiber einen umfangreichen Funktionsumfang und breiten Support verfiigen, jedoch
oftmals Defizite in der Bedienbarkeit aufweisen. An dieser Stelle setzt die vorliegende Arbeit an.

Durch die Automatisierung verschiedener Arbeitsabliufe und die Bereitstellung konfigurierbarer Uber-
sichten soll der Verwaltungsaufwand innerhalb der Buchhaltungsabteilung reduziert werden. Zu diesem
Zweck werden zunichst die aktuell verwendeten Technologien analysiert und bestehende Schwachstel-
len herausgearbeitet. Darauf aufbauend wird ein eigenes Softwaresystem entwickelt, beginnend mit ei-
ner strukturierten Anforderungsanalyse. Da die Zielgruppe nicht aus I'T-Fachkriften besteht, sondern
aus Mitarbeitenden der Buchhaltung, liegt ein besonderer Fokus auf intuitiver Bedienbarkeit. Zu diesem
Zweck werden verschiedene Designentwiirfe (Mockups) entworfen und im Rahmen eines Minimum
Viable Product (MVP) umgesetzt.

Im weiteren Verlauf werden die dabei eingesetzten Technologien sowie die technischen Herausforde-
rungen der Entwicklung erldutert. Abschlieend werden mogliche Erweiterungen des Systems diskutiert
und ein Fazit gezogen.

Inhaltsverzeichnis

1 Einleitung
LI Motivation Lo e e e e
1.2 Vorgehensweise und Aufbau der Arbeit L L.

2 Stand der Technik

2.1 Aktuelle Buchhaltungssysteme ander RWTH
2.2 Aktuelle Workflows oL
2.3 Theoretische Grundlagen

3 Anforderungsanalyse

3.1 Rahmenbedingungen und Einschrinkungen
3.2 Zielgruppe und Stakeholder
3.3 Funktionale Anforderungen L Lo
3.4 Nicht-funktionale Anforderungen,

4 Konzeption des MVP

4.1 Zielsetzungdes MVP . . . © . L
4.2 Architekturentwurf L
4.3 Datenmodellierung e
4.4 Entwurf der Benutzeroberflache o oL
4.5 Technologieauswahl
4.6 Qualitdts- und Testkonzept L.
477 Zusammenfassung des Konzepts Lo oo

5 Implementierung des MVP
5.1 Verwendete Software
5.2 Implementierung der Architektur oL oo

6 Diskussion und Ausblick

7 Fazit

Bibliography

A Anhang
AT USErStOries v v v e e e e e e e e e
A2 Rest-ApiSwagger Ul e
A.3 Datenbankschema e

11
11
15

17
17
17
19
19
21
21
22

23
23
23

29

31

32

Abkiirzungsverzeichnis

ACID Atomicity, Consisteny, Isolation, Durability.
API Application Programming Interface.

CRUD Create, Read, Update, Delete.

CSV Comma-Separated Values.

FI Finanzbuchhaltung.

GUI Graphical User Interface.

HCM Human Capital Management.

HTTP Hypertext Transfer Protocol.

MaCoCo Management Cockpit fiir Controlling.

MVP Minimum Viable Product.

OAS OpenAPI Specification.

OData Open Data Protocol.

ORM Object-Relational Mapping.

REST Representational State Transfer.

RWTH Rheinisch-Westfilische Technische Hochschule Aachen.
URI Uniform Resource Identifier.

US User Stories.

1 Einleitung

Im Folgenden wird die Problemstellung, welche dieser Arbeit zugrunde liegt erklért. AuBerdem wird das
Ziel der Arbeit erldutert und bereits ein kleiner Uberblick iiber die zu erwartenden Funktionen gegeben.
Des Weiteren wird der Aufbau und die Vorgehensweise in dieser Arbeit beschrieben.

1.1 Motivation

Die von der Rheinisch-Westfilische Technische Hochschule Aachen (RWTH) eingesetzte Buchhaltungs-
software SAP stellt iiber das Webinterface FIORI verschiedene Subsysteme bereit, unter anderem zur Er-
fassung von Personalbelastungen sowie zur Verwaltung eingehender und ausgehender Zahlungen. Durch
die Aufteilung in mehrere voneinander weitgehend isolierte Subsysteme und der fehlenden Kommuni-
kation zwischen diesen ist es der Buchhaltungsabteilung jedoch nicht ohne erheblichen manuellen Auf-
wand moglich, eine konsolidierte und strukturierte Ubersicht iiber die Finanzsituation einzelner Projekte
zu erhalten. Dass die verwendete Software zusétzlich durch nicht funktionierende Filteroptionen und un-
ibersichtliche Meniis zu weiterem Mehraufwand fiihrt, ist ein wesentlicher Grund fiir die Entwicklung
eines mafigeschneiderten Systems, das diese Datenverarbeitungsfunktionen einfacher und zugéinglicher
bereitstellen soll.

Hinzu kommt, dass die in der aktuell eingesetzten Software verfiigbaren Datensidtze hdufig nur zeit-
versetzt aktualisiert werden. Dadurch kann es vorkommen, dass die Daten mehrere Monate hinter den
tatsichlich bereits erfolgten Ausgaben oder Einnahmen liegen, was eine aktuelle Budgetiibersicht un-
moglich macht. Eine belastbare Finanzplanung ist unter diesen Bedingungen kaum moglich. Viele pro-
jektbezogene Ausgaben insbesondere Personalkosten lassen sich jedoch iiber Monate oder sogar Jahre
hinweg zuverlissig prognostizieren und miissen mit den bewilligten Finanzierungsmitteln abgeglichen
werden. Die vorhandene Software unterstiitzt diesen Bedarf nicht, sodass eine ergidnzende Eigenentwick-
lung notwendig erscheint.

Ziel dieser Arbeit ist die Konzeption und prototypische Umsetzung einer Software, die projektbezo-
gene Finanziibersichten und Verwendungsnachweise aus den vorhandenen SAP-Exporten erzeugt und
erginzt. Neben der Verarbeitung der Comma-Separated Values (CSV)-Daten sollen auch manuell hin-
zugefiigte Informationen, insbesondere kiinftige oder prognostizierte Ausgaben, beriicksichtigt werden.
Die entwickelte Losung soll modular, erweiterbar und langfristig wartbar sein, um zukiinftige organi-
satorische oder technische Anderungen ohne grundlegende Anpassungen zu ermoglichen. Des Weiteren
soll diese Arbeit eine Entscheidungsgrundlage schaffen, anhand derer bewertet werden kann, ob eine
Weiterentwicklung organisatorisch sinnvoll ist.

Die entwickelte Software soll SAP nicht ersetzen, sondern gezielt ergéinzen, indem sie bestehende Schwi-
chen adressiert und Arbeitsprozesse erleichtert. Durch die automatisierte Aufbereitung und Zusammen-
fiihrung der Daten wird der zeitliche Aufwand fiir manuelle Nachbearbeitung reduziert und die Fehler-
anfilligkeit verringert, was zu einer zuverldssigeren und effizienteren Finanziibersicht fiihrt.

1 Einleitung 2

1.2 Vorgehensweise und Aufbau der Arbeit

Die vorliegende Arbeit ist so strukturiert, dass sie zunédchst die notwendigen fachlichen und technischen
Grundlagen vermittelt und darauf aufbauend die konzeptionelle Entwicklung des MVP nachvollziehbar
darstellt.

Zu Beginn werden in Kapitel 2 die theoretischen Grundlagen erldutert, die fiir das Verstindnis der spéte-
ren Architekturentscheidungen erforderlich sind. Dazu zédhlen insbesondere grundlegende Konzepte der
Softwarearchitektur, der Representational State Transfer (REST)-Kommunikation sowie der relationalen
Datenmodellierung.

Darauf aufbauend erfolgt in Kapitel 3 eine systematische Anforderungsanalyse, in der sowohl funktio-
nale als auch nicht-funktionale Anforderungen erhoben und durch User Stories ergénzt werden.

Kapitel 4 beschreibt anschlieBend die Konzeption des MVP, einschlieBlich des Architekturentwurfs, der
Datenmodellierung, der Benutzeroberfliche sowie der eingesetzten Technologien.

Das darauf folgende Kapitel 5 widmet sich der prototypischen Umsetzung ausgewihlter Kernfunktionen
und zeigt exemplarisch, wie die konzeptionellen Elemente in Software iiberfiihrt wurden.

Kapitel 6 diskutiert die erzielten Ergebnisse im Hinblick auf die definierten Anforderungen und bewertet
die Eignung des M VP fiir den Einsatz im buchhalterischen Arbeitskontext.

AbschlieBend fasst Kapitel 7 die wesentlichen Erkenntnisse kurz zusammen.

2 Stand der Technik

In nachfolgendem Kapitel wird der aktuelle Stand der Technik an der RWTH erklért. Dazu werden das
eingesetzte Buchhaltungssystem von SAP und dessen Module sowie die eigens entwickelte Software
Management Cockpit fiir Controlling (MaCoCo) erldutert. AuBBerdem werden die theoretischen Grund-
lagen beschrieben.

2.1 Aktuelle Buchhaltungssysteme an der RWTH

Die derzeit eingesetzte Technik verfiigt zwar theoretisch iiber die meisten benétigten Funktionalitéten, ist
in der praktischen Nutzung jedoch hdufig nur schwer bedienbar oder arbeitet teilweise nicht zuverléssig.
So ist es beispielsweise in der SAP-Finanziibersicht nicht moglich, Buchungen nach Jahren zu gruppie-
ren, da entsprechende Abfragen iiber das Webinterface nach mehreren Minuten ohne Ergebnis abbrechen.
Ebenso lassen sich die Daten aus verschiedenen Subsystemen nicht iiber gemeinsame Schliisselattribu-
te verkniipfen, sodass etwa eine Zuordnung von Mitarbeitenden zu ihren jeweiligen Entgeltstufen nicht
ohne zusitzliche manuelle Schritte moglich ist.

Die Eigenentwicklung MaCoCo der RWTH stellt zwar erweiterte Moglichkeiten zur Datenanalyse bereit,
ist jedoch kostenpflichtig und deckt nicht alle fiir dieses Projekt relevanten Funktionen ab. Durch die
Bestrebung der RWTH, grof3e Teile der finanzbuchhalterischen Prozesse iiber MaCoCo abzubilden, hat
sich zudem im Laufe der Zeit fiir unsere Buchhaltungsabteilung eine zunehmende Uniibersichtlichkeit
ergeben.

Insbesondere fiir den hier betrachteten Anwendungsfall der Erzeugung von Verwendungsnachweisen
bietet MaCoCo weder eine ausreichend klare Aufbereitung der projektbezogenen Finanzdaten noch eine
einfache Moglichkeit zur manuellen Eingabe und Verwaltung von Plandaten. Aufgrund dieser funktio-
nalen Einschriankungen stellt MaCoCo keine geeignete Alternative zur entwickelten Losung dar.

Im Rahmen des Projekts SARA wurde im Jahr 2014 RWTH weit das Softwaresystem SAP fiir betriebs-
wirtschaftliche Abldufe eingefiihrt. Dabei wurden unter anderem die Bereiche Finanzbuchhaltung, An-
lagenbuchhaltung, Drittmittelverwaltung, Haushalt und Budgetierung auf SAP umgestellt. Im Jahr 2016
folgte die Integration des Personalwesens, einschlieBlich Reisekostenabrechnung, sowie der Logistik mit
den Themengebieten Beschaffung und Facility Management.|[1]

SAP ist modular aufgebaut. An der RWTH sind insbesondere folgende Module im Einsatz:
* FI: Finanzbuchhaltung
* FI-AA: Anlagenbuchhaltung
¢ CO: Controlling

* PS: Projektsystem

2 Stand der Technik 4

PSM: Public Sector Management

¢ BW: Business Warehouse

HCM: Personalwesen
e OM: Organisationsmanagement

e MM: Materialwirtschaft

FI-TV: Reisekostenmanagement
[1]

Das Projekt MaCoCo wurde ebenfalls im Jahr 2016 initiiert, nachdem sich verschiedene Einschriankun-
gen der neu eingefiihrten SAP-Landschaft gezeigt hatten. In einer Kooperation zwischen dem Lehrstuhl
fiir Controlling und dem Lehrstuhl fiir Software Engineering wurde die Software mit dem Ziel entwi-
ckelt, das Controlling an Lehr- und Forschungseinrichtungen der RWTH zu professionalisieren.[2]

2.2 Aktuelle Workflows

Derzeit werden die bendtigten Daten manuell aus verschiedenen SAP-Subsystemen zusammengesucht,
einzeln exportiert und anschlieend in mehrere Excel-Tabellen iibertragen. Die Ausgaben werden ma-
nuell mit den bewilligten Drittmitteln verrechnet um einen Uberblick iiber die noch verfiigbaren Gelder
zu erhalten. Dieser Prozess ist zeitaufwendig und mit einem erheblichen verwaltungstechnischen Auf-
wand verbunden. Zudem ist die manuelle Zusammenfiihrung der Daten anfillig fiir Ubertragungs- und
Eingabefehler.

Durch eine digitale Abbildung und Automatisierung dieses Workflows konnen menschliche Fehler syste-
matisch vermieden und der Aufwand fiir wiederkehrende Titigkeiten deutlich reduziert werden. Gleich-
zeitig wird eine konsistente, reproduzierbare und nachvollziehbare Datenbasis geschaffen, die als Grund-
lage fiir weitere Analysen und Auswertungen dient.

2.3 Theoretische Grundlagen

In diesem Abschnitt werden die grundlegenden technischen Konzepte erldutert, die fiir das Verstdndnis
der spiter beschriebenen Architekturentscheidungen und Implementierungsdetails erforderlich sind.

2.3.1 Client-Server-Architektur

Die Client-Server-Architektur beschreibt ein verteiltes System, in dem mindestens ein zentraler Server
spezifische Dienste bereitstellt, wihrend die Clients diese Dienste anfragen. Ein Client ist somit ein Pro-
zess, der eine bestimmte Funktionalitit konsumiert, wiahrend der Server diese bereitstellt. Eine strikte
Trennung ist in der Praxis jedoch nicht immer gegeben, da ein Server wiederum als Client gegeniiber an-
deren Servern auftreten kann, etwa wenn ein Anwendung Anfragen an einen separaten Datenbankserver
stellt.[3]

2 Stand der Technik 5

Fiir die Kommunikation zwischen Client und Server wird in webbasierten Architekturen iiblicherweise
das Hypertext Transfer Protocol (HTTP) verwendet. HTTP ist ein zustandsloses, textbasiertes Ubertra-
gungsprotokoll, bei dem der Client eine Request sendet und der Server darauf mit einer Response ant-
wortet.[4] Zu den zentralen HTTP-Methoden, die auch in dieser Arbeit eingesetzt werden, gehoren:

¢ GET: Abrufen von Ressourcen oder Daten,
¢ POST: Erstellen neuer Ressourcen bzw. iibermitteln von Daten,

¢ PUT: Ersetzen einer bestehenden Ressource,

PATCH: Teilweises Aktualisieren einer Ressource,

DELETE: Loschen einer Ressource.

2.3.2 REST-Architekturstil

Der REST-Architekturstil wurde von Roy Thomas Fielding im Rahmen seiner Dissertation definiert [5].
REST beschreibt keine spezifische Technologie, sondern architektonische Prinzipien fiir verteilte Sys-
teme, insbesondere fiir webbasierten Datenaustausch. Die grundlegende Idee besteht darin, Ressourcen
iber eindeutige Uniform Resource Identifier (URI)s zu adressieren und sdmtliche Interaktionen iiber ein
einheitliches Interface, typischerweise HTTP, abzuwickeln.

REST basiert auf mehreren konzeptionellen Einschrinkungen, die die Skalierbarkeit und Austauschbar-
keit von Systemkomponenten fordern. Dazu gehoren insbesondere:

* Client-Server-Entkopplung: Die Benutzeroberflache ist strikt von der Datenverarbeitung ge-
trennt.

» Zustandslosigkeit: Jeder Request enthilt alle Informationen, die der Server benétigt; Sessions auf
Serverseite sind nicht notwendig.

¢ Einheitliche Schnittstellen (Uniform Interface): Ressourcen werden iiber standardisierte HTTP-
Methoden manipuliert.

» Cachefihigkeit: Ressourcen sollen Client- oder serverseitig gecacht werden konnen.

e Mehrschichtige Systemarchitektur: Aufrufe und Antworten konnen beliebig viele Schichten
durchlaufen. Client und Serveranwendung miissen nicht direkt miteinander verbunden sein.

[6]

Ein praktischer Bestandteil dieses Uniform-Interface-Prinzips ist die semantische Zuordnung der grund-
legenden Create, Read, Update, Delete (CRUD)-Operationen zu den entsprechenden HTTP-Methoden.
Diese Zuordnung stellt sicher, dass REST-basierte Web-Application Programming Interface (API)s kon-
sistent und vorhersehbar sind.[7] Die typischen Abbildungen lauten:

¢ Create — POST: Erstellen neuer Ressourcen unter einer vom Server verwalteten URI.
» Read — GET: Abrufen bestehender Ressourcen ohne Anderung ihres Zustands.

» Update — PUT/PATCH: PUT ersetzt eine Ressource vollstandig, wihrend PATCH Teildnderun-
gen vornimmt.

2 Stand der Technik 6

¢ Delete — DELETE: Entfernen einer Ressource.

Diese semantische Kopplung zwischen CRUD-Operationen und HTTP-Methoden bildet die Grundlage
fiir die in dieser Arbeit implementierte REST-API, da sdmtliche Operationen auf Projekten, Importvor-
gingen und Finanziibersichten anhand dieser Prinzipien umgesetzt werden.

Durch diese Eigenschaften ermoglicht REST eine lose Kopplung zwischen Client und Server sowie eine
hohe Flexibilitit bei der Weiterentwicklung einzelner Systemteile.[5] Dies ist insbesondere fiir das in
dieser Arbeit vorgestellte System relevant, da die Desktop-Graphical User Interface (GUI) unabhingig
vom Backend betrieben werden kann und sich alternative Frontends leicht integrieren lassen.

2.3.3 API-Dokumentation mit OpenAPI und SwaggerUI

Die OpenAPI Specification (OAS) ist ein standardisiertes Format zur Beschreibung von REST-basierten
Web-APIs. Es ermoglicht die formale Definition aller Endpunkte, Datenmodelle, Parameter und Ant-
wortstrukturen in einer maschinen- und menschenlesbaren Form. Eine korrekt definierte OAS bildet die
Grundlage fiir automatisierte Dokumentation und Testwerkzeuge.[8]

SwaggerUI ist ein Werkzeugset, das auf der OAS aufbaut und eine interaktive Weboberfliche zur Verfii-
gung stellt, in der API-Endpunkte ausfiihrlich dokumentiert und direkt getestet werden konnen. Frame-
works wie FastAPI erzeugen diese Dokumentation automatisch, indem sie Typhinweise und Datenmo-
delle aus dem Quellcode ableiten.

Die Vorteile einer formalen API-Spezifikation umfassen unter anderem:
¢ Automatisierte und immer aktuelle Dokumentation,
 Interaktive Testmoglichkeiten ohne separate Tools,

* Verbesserte Wartbarkeit und Konsistenz der API.

Fiir dieses Projekt ist die automatische SwaggerUI-Dokumentation besonders relevant, da sie die interne
Entwicklung unterstiitzt und die Erweiterbarkeit des Systems erleichtert.

2.3.4 CSYV als Datenformat

Das CSV-Format ist ein textbasiertes Format, das tabellarische Daten in Zeilen- und Spaltenstruktur spei-
chert. Es gehort zu den am weitesten verbreiteten Formaten fiir Datenexporte aus Informationssystemen,
da es einfach, universell lesbar und ohne proprietire Software nutzbar ist.[9]

CSV-Dateien besitzen allerdings keine fest definierte Spezifikation[9]. Typische Herausforderungen, die
auch in dieser Arbeit auftreten, umfassen:

¢ Uneinheitliche Trennzeichen (z.B. “;” vs.),
* fehlende oder mehrzeilige Header,
¢ uneinheitliche Datums- und Zahlenformate,

* Darstellung numerischer Werte als Text,

2 Stand der Technik 7

* keine eingebaute Unterstiitzung fiir Datentypen.

Das MVP implementiert daher Mechanismen zur automatischen Erkennung von Datentypen, zur Norma-
lisierung von Datums- und Betragsfeldern sowie zur Bereinigung problematischer Headerstrukturen.

2.3.5 SQLite: Grundlagen eingebetteter Datenbanken

SQLite ist ein relationales Datenbankmanagementsystem, das sich vollstindig als Bibliothek in eine An-
wendung einbetten ldsst. Es benotigt keinen separaten Serverprozess und speichert alle Daten in einer
einzigen lokalen Datei [10]. Durch die Unterstiitzung des vollstindigen SQL-Standards (inkl. Atomicity,
Consisteny, Isolation, Durability (ACID)-Konformitit) eignet es sich besonders fiir Desktopanwendun-
gen, lokale Datenanalysen und prototypische Entwicklungen.

Zu den wesentlichen Eigenschaften von SQLite zéhlen:
» Serverlosigkeit: keine Installation oder Wartung eines separaten Datenbankservers,
* ACID-garantierte Transaktionen: sichere Schreib- und Leseoperationen,
* hohe Performance bei lokalen Datenzugriffen,
* breite Unterstiitzung in Programmiersprachen und Frameworks.

Fiir das MVP dient SQLite als persistente Grundlage fiir Projekte, Importtabellen, Plandaten und Zwi-
schenauswertungen. Die Wahl fillt insbesondere aufgrund der einfachen Integration und der guten Eig-
nung fiir Einzelplatzsysteme.

3 Anforderungsanalyse

Die Entwicklung eines Systems zur automatisierten Aufbereitung und Analyse projektbezogener Fi-
nanzdaten setzt eine prizise Definition der fachlichen, organisatorischen und technischen Anforderungen
voraus. Dieses Kapitel beschreibt die Rahmenbedingungen, die Zielgruppe sowie die funktionalen und
nicht-funktionalen Anforderungen und verweist dabei auf die in Abschnitt A.1 formulierten User Stories
(US).

3.1 Rahmenbedingungen und Einschrinkungen

Die Konzeption und Entwicklung des Systems unterliegt mehreren organisatorischen, technischen und
regulatorischen Rahmenbedingungen. Wie bereits erwihnt, ist der Zugriff auf die Open Data Protocol
(OData)-Services von SAP aufgrund des notwendigen Genehmigungsprozesses durch mehrere Abteilun-
gen der RWTH nicht im zeitlichen Rahmen dieser Seminararbeit realisierbar. Ebenso ist es aus rechtli-
chen Griinden nicht gestattet, Daten aus dem Webinterface mittels Reverse Engineering auszulesen.[11]
Daher miissen sdmtliche Daten aus den bereitgestellten CSV-Exporten sowie aus manuellen Eingaben
gewonnen werden (vgl. US-09).

3.1.1 Verfiigbare Datenquellen

Fiir diese Seminararbeit stehen zwei wesentliche Datenquellen zur Verfiigung: die CSV-Exporte aus der
Personalbelastungsanzeige, im Folgenden als Human Capital Management (HCM) bezeichnet, und die
CSV-Exporte der Finanzstellenbuchungen, im Folgenden als Finanzbuchhaltung (FI) bezeichnet.

Uber die HCM-Daten lassen sich Mitarbeitende ihren jeweiligen Entgeltstufen sowie einzelnen Projekten
zuordnen. Dariiber hinaus enthalten die CSV-Exporte Informationen zu gezahlten Gehéltern und Zuwen-
dungen. Letztere umfassen beispielsweise jahrlich gewihrte Sonderzahlungen wie das Weihnachtsgeld
in Form eines 13. Monatsgehalts.

Die FI-Daten umfassen unter anderem eingehende Drittmittelzahlungen, bezahlte Rechnungen und ver-
gebene Auftrige. Somit bilden sie die zentrale Grundlage fiir die Darstellung projektbezogener Ein- und
Ausgaben.

Im Hinblick auf die Benutzerfreundlichkeit ist anzumerken, dass SAP OData-Schnittstellen anbietet,
die eine regelméfige und automatisierte Aktualisierung dieser Daten ermoglichen wiirden.[12] Da die
Freischaltung dieser Schnittstellen jedoch durch mehrere Abteilungen der RWTH genehmigt werden
muss, ist die Umsetzung dieser Funktionalitit im Rahmen dieser Seminararbeit nicht realisierbar.

3 Anforderungsanalyse 9

Charakteristika der verfiigbaren Daten

Die aus den SAP-Systemen exportierten Daten weisen mehrere Besonderheiten auf, die bei der Ver-
arbeitung und Analyse beriicksichtigt werden miissen. Zum einen werden die Exporte ausschlieBlich
als CSV-Dateien bereitgestellt, ohne dass eine garantierte einheitliche Struktur oder ein standardisiertes
Schema vorliegt. Zum anderen enthalten die Daten sowohl historisch gewachsene als auch doménenspe-
zifische Bezeichnungen, die eine direkte maschinelle Verarbeitung ohne zusitzliche Ubersetzungs- und
Bereinigungsprozesse erschweren.

Ein weiterer Aspekt ist die teilweise zeitverzogerte Aktualisierung der Datensitze, insbesondere in den
Bereichen Personalbelastung und Drittmittelfinanzierung. Diese Verzogerungen konnen mehrere Wo-
chen bis Monate betragen, wodurch die Exporte nicht immer den aktuellen Stand der Finanzsituation
abbilden. Zusitzlich werden die Werte nicht relational verkniipft exportiert, sodass keine konsistenten
Primir- oder Fremdschliisselbeziehungen zwischen den verschiedenen Systemen (FI, HCM) vorhanden
sind. Dies fiihrt dazu, dass Zuordnungen zwischen Mitarbeitenden, Projekten und Kostenarten hdufig nur
iber eine manuelle Betrachtung moglich sind.

CSV-Struktur

Die Struktur der exportierten CSV-Dateien variiert stark zwischen den einzelnen SAP-Subsystemen und
sogar zwischen verschiedenen Exportvorgingen desselben Systems. Diese Inhomogenitit erschwert ei-
ne automatisierte Weiterverarbeitung erheblich. Die wichtigsten strukturellen Herausforderungen umfas-
sen:

* Uneinheitliche Headerzeilen: Manche Exporte enthalten keine Spaltenbezeichnungen, andere
hingegen verwenden mehrzeilige Header oder mehrfach vorkommende Bezeichner. Dadurch ist
eine eindeutige Zuordnung der Spalten nicht ohne manuelle Nachbearbeitung moglich.

* Uneinheitliche Datumsformate: Datumsangaben liegen je nach Export entweder im Format MM/YYYY
oder TT.MM.YYYY vor. Ein konsistentes Parsing erfordert daher eine Normalisierung der Formate.

* Numerische Werte als Text: Betrige werden standardmiflig als Text exportiert und enthalten
Tausendertrennzeichen (z.B. 1.234,56). Dies verhindert eine numerische Sortierung und erfor-
dert eine explizite Umwandlung in numerische Datentypen.

¢ Doménenspezifische Kodierungen: Viele Felder enthalten SAP-interne Schliissel, Kiirzel oder
Domiinenbeschreibungen, die ohne Ubersetzungstabellen nicht interpretierbar sind. Ein Beispiel
dafiir ist der Belegart-Schliissel D3 fiir Drittmittel.

Das folgende Beispiel zeigt exemplarisch eine CSV-Struktur, die dhnliche Probleme wie die SAP-Exporte
aufweist. Es illustriert mehrere der beschriebenen Probleme gleichzeitig, insbesondere mehrzeilige bzw.
unvollstindige Header bzw. Header in mehreren Zeilen, leere Spalten, redundante Bezeichnungen sowie
uneinheitliche Formatierungen numerischer Werte und Daten:

3 Anforderungsanalyse 10

; ;1 Geburt; Wohnort; Euro; Euro;;;;

Name;Alter; Stadt; Stadt; Gehalt; Sozialabgaben;Netto; Geburtsdatum; Ausbildungsbeginn;
"Tom";"25"; "Berlin"; "Berlin";"3000";"500";"2.500,00EUR";"2000.1.21";"2023/09";
"Anna";"28";"";"";"3200";"600";"2.600,00EUR";"1997.09.21";"2020/09";

"Max";"20"; "Hamburg"; "Hamburg"; #; #; #; "2005.07.13";"2025/09";

Listing 3.1: CSV-Beispiel

Diese Herausforderungen machen eine systematische Datenbereinigung und Normalisierung zwingend
erforderlich, bevor eine Analyse oder Zusammenfiihrung der unterschiedlichen Datenquellen moglich
ist.

3.1.2 Technische Rahmenvorgaben

Zusitzlich zu den organisatorischen und datenbezogenen Einschrinkungen bestehen mehrere technische
Vorgaben, die die Architektur und Umsetzung des Systems wesentlich beeinflussen:

* Verwendung von Python: Die Implementierung des Systems hat zwingend in der Programmier-
sprache Python zu erfolgen. Das ist eine Vorgabe der Auftraggebenden und ist mit der Wartbarkeit
zu begriinden.

* Lokale Desktop-Anwendung unter Windows: Die Anwendung soll als lokale Desktop-Applikation
auf Windows-Arbeitspldtzen der Buchhaltung betrieben werden. Daraus ergibt sich, dass sdmtli-

che Datenverarbeitung und Speicherung lokal erfolgen muss. Diese Einschrankung gilt nur fiir das
MVP.

* Serverbasierte Multi-User-Funktionalitit Um die Software zukunftssicher und skalierbar zu
machen, ist es wichtig, die Software so zu gestalten, dass eine spitere Umstellung auf eine Multiuser-
Architektur mit einem Client-Server-Modell moglichst einfach zu gewihrleisten ist.(vgl. US-22)

e CSV-basierte Datenimporte: Als Datenbasis stehen ausschlielich die manuell erzeugten CSV-
Exporte aus SAP Fiori zur Verfiigung. Diese Dateiformate sind fest vorgegeben und bilden die
einzige maschinell verarbeitbare Eingabequelle. Die Architektur des Systems muss daher auf den
Import, die Bereinigung und Normalisierung solcher CSV-Dateien ausgerichtet sein.

* OData-Importe Eine spitere Anbindung an die von SAP bereitgestellten OData-Services soll im
Rahmen der Planung beriicksichtigt jedoch nicht implementiert werden.

3 Anforderungsanalyse 11

Tabelle 3.1: Ubersicht der Rahmenbedingungen und Einschriinkungen

ID Kurzbeschreibung

RB-01 Zugriff auf SAP-OData-Services ist aufgrund des Genehmigungsprozesses im Rahmen der
Seminararbeit nicht realisierbar. Kein direkter Online-Zugriff.

RB-02 Auslesen von Daten aus dem SAP-Webinterface mittels Reverse Engineering ist rechtlich
unzuldssig.

RB-03 Sémtliche Daten miissen aus bereitgestellten CSV-Exporten und manuellen Eingaben ge-
wonnen werden.

RB-04 Verwendete Datenquellen sind ausschlieBlich die HCM- und FI-CSV-Exporte mit projekt-
bezogenen Personal- und Finanzinformationen.

RB-05 Die CSV-Exporte besitzen keine einheitliche Struktur und sind teilweise zeitverzogert; eine
Bereinigung und Normalisierung ist zwingend erforderlich.

RB-06 Die Implementierung hat zwingend in Python zu erfolgen.

RB-07 Das MVP ist als lokale Desktop-Anwendung unter Windows mit vollstéindig lokaler Verar-
beitung und Speicherung auszufiihren.

RB-08 Die Architektur soll eine spitere Umstellung auf eine Multi-User-Client-Server- Architektur
ermdglichen.

RB-09 Eine spitere Anbindung an SAP-OData-Services ist konzeptionell zu beriicksichtigen, wird
im MVP aber nicht implementiert.

3.2 Zielgruppe und Stakeholder

Die primire Zielgruppe des Systems sind die Mitarbeitenden der Buchhaltung, die regelméfig Finanz-
und Personaldaten aus SAP exportieren und weiterverarbeiten miissen. Da diese Nutzenden iiblicher-
weise nicht liber tiefgehende technische Kenntnisse verfiigen, ist eine klar strukturierte und intuitive
Benutzeroberfldche entscheidend fiir die erfolgreiche Nutzung des Systems.(vgl. US-17)

Auch visuelle Werkzeuge zur Definition von Filter- oder Zuordnungsregeln miissen ohne Programmier-
kenntnisse nutzbar sein(vgl. US-18). Neben den operativen Nutzenden sind die Auftraggebenden wich-
tige Stakeholder, da sie besonderen Wert auf Erweiterbarkeit und langfristige Wartbarkeit legen (vgl.
US-22). Die IT-Abteilung schlieBlich stellt Anforderungen hinsichtlich Nachvollziehbarkeit und Feh-
lerdiagnose, welche in den User Stories zur Klarheit von Fehlermeldungen wiederzufinden sind (vgl.
US-23).

3.3 Funktionale Anforderungen

Die funktionalen Anforderungen beschreiben das Verhalten des Systems sowie die Funktionen, die das
System bereitstellen muss. Hier werden alle Anforderungen an die zu entwickelnde Software erhoben.
Spiéter werden die im Rahmen des MVP zu beriicksichtigen Funktionen abgegrenzt.

3 Anforderungsanalyse 12

Tabelle 3.2: Zielgruppen und zentrale Anforderungen

Stakeholder Zentrale Anforderungen User Stories

Mitarbeitende der Buchhaltung Intuitive, klar strukturierte Benutzerober- US-17, US-18, US-19
flache; moglichst wenige Interaktionen pro
Arbeitsschritt.

Mitarbeitende der Buchhaltung Visuelle Konfiguration von Filtern, Regeln US-14, US-18
und Zuordnungen ohne SQL- oder Pro-
grammierkenntnisse.

Auftraggebende Modularer, erweiterbarer Aufbau des Sys- US-22
tems, um zukiinftige Schnittstellen, Expor-
te und Architekturdnderungen ohne grund-
legende Umbauten zu ermdglichen.

IT-Abteilung Nachvollziehbarkeit von Fehlern und Sys- US-23
temzustinden durch klare, verstindliche
Fehlermeldungen und Logging.

3.3.1 Projektverwaltung

Um projektbezogene Finanziibersichten erstellen zu konnen, muss das System die Anlage und Verwal-
tung beliebiger Projekte ermoglichen (vgl. US-01). Fiir jedes Projekt sollen die bewilligten Mittel pro
Jahr hinterlegt und den entsprechenden Kategorien wie z.B. Personalkosten der Finanziibersicht zuge-
ordnet werden konnen (vgl. US-02). Dariiber hinaus ist die Méglichkeit erforderlich, Projekte vollstindig
zu entfernen, wobei sicherheitsrelevante Bestitigungsdialoge den Loschvorgang absichern miissen (vgl.
US-03 und US-19).

Fiir jedes Projekt miissen die aus SAP stammenden CSV-Exporte aus den Modulen HCM und FI einge-
lesen und verarbeitet werden konnen (vgl. US-04). Dazu gehort insbesondere, das System uneinheitliche
oder fehlerhafte Headerstrukturen erkennt, bereinigt und automatisiert geeignete Korrekturvorschlige
generiert (vgl. US-05). Die Nutzenden sollen zusitzlich die Moglichkeit haben, Spaltenbezeichnungen
manuell anzupassen (vgl. US-06) und jedem Feld einen passenden Datentyp zuzuweisen (vgl. US-07).
Die so definierten Zuordnungen und Datentypen miissen als wiederverwendbare Masken gespeichert
werden konnen, um zukiinftige Importe von gleich strukturierten Daten effizient durchfiihren zu konnen
(vgl. US-08).

Neben den iiber CSV importierten Daten sollen langfristig auch die SAP-OData-Schnittstellen als al-
ternative Importquelle genutzt werden konnen, um den manuellen Aufwand zu reduzieren. Ergidnzend
miissen Nutzende weitere Daten manuell erfassen konnen, insbesondere geplante oder zukiinftige Fi-
nanzvorgdnge wie prognostizierte Personalkosten oder noch nicht gebuchte Rechnungen. Diese soge-
nannten Plandaten sollen spiter automatisch durch die entsprechenden SAP-Eintrige ersetzt werden,
sobald diese vorliegen (vgl. US-09 und US-13).

3 Anforderungsanalyse 13

Tabelle 3.3: Funktionale Anforderungen Projektverwaltung

User Story Kurzbeschreibung

US-01 Anlegen neuer Projekte zur getrennten Verwaltung projektbezogener Finanzdaten.

US-02 Speichern projektspezifischer Einstellungen und Spaltenkonfigurationen, um wieder-
kehrende Importe zu vereinfachen.

US-03 Loschen bestehender Projekte mit Sicherheitsabfrage zur Vermeidung unbeabsichtigter
Loschvorginge.

US-04 Import von CSV-Dateien aus den Modulen HCM und FI.

US-05 Automatische Erkennung und Korrekturvorschlédge fiir fehlerhafte oder uneinheitliche
Spaltenbezeichnungen.

US-06 Manuelle Anpassung von Spaltennamen zur Verbesserung der Verstiandlichkeit.

US-07 Festlegung passender Datentypen pro Spalte (Text, Datum, Zahl) fiir korrekte Verarbei-
tung.

US-08 Speichern von Spalten- und Typzuordnungen als wiederverwendbare Masken fiir kon-

sistente Importe.

US-09 Manuelles Ergéinzen zusitzlicher Datensitze, insbesondere zukiinftiger Ausgaben und
Plandaten, die in SAP noch nicht erfasst sind.

US-13 Automatische Beriicksichtigung von Plandaten in Auswertungen und spiteres Ersetzen
durch tatsidchliche SAP-Buchungen.

3.3.2 Datenverarbeitung, Analyse und Export

Nach dem Import miissen die Daten weiter analysiert werden konnen. Dazu gehort die Moglichkeit,
Datensitze nach frei definierbaren Kriterien zu filtern und zu gruppieren, um nur die jeweils relevanten
Informationen anzuzeigen (vgl. US-10 und US-11). Auf dieser Grundlage sollen monatliche projektbe-
zogene Ubersichten generiert werden, die Einnahmen, Ausgaben, Personalkosten und die daraus resul-
tierenden Budgetentwicklungen darstellen (vgl. US-12). Hierbei miissen sowohl die realen SAP-Daten
als auch die manuell erfassten Plandaten beriicksichtigt werden, um einen vollstindigen Uberblick iiber
die finanzielle Situation zu vermitteln (vgl. US-13).

Fiir die Zuordnung der Daten zu den Zielspalten der Finanziibersicht soll ein regelbasiertes System be-
reitstehen, das ohne technische oder SQL-spezifische Kenntnisse nutzbar ist (vgl. US-14). Alle berech-
neten Ubersichten miissen exportierbar sein. Der Export ist in erster Linie im CSV-Format vorzusehen,
dariiber hinaus sollen jedoch auch druckbare Ausgabeformen wie PDF oder XLS unterstiitzt werden (vgl.
US-15 und US-16). Dies ermoglicht die Erstellung formaler Verwendungsnachweise oder die Weitergabe
von Finanziibersichten an externe Stellen.

3 Anforderungsanalyse 14

Tabelle 3.4: Funktionale Anforderungen Datenverarbeitung, Analyse und Export

User Story Kurzbeschreibung

US-10 Filtern von Daten nach frei definierbaren Kriterien.

US-11 Gruppieren von Datensitzen nach beliebigen Attributen zur Erstellung aggregierter
Ubersichten.

US-12 Monatliche projektbezogene Finanziibersicht mit Einnahmen, Ausgaben und Personal-
kosten.

US-13 Einbeziehung von Plandaten in die Auswertung zur Beurteilung zukiinftiger Budgetent-
wicklungen.

US-14 Regelbasierte Zuordnung von Daten zu Kategorien (z. B. Einnahmen, Ausgaben, Per-

sonalkosten) ohne SQL-Kenntnisse.

US-15 Export der erzeugten Ubersichten als CSV-Datei.
US-16 Export der Ubersichten als PDF oder XLS zur Erstellung formaler Nachweise und Be-
richte.

3.3.3 Benutzeroberfliche

Das System benotigt eine grafische Benutzeroberfliche, die ohne technische Vorkenntnisse bedienbar ist
und alle wichtigen Arbeitsschritte iibersichtlich abbildet(vgl. US-17). Es muss Dialoge zur Erstellung
von Projekten und zum Import von CSV-Dateien geben, idealerweise auch per Drag-and-Drop. Um die
Headerinformationen der CSV-Daten zu bearbeiten, soll eine grafische Oberflache vorhanden sein, in der
die Zuordnung von Originalspaltennamen zu einem neuen Spaltennamen moglich ist. Die Felder fiir den
neuen Spaltennamen sollen bereits mit den automatisch angepassten Headerfeldern befiillt sein. Durch
Klicken in dieses Feld sollen die Namen aber noch bearbeitbar sein (vgl. US-06). Aullerdem soll zu jeder
Spalte ein Dropdown-Menii existieren, welches es den Nutzenden ermoglicht ein Datentyp fiir das Feld
festzulegen. Datentypen konnen Text, Datum und Zahl sein. Die Datentypen sollen ebenfalls bereits mit
den geschitzten richtigen Werten populiert sein (vgl. US-07).

Fiir jedes Projekt soll eine Finanziibersicht verfiigbar sein, bestehend aus aktuellem Kontostand, Einnah-
men, Ausgaben, gezahlten Gehiltern, geplanten Ausgaben sowie der Verrechnung mit den bewilligten
Finanzierungsmitteln.

Fiir die Erstellung der Ubersichten muss eine Zuordnung von Quell- zu Zielspalten moglich sein. Dazu
soll das User Interface entsprechende Konfigurationseinstellungen bereitstellen (vgl. US-18). Im Export-
bereich sollen die Nutzenden das Ausgabeformat auswihlen und die zu exportierenden Spalten festlegen
konnen (vgl. US-15). Samtliche Arbeitsabldufe sollen mit moglichst wenigen Interaktionen auskommen,
um die Bedienbarkeit zu maximieren. Alle erstellten Daten miissen auch wieder geldscht werden kon-
nen. Um versehentliches Loschen zu vermeiden muss bei jedem Loschvorgang eine Bestidtigungsanfrage
gestellt werden (vgl. US-19).

3 Anforderungsanalyse 15

Tabelle 3.5: Funktionale Anforderungen Benutzeroberfliache

User Story Kurzbeschreibung

uUS-17 Klar strukturierte, intuitive Benutzeroberflache ohne technischen Vorwissensbedarf.

US-18 Visuelle Konfiguration von Regeln, Filtern und Zuordnungen iiber die GUI, ohne Pro-
grammierkenntnisse.

US-19 Sicherheitsabfragen bei kritischen Aktionen (z. B. Loschen von Projekten), um unbeab-

sichtigte Datenverluste zu vermeiden.

3.4 Nicht-funktionale Anforderungen

Neben den funktionalen Anforderungen muss das System mehrere qualitative Eigenschaften erfiillen, die
die Bedienbarkeit, Leistungsfihigkeit, Sicherheit sowie die langfristige Erweiterbarkeit und Wartbarkeit
betreffen. Die im Anhang aufgefiihrten User Stories konkretisieren diese Anforderungen.

Ein wesentlicher Aspekt betrifft die Usability. Da die primédren Nutzenden keine technischen Vorkennt-
nisse besitzen, muss die Benutzeroberfldache intuitiv verstindlich, klar strukturiert und logisch aufgebaut
sein (vgl. US-17). Fehlermeldungen sollen prizise formuliert sein und konkrete Hinweise zur Problem-
16sung geben (vgl. US-23). Dariiber hinaus sollen typische Arbeitsschritte mit moglichst wenigen In-
teraktionen durchgefiihrt werden konnen. Visuelle Konfigurationsoptionen sollen komplexe Tétigkeiten
erleichtern(vgl. US-18).

Auch die Performance stellt eine zentrale Anforderung dar. Das System muss in der Lage sein, grofie
CSV-Dateien ohne spiirbare Verzdgerungen zu importieren, zu filtern und zu gruppieren (vgl. US-20).
Zudem sollen sowohl der Programmstart als auch das Laden bestehender Projekte schnell erfolgen, um
den Einsatz im regelmafigen Arbeitsalltag der Buchhaltung nicht zu verlangsamen.

Im Hinblick auf die Sicherheit ist im Rahmen des MVP sicherzustellen, dass alle sensiblen Finanz-
und Personaldaten ausschlieBlich lokal verarbeitet und gespeichert werden (vgl. US-21). Da keine Uber-
tragung an externe Systeme erfolgt, reduziert sich die Angriffsfliche auf den jeweiligen Arbeitsplatz.
Zukiinftig, im Kontext einer mdglichen Multi-User- oder Serverarchitektur, miissen erweiterte Sicher-
heitsmechanismen wie Zugriffskontrollen, Verschliisselung oder Netzwerkabsicherung erginzt werden.
Fiir das MVP gilt jedoch ausdriicklich das Prinzip der reinen lokalen Verarbeitung.

Auch spielt die Erweiterbarkeit der Software eine zentrale Rolle. Die Architektur muss so gestaltet
sein, dass zukiinftige Erweiterungen ohne grundlegende Eingriffe in die bestehende Struktur moglich
sind (vgl. US-22). Dies umfasst einen modularen Aufbau, der Import, Analyse, Export, Benutzeroberfla-
che und Datenhaltung klar voneinander trennt. Neue Datenquellen oder zusitzliche SAP-Exporte sollen
sich durch die Erweiterung einzelner Module integrieren lassen, ohne dass die Gesamtarchitektur ange-
passt werden muss. Ebenso muss die interne Datenreprisentation so flexibel sein, dass unterschiedliche
CSV-Strukturen oder neue Mapping-Mechanismen unterstiitzt werden konnen. Die spitere Integration
automatisierter Schnittstellen wie SAP OData sowie der mogliche Wechsel von lokalen zu externen Da-
tenbanken sollen konzeptionell bereits vorgesehen sein.

3 Anforderungsanalyse

16

SchlieBlich ist fiir eine langfristige Nutzbarkeit eine hohe Wartbarkeit erforderlich. Diese setzt eine kla-
re Trennung zwischen Benutzeroberflache, Geschiftslogik und Datenzugriff voraus, um gezielte Weiter-
entwicklungen zu ermdglichen. Dariiber hinaus soll das System so gestaltet sein, dass zentrale Funktio-
nen wie CSV-Parsing oder Filtermechanismen iiber die Benutzeroberfliche konfiguriert werden koénnen,
ohne den Quellcode anpassen zu miissen. Ein strukturiertes Fehler- und Ereignis-Logging unterstiitzt die
Diagnose von Problemen und triagt ebenfalls zur Wartbarkeit bei (vgl. US-23).

Tabelle 3.6: Nicht-funktionale Anforderungen

User Story Kurzbeschreibung

US-17 Hohe Usability durch eine intuitive, klar strukturierte und logisch aufgebaute Benutze-
roberfliche.

US-18 Reduktion der Komplexitit durch visuelle Konfigurationsmoglichkeiten fiir Filter- und
Zuordnungsregeln.

US-20 Performante Verarbeitung groBer CSV-Dateien ohne spiirbare Verzégerungen beim Im-
port, Filtern und Gruppieren.

US-21 AusschlieBlich lokale Verarbeitung und Speicherung aller sensiblen Finanz- und Perso-
naldaten im MVP.

US-22 Modularer, erweiterbarer Systemaufbau zur Unterstiitzung zukiinftiger Schnittstellen,
Exporttypen und Architekturinderungen.

US-23 Klare, verstindliche und hilfreiche Fehlermeldungen sowie Logging zur Unterstiitzung

von Diagnose und Wartung.

4 Konzeption des MVP

Auf Grundlage der zuvor erhobenen funktionalen und nicht-funktionalen Anforderungen wird in die-
sem Kapitel das Konzept fiir das zu entwickelnde MVP vorgestellt. Ziel ist es, eine konsistente, modu-
lar aufgebaute und erweiterbare Systemarchitektur zu definieren, die die Kernanforderungen erfiillt und
gleichzeitig die spitere Erweiterbarkeit insbesondere im Hinblick auf Multi-User-Funktionalitiit sowie
verschiedener Benutzeroberflichen gewihrleistet.

Das Kapitel umfasst die Zielsetzung des MVP, den grundlegenden Architekturentwurf, das Datenmo-
dellierungskonzept sowie den Entwurf der Benutzeroberfliche. Dariiber hinaus wird begriindet, warum
bestimmte Technologien ausgewihlt wurden und wie sie zur Erfiillung der Anforderungen beitragen.

4.1 Zielsetzung des MVP

Das MVP soll eine erste funktionsfdhige Version des Systems darstellen, welche die grundlegenden
Prozesse des Datenimports, der Normalisierung und der finanziellen Auswertung implementiert. Es fo-
kussiert sich auf die Kernfunktionalitiiten, die fiir die tdgliche Arbeit der Buchhaltung relevant sind, oh-
ne bereits simtliche Komfortfunktionen oder langfristig geplanten Erweiterungen wie Multi-User oder
OData-Datenimport zu implementieren.

Im Mittelpunkt steht die Funktionalitdt, CSV-Exporte aus SAP strukturiert zu importieren, zu bereini-
gen und auszuwerten. Auf Grundlage dieser Daten soll das MVP eine iibersichtliche Darstellung der
Einnahmen, Ausgaben und Personalkosten auf Monatsbasis erméglichen und grundlegende Exportfunk-
tionen bereitstellen. Ergiinzend konnen zukiinftige Finanzvorgénge als Plandaten erfasst werden, um eine
Abbildung der Budgetentwicklung zu erméglichen.

Das MVP verfolgt dariiber hinaus das Ziel, eine Architektur zu etablieren, die spitere Erweiterungen
wie alternative Benutzeroberflichen oder den Einsatz externer Datenbanken vereinfacht. Diese Aspekte
werden jedoch nicht funktional umgesetzt, sondern lediglich strukturell vorbereitet.

4.2 Architekturentwurf

Das System wird als modular aufgebautes Client-Server-System konzipiert. Obwohl die Anwendung
im MVP ausschlieflich lokal ausgefiihrt wird, bietet die Trennung zwischen Frontend und Backend
erhebliche Vorteile. Sie ermoglicht die spitere Auslagerung des Backends auf einen externen Server,
ohne dass Anpassungen an der Benutzeroberflidche erforderlich sind. Ebenso eroffnet sie die Moglichkeit,
alternative Frontends wie ein Web- oder Mobile-Interface einzusetzen, ohne die zugrunde liegende Logik
verdndern zu miissen.[13]

4 Konzeption des MVP 18

Die Kommunikation zwischen Benutzeroberflaiche und Backend erfolgt vollstindig iiber eine interne
REST-API. Die Desktopanwendung, welche mit PySide6 implementiert wird, fungiert als Client und in-
teragiert ausschlieBlich tiber klar definierte HTTP-Endpunkte mit dem Backend. Auf diese Weise entsteht
eine lose Kopplung zwischen Benutzeroberfliche und Geschiftslogik, was sowohl die Austauschbarkeit
des Frontends als auch die langfristige Erweiterbarkeit erleichtert.[5]

Das Backend selbst ist in mehrere klar abgegrenzte Schichten gegliedert. Die API-Schicht (FastAPI)
dient als Zugangspunkt zur Geschiftslogik und stellt simtliche Funktionen nach auflen bereit. Die Ge-
schiftslogik selbst ist in Services organisiert, die unabhéngig von der konkreten Datenhaltung implemen-
tiert sind. Der Zugriff auf die Datenbank erfolgt iiber eine Repository-Schicht, deren Interfaces einheit-
liche Zugriffsmuster definieren. Diese Struktur ermdglicht es, die zugrunde liegende SQLite Datenbank
im MVP kiinftig ohne Verdnderungen an der Geschiftslogik durch alternative Systeme wie MariaDB
oder PostgreSQL zu ersetzen.[14]

Die Modularitit ergibt sich somit aus der Entkopplung von Benutzeroberfliche, Geschiftslogik und Da-
tenzugriff. Jede dieser Schichten kann unabhiingig weiterentwickelt, ausgetauscht oder erweitert werden.
Die REST-basierte Kommunikation stellt sicher, dass selbst tiefgreifende Anderungen an der Datenhal-
tung oder der Architektur des Backends keine Auswirkungen auf die Bedienoberfliche haben. Gleich-
zeitig schafft diese Struktur die Grundlage dafiir, das System in spédteren Entwicklungsstufen als Multi-
User-System mit externem Server zu betreiben, ohne das grundlegende Architekturkonzept verdndern
zu miissen. Die folgende Abbildung zeigt den Aufbau der Architektur mit ihren Schichten. Die Pfeile
zeigen die Datenflussrichtung sowie die Interaktionsrichtung.

Presentation Layer

‘ Ul Components ‘

Client Layer

hitpx, pydantic

Communication Layer

REST API mit FastAPI

Service Layer

[Impcrtsawice‘ FinancialService J

Repository Layer

‘ SQLite Repository ‘

Data Layer

SQLite Database

Abb. 4.1

4 Konzeption des MVP 19

4.3 Datenmodellierung

Die Datenmodellierung des MVP verfolgt das Ziel, die CSV-Exporte aus SAP so aufzubereiten, dass sie
unabhiingig von ihrer urspriinglichen Struktur einheitlich verarbeitet werden konnen. Die relevanten Ker-
nobjekte wie Projekte, Importvorginge oder Zuordnungskonfigurationen werden als feste Datenmodelle
abgebildet und bilden die Grundlage fiir simtliche weitere Auswertungen. (vgl. Abbildung A.6) Die ei-
gentlichen Buchungs- und Personaldaten aus den CSV-Dateien werden hingegen in dynamisch erzeugten
Tabellen pro Projekt gespeichert, deren Schemas direkt aus den bereinigten Spalteniiberschriften gebildet
werden.(vgl. Abbildung A.7) Dadurch entfillt die Notwendigkeit eines starren Tabellenschemas. Das ist
insbesondere angesichts der inhaltlich und strukturell wechselnden SAP-Exporte ein Vorteil. Wihrend
der Importphase werden Datums- und Betragsangaben in einheitliche, maschinenlesbare Formate trans-
formiert, um zuverldssige Aggregationen und Berechnungen zu ermoglichen. Die Trennung zwischen
stabilen fachlichen Entititen und den dynamischen Importtabellen schafft damit sowohl Flexibilitit als
auch Konsistenz und bildet eine robuste Grundlage fiir spitere Erweiterungen des Systems und Sicherheit
beziiglich sich verdndernder CSV-Strukturen.

Ein Nachteil dieses Ansatzes besteht darin, dass die dynamisch generierten Importtabellen nicht iiber
klassische Foreign-Key-Beziehungen in das restliche Datenmodell eingebunden werden konnen. Da Ta-
bellenname und Spaltenstruktur erst zur Laufzeit entstehen, lassen sich keine stabilen referenziellen Ver-
kniipfungen definieren. Wird eine Tabelle umbenannt oder ein Importvorgang entfernt, konnen beste-
hende Verweise nicht durch das Datenbankmanagementsystem abgesichert oder automatisch aktualisiert
werden. Dies erhoht das Risiko inkonsistenter Konfigurationen, da alle Relationen ausschlieBlich iiber
frei benennbare Zeichenketten (z. B. Tabellennamen oder Spaltenbezeichner) realisiert werden.

Mit zunehmender Zahl an Projekten fiihrt dieser Ansatz zudem zu einer starken Fragmentierung der
Datenbasis. Fiir jedes Projekt entstehen mehrere eigenstidndige Tabellen mit teils dhnlicher Struktur, was
langfristig zu einem Wildwuchs an Tabellen fiihrt. Dies erschwert die Wartung und Fehlersuche.

Diese Nachteile sind fiir ein MVP tolerierbar, da der Ansatz maximale Flexibilitdt bei unstrukturier-
ten CSV-Dateien bietet und die Implementierung deutlich vereinfacht. Fiir ein zukiinftiges produktives
System wire jedoch eine Anpassung des Datenbankschemas zu betrachten.

4.4 Entwurf der Benutzeroberfliche

Die Benutzeroberfliche des MVP ist so konzipiert, dass sie die wesentlichen Arbeitsschritte der Buch-
haltung in klar nachvollziehbarer Reihenfolge abbildet. Sie besteht aus einer Projektverwaltung, einem
Bereich fiir den CSV-Import sowie einer Ansicht zur Darstellung und Analyse der eingelesenen Daten.
Des Weiteren werden verschiedene Ansichten zur Konfiguration bereitgestellt. Der Entwurf folgt dem
Prinzip einer moglichst reduzierten und leicht verstindlichen Bedienfiihrung, da die Zielgruppe keine
technischen Vorkenntnisse besitzt. Ein zentraler Bestandteil ist ein visueller Filter- und Zuordnungsme-
chanismus, der die Erstellung von Regeln ohne direkte SQL-Kenntnisse ermoglicht. Die gesamte Ober-
flache ist funktional gehalten und beschrénkt sich auf die fiir den MVP notwendigen Funktionen.[15]
Zur prototypischen Entwicklung des Designs wurden Mockups mit der Software Figma erstellt. Die

4 Konzeption des MVP

20

beschriebenen Gestaltungskonzepte adressieren insbesondere die in den User Stories formulierten An-
forderungen an eine einfache, nicht-technische Bedienbarkeit und eine visuelle Konfiguration der Filter-
und Zuordnungsregeln.(vgl. US-14, US-17)

Aktuelles Projekt: Multisat Aktueller Kontostand: -765,76€ Do. 19.8.2017
Multisat 3
a - — 0812 0822 0843 0846 _
UpBus = QLY fma run (EG 11-15) (HiWis) (allg. verw. Mittel) (Reisen) Einnahmen
CarboMD 7 AN 12.127,52 €
08.08.2017 | PK 3.988,83 €
08.08.2017 | PK 952,07 €
08.08.2017 | PK 869,60 €
08.08.2017 | PK 246,08 €
08.08.2017 202,60 €
Summe 4.940,90€ 1.115.68€ 202,60€ 12.127,52€

@® Projekt erstellen

Abb. 4.2: Mockup der Startoberfliche mit Projektliste und Finanziibersicht

Abbildung 4.1 zeigt das Mockup der Startoberflache fiir bereits konfigurierte Projekte. Links befindet
sich eine Ubersicht aller Projekte. Durch Klicken auf einen Eintrag wird die entsprechende Projektiiber-

sicht geoffnet.

_ Aktuelles Projekt: Multisat Aktueller Kontostand: -765,76€ Do. 19.8.2017
Multisat]
| | l 0812 0822 0843 0846 .
UpBus & Datum | Fima | Grund (EG 11-15) (HiWis) (allq. verw. Mittel) (Reisen) | _Einnahmen
| b
caomp g3 808 . 52 €
— Tabelle Ziel Spalte Quellspalte Bedingung Wert Betragsspalte —
08.08
08.08 [il Finanzste.. v Einnahmen v Belegart = ¥ D3 Betrag ~
08.08 [Finanzste... v Einnahmen v Sachkonto range ¥ 54500000,545... Betrag v
08.08 [Finanzste.. ~ 0846 (Rei.. Sachkonto = ~ 68500000 Betrag -
08.08) o
I Personal... ~ o 0822(Hi..) v Gruppe = v Hilfskrifte EUR-Bela... ~
Sur 52€
[l Personal.. v~ 0812(EG1.) Gruppe = ¥ Entgelt EUR-Bela... ¥

@ Projekt erstellen

Abb. 4.3: Mockup der Zuordnung von Quellspalten und Filtern zu Zielspalten der Finanziibersicht

4 Konzeption des MVP 21

In Abbildung 4.2 wird das Design fiir die Zuordnung der Spalten zu den in der Ubersicht gewiinsch-
ten Zielspalten zusammen mit den entsprechenden Filtern dargestellt. Links wird der Datenursprung in
Form der Quelltabelle ausgewihlt. AnschlieBend erfolgt die Auswahl der Zielspalte in der Finanziiber-
sicht. Um die Werte aus den Originaldaten eindeutig zuordnen zu konnen, wird ein Filter definiert, der
aus einer Quellspalte, einer Bedingung und einem Wert besteht, der diese Bedingung erfiillt. Rechts wird
zusitzlich festgelegt, in welcher Spalte der Originaldaten der zu tibernehmende Wert zu finden ist. Diese
visuelle Konfiguration unterstiitzt die in den User Stories formulierte Anforderung, Klassifizierungsre-
geln ohne direkte SQL-Kenntnisse definieren und anpassen zu kdnnen.

4.5 Technologieauswahl

Die fiir das MVP ausgewdhlten Technologien orientieren sich an der Zielsetzung, eine lokal lauffihige
Anwendung mit klarer Trennung von Benutzeroberflache und Geschiftslogik zu realisieren. Python dient
als zentrale Programmiersprache, da es eine schnelle Entwicklung und eine umfangreiche Unterstiitzung
fiir Datenverarbeitung bietet. Aulerdem wird die Wartbarkeit erhoht, da die am Institut eingesetzte Pro-
grammiersprache Python ist.

Fiir das Backend wird FastAPI eingesetzt, um die Geschiftslogik iiber eine interne REST-Schnittstelle
bereitzustellen. FastAPI ist im Vergleich zu anderen Frameworks wie Django eher leichtgewichtig und
bringt keinen eigenen Object-Relational Mapping (ORM), kein Session-Management und keine Templating-
Engine mit sich. Django ist fiir das Projekt tiberdimensioniert und wiirde den Implementierungsaufwand
nur erhohen, ohne Vorteile zu bieten. Flask ist zwar dhnlich leichtgewichtig wie FastAPI, bietet aber
keine automatische Dokumentation.[16, 17]

Die Daten werden lokal in einer SQLite-Datenbank gespeichert, da diese keinen zusétzlichen Installati-
onsaufwand erfordert und gleichzeitig fiir spitere Erweiterungen durch andere Datenbanken vorbereitet
ist.[18]

Die Benutzeroberfliche wird mit PySide6 umgesetzt, wodurch eine klassische Desktopanwendung ent-
steht, deren Interaktion vollstidndig tiber die REST-Schnittstelle erfolgt. PySide6 basiert auf Qt6, welches
eines der modernsten GUI-Frameworks ist. Im Vergleich zu anderen GUI-Frameworks wie Tkinter bietet
es eine Vielzahl an Widgets, unter anderem auch geeignete Widgets zur Darstellung von CSV-Daten in
Tabellen.[19]

4.6 Qualitits- und Testkonzept

Die Validierung des MVP erfolgt vollstindig manuell, da im Rahmen der Seminararbeit keine automa-
tisierten Tests implementiert werden. Dennoch wird der Testprozess so strukturiert, dass die wichtigsten
Funktionen reproduzierbar gepriift werden konnen.

Fiir die Tests werden reprisentative CSV-Dateien aus der Buchhaltung sowie kiinstlich erzeugte Fehler-
beispiele verwendet. Zu den gepriiften Szenarien gehoren insbesondere uneinheitliche oder mehrzeilige
Header, fehlende Werte sowie unterschiedliche Datums- und Zahlenformate. Fiir jedes Szenario wird
gepriift, ob die Anwendung die Struktur der Datei korrekt erkennt, sinnvolle Korrekturvorschldge macht
und eine konsistente Weiterverarbeitung erlaubt.

4 Konzeption des MVP 22

Die Validierung erfolgt iiber das Webinterface und die bereitgestellten REST-Endpunkte. Dabei werden
folgende Schritte durchgefiihrt:

* Upload einer CSV-Datei iiber das Webinterface und Priifung der erkannten Header.
» Kontrolle der automatisch zugewiesenen Datentypen und Korrekturvorschlige.
e Priifung der bereinigten und normalisierten Daten in der tabellarischen Darstellung.

« Uberpriifung der Aggregationen und Berechnungen in der Finanziibersicht.

Ein Test gilt als erfolgreich, wenn alle Daten ohne Fehler eingelesen, korrekt normalisiert und in der
Finanziibersicht ohne Abweichungen dargestellt werden. Werden Probleme erkannt, zeigt das System
verstiandliche Fehlermeldungen an und verhindert fehlerhafte Weiterverarbeitung.

Zwar werden im MVP keine automatisierten Tests implementiert, jedoch ermoglicht die klare Trennung
zwischen Benutzeroberflache, REST-Service und Geschiftslogik eine spétere Erweiterung um Unit- und
Integrationstests ohne strukturelle Anderungen.

4.7 Zusammenfassung des Konzepts

Das Konzept des MVP definiert eine modulare und erweiterbare Architektur, die die Verarbeitung un-
terschiedlichster CSV-Exporte ermoglicht und eine klare Trennung zwischen Benutzeroberfliche, Ge-
schiftslogik und Datenhaltung vorsieht. Durch die Nutzung einer internen REST-Schnittstelle bleibt das
System langfristig flexibel und kann sowohl um weitere Frontends als auch um alternative Datenbanken
erginzt werden. Die Datenmodellierung kombiniert eine stabile fachliche Struktur mit dynamischen Ta-
bellen fiir die Importdaten, wihrend das UI auf eine verstidndliche und reduzierte Bedienfiithrung ausge-
legt ist. Insgesamt bildet das Konzept eine kompakte, auf die Kernanforderungen fokussierte Grundlage
fiir die Umsetzung eines funktionsfahigen MVP.

5 Implementierung des MVP

Das folgende Kapitel beschreibt die Implementierung des MVP auf Grundlage der in Kapitel 4 beschrie-
benen Softwarearchitektur. Das Ziel dieses Kapitels ist nicht die vollstindige Darstellung jedes Pro-
grammteils, sondern die Herausarbeitung der wesentlichen Prinzipien, die das Verhalten und die Qualitit
des MVP bestimmen.

5.1 Verwendete Software

Die nachfolgende Tabelle listet die verwendeten Softwaremodule und gibt einen kurzen Uberblick iiber
deren Funktion.

Komponente Technologie Einsatzbereich

PySide6 Python / Qt Desktop-Benutzeroberflache, Dialoge, Widgets

Qt Widgets Qt Tabellen, Dialoge, Layouts und Eingabekomponenten

QSS Qt Style Sheets Gestaltung der GUI

FastAPI Python REST-API, Routing, Request-Validierung

Uvicorn Python ASGI-Server zur Ausfithrung der FastAPI-Anwendung

Pydantic Python Datenvalidierung, Serialisierung, API-Modelle

HTTPX Python REST-Client fiir die Kommunikation zwischen GUI und Ba-
ckend

SQLite3 Relationale DB Lokale Speicherung von Projekten, Importtabellen, Finanz-
tibersichten

Tabelle 5.1: Ubersicht der im MVP verwendeten Technologien

5.2 Implementierung der Architektur

Die Umsetzung folgt konsequent der zuvor beschriebenen Client-Server-Trennung. Frontend und Ba-
ckend kommunizieren iiber eine interne REST-API miteinander. Die Desktopanwendung agiert als rei-
ner Client und implementiert selbst keine Logik zur Datenverarbeitung. Sdmtliche Anfragen wie etwa
der Import von CSV-Dateien, die Generierung von Finanziibersichten oder das Erstellen von Projekten
werden iiber HTTP an das lokal laufende FastAPI-Backend gesendet.

5 Implementierung des MVP 24

Die Schichten kommunizieren ausschlieBlich iiber definierte Schnittstellen, wodurch die Geschiftslogik
vollstindig von der Datenhaltung isoliert bleibt. Durch diese Trennung ist die Software fiir eine spétere
Umstellung von SQLite zu einer anderen Datenbank wie MariaDB oder PostgreSQL bestens vorberei-
tet.

5.2.1 Implementierung der Repository-Schicht

Uber die Repository-Schicht werden simtliche Datenbankzugriffe gekapselt. Sie stellt einheitliche Inter-
faces fiir die CRUD-Operationen bereit. Dadurch wird die Geschiftslogik von den SQL-Anweisungen
und Datenbankspezifika getrennt. Da durch die stark variierenden Tabellenstrukturen, welche dynamisch
zur Laufzeit generiert werden keine festen Schemata verwendet werden konnen, wurde auf den Einsatz
eines ORMs verzichtet. ORMs wie SQLAIchemy gehen davon aus, dass die Schemata weitgehend stabil
und im Vorhinein bekannt sind. Das steht in direktem Konflikt mit den dynamisch erzeugten Datenbank-
tabellen der CSV-Importe.[20] Die Repository-Schicht ersetzt die ORM-Funktionalitét und sorgt so fiir
eine hohere Wartbarkeit und bessere Testbarkeit.[14]

Listing 5.1 zeigt einen beispielhaften Ausschnitt aus dem Interface.

interfaces.py
class ProjectRepository (ABC) :

@abstractmethod

def get_by_name (self, name: str) -> Optional[Project]:
@abstractmethod

def create(self, project: ProjectCreate) -> Project:

Listing 5.1: Interface Beispiel

Die Implementierung des Interfaces erfolgt analog in den entsprechenden Repositories. Im Falle des
MVP ist dass das SQLite Repository.

class SQLiteProjectRepository (ProjectRepository):

def get_by_name (self, name: str) -> Optional[Project]:
with self._db.connection () as conn:
cursor = conn.execute (
"SELECT * FROM projects WHERE name = ?", (name,)
)
row = cursor.fetchone ()

return Project (**row) if row else None

Listing 5.2: Repository Beispiel

5.2.2 Implementierung der Service-Schicht

Die Serviceschicht enthilt die gesamte Geschéftslogik und steuert die Repository-Operationen. Sie ist
vollstindig frei von SQL-Befehlen und besitzt keine Abhingigkeit von der konkreten Datenbank. Als
zentrales Beispiel dient hier der ImportService. Er nimmt einen Projektnamen, Dateipfad, Configuration
und import_type als Parameter und fiigt anhand dieser Informationen die CSV-Datei in die Datenbank
ein.

11

IS

5 Implementierung des MVP 25

class ImportService:

def __init__ (self, project_repo, import_repo):
self._project_repo = project_repo
self._import_repo = import_repo

def import_csv(self, project_name: str, ...):
project = self._project_repo.get_by_name (project_name)
if not project:
project = self._project_repo.create(...)

weitere Schritte: Tabellenerstellung, Datentypinferenz, Speicherung

Listing 5.3: Service Beispiel

Die Serviceschicht ist bewusst so implementiert, dass alle komplexen Operationen zentralisiert sind. Zu-
sdtzlich zum ImportService existieren der FinancialService, welcher die Berechnung der Budgets
und Finanziibersichten orchestriert. Der ProjectService dient der Erstellung und Verwaltung von Pro-
jekten. Als letzten Service stellt die Software den PlannedEntryService bereit. Dieser ist fiir simtliche
Operationen die mit dem Erstellen und Verwalten von Plandaten in Form von zukiinftigen Rechnungen
und der Personalkosten in Zusammenhang stehen.

5.2.3 Implementierung der API

Die REST-API bildet die Schnittstelle zwischen GUI und Geschiftslogik. Hier werden die Funktio-
nen aus den Services iiber klar abgegrenzte REST-Endpunkte dem Frontend zur Verfiigung gestellt.
Als Framework zur effizienten Erstellung der APl kommt FastAPI zum Einsatz. FastAPI ist ein moder-
nes, schnelles und hochperformantes Webframework zur Erstellung von APIs mit Python auf Basis von
Standard-Python-Typhinweisen.[21] Eine beispielhafte Routendefinition zur Erzeugung eines Projekts
ist in Listing 5.4 zu sehen.

routes/projects.py

@router.post ("/projects")

def create_project (data: ProjectCreate, service: ProjectService = Depends(...)):

return service.create_project (data)

Listing 5.4: REST-Endpunkt Beispiel

Durch die router.post () Annotation wird spezifiziert, dass es sich um eine POST-Anfrage handelt.
Alle Post-Anfragen an die Route .../projects werden also von dieser Funktion bedient. Alle Endpunkte
sind den Services entsprechend getrennt in:

¢ financial
* imports
 planned_entries

* projects

5 Implementierung des MVP 26

Zu allen Endpunkten existiert eine von FastAPI automatisch generierte Beschreibung nach der OpenAPI-
Spezifikation. Die APl ist als interaktive Dokumentation iiber eine Weboberfldche die mittels SwaggerUI
aus der OpenAPI generiert wird erreichbar. Das bietet grole Vorteile bei der Wartbarkeit und Erweiter-
barkeit der Software. AuBerdem lassen sich alle Endpunkte direkt tiber das Webinterface testen. Die
SwaggerUI Dokumentation aller REST-Endpunkte ist den Abbildungen Abschnitt A.2 im Anhang zu
entnehmen.

5.2.4 Implementierung des Client-Layers und der GUI

Der Client-Layer kapselt samtliche HTTP-Kommunikation mit dem REST-Backend. Zentrale Kompo-
nente ist die APIClient Klasse. Diese stellt mithilfe von httpx einen HTTP-Client bereit.

Die GUI greift nicht direkt auf HTTP-Endpunkte zu, sondern verwendet ausschlieB3lich Methoden des
APIClient. Fiir alle fachlichen Funktionen wie Projektverwaltung, CSV-Import, Abruf der Finanziiber-
sicht existieren jeweils klar benannte Methoden, die die REST-Routen kapseln. Listing 5.5 zeigt die
ApiClient Kapselung der Route /api/v1/projects. Uber diese wird eine Auflistung aller Projekt zu-
riickgeliefert.

def list_projects(self) -> list[Project]:

"""Get all projects."""

response = self._client.get ("/api/vl/projects™")
response.raise_for_status ()
return [Project (**p) for p in response. json ()]

Listing 5.5: ApiClient Beispiel

Die Antworten des Backends werden ebenfalls im Client-Layer konsumiert und in Pydantic-Modelle
tiberfiihrt. Mit diesen Modellen arbeitet das GUI.

Durch die strikte Entkopplung von der Prisentationsschicht und dem Transportprotokoll ist die Test-
barkeit deutlich erhoht. In Unit-Tests konnen Aufrufe an das Backend einfach durch Mockups von
ApiClient-Instanzen ersetzt werden, ohne die GUI selbst anpassen zu miissen.

Die Implementierung der GUI basiert vollstindig auf PySide6 und folgt einem modularen Aufbau. Zen-
trale UI-Komponenten sind in unterschiedliche Klassen aufgeteilt. Der Einstiegspunkt ist das main_window,
welches als Container fiir die unterschiedlichen Funktionsbereiche dient.

Ein zentraler Aspekt der Implementierung ist der Umgang mit dynamischen Datenstrukturen. Da die
Benutzenden beliebige CSV-Exporte mit variierender Spaltenstruktur importieren konnen. Aus diesem
Grund muss die GUI in der Lage sein, Tabellenansichten komplett dynamisch zu erzeugen. Dazu wer-
den die Headerinformationen aus dem Backend gelesen und die Tabellenansichten entsprechend aufge-
baut.

5 Implementierung des MVP 27

Projekte Aktives Projekt: E

Multisat
o
“ Ubersicht project 2 project 2_personalbelastung

Projektiibersicht

Kontostand (inkl. Geplant) Kontostand (ohne Geplant)

€ -25.269,10 €0,00

Bewilligte Mittel nach Jahr

Jahr Bewilligte Mittel Kumuliert Bewilligt ~ Verbrauchte Mittel Kumuliert Verbraucht Verfiigbare Mittel
12016 €2300000 €23.000,00 €2427076 €2427076 €-127076
2 2017 €100.12300 €123.123,00 €89.08981 €11336057 €976243
3 2018 €60.00000 €192.123,00 €69.81035 €183.17092 €8952,08
4 2019 €000 €192.123,00 €3137371 €21454463

+ Neues Projekt

Abb. 5.1: GUI Projektiibersicht

Das entwickelte Frontend orientiert sich eng an den zuvor erstellten Mockups. Abbildung 5.1 zeigt die
Projektiibersicht, auf der die berechneten Budgets sowie der aktuelle Kontostand dargestellt werden.
Auf der linken Seite befindet sich die Liste aller Projekte. Der Kontostand ist in zwei Bereiche unter-
teilt: Links wird der Wert unter Einbezug der geplanten Ausgaben angezeigt, rechts hingegen wird der
Kontostand ausschlieBlich auf Basis der tatsichlich gebuchten Werte angezeigt.

Im unteren Bereich sind die bewilligten Mittel nach Jahren gruppiert in einer Tabelle dargestellt. Die
Spalte Bewilligte Mittel enthilt die jeweils fiir ein Jahr zugesprochenen Betrige. Kumuliert bewilligt
zeigt die Summe aller bis zu diesem Jahr bewilligten Mittel. Verbrauchte Mittel geben die tatsdchlich
im jeweiligen Jahr angefallenen Ausgaben an, wihrend Kumuliert verbraucht die insgesamt bis zu
diesem Jahr aufgelaufenen Ausgaben ausweist. Die Spalte Verfiigbare Mittel entspricht schlielich der
Differenz zwischen den kumulierten bewilligten und den kumulierten verbrauchten Mitteln.

Projekte Akives Projekt: ﬂ

Multisat
[e [
“ Ubersicht i ht project 2. hungen project2
Von:| 0111201 v | Bis | 3112201€ v Gruppieren nach: | Keine Gruppierung - | ® Aktualisieren

Datum Firma Grund Einnahmen 0812 0822 0843 0846 0835 Kontostand
120161111 K ok Jll2016/10 (Brutto_EUR) 0) 30857 0 0 0 -30857
2 2016-11-11 PK pk lll2016/10 (Sozialabgaben VBL EUR) 0 0 8733 0)) -395.9
3 2016-11-23 KreditorName 2253 (Betrag) 0 o 0 2975 0 0 -425.65
4 201611-25 PK. e I2016/10 (Brutto_EURY o 2933.06 0 o o o 335871
5 201641125 BC P« JI2016/10 (Sozialabgaben VEL EUR) 0 6942 0 0 0 0 405291
6 2016-12-07 KreditorName SORP1615 (Betrag) -17000.0 0 0 0 0 0 12847.09
7 20164121 BK PK TDE 2016/12 (Brutto EUR) [42600 0 [[[267800
8 2016-12-1 BK PK TDE 2016/12 (Sozialabgaben VBLEUR) 0 10000 0 0 0 0 767809
9 2016-12-1 BK PK TDE 2016/12 Zuwendungen_EUR) 0 10000 0 0 0 0 667809
10 2016-12-13 K PK I2016/11 (Brutto_EUR) 0 o 195.66 0 0 0 6482.43
120161213 PK PRI 2016/11 (Sozialabgaben VEL EUR) 0 0 5538 0 0 0 642705
12 20161213 PK P 2016/11 (Brutto_EUR) 0 201075 0 0 0 0 25163
13 20161213 PK e« I 2016/11 (Sozizlabgaben_VBL EUR) 0 138092 0 0 0 0 113538
14 20161213 PK Pk EE2016/11 (Zuwendungen EUR) 0 1952.05 0 0 0 0 81667

Abb. 5.2: GUI Finanziibersicht

5 Implementierung des MVP 28

Die Finanziibersicht zeigt die individuellen Rechnungen und lésst sich beliebig zeitlich eingrenzen. In
Abbildung 5.2 werden beispielsweise die Buchungen aus Dezember 2016 gezeigt. Diese sind entspre-
chend der Filterkonfigurationen in Abbildung 5.3 den individuellen Spalten zugeordnet. Zu beachten ist,
dass alle blau hinterlegten Zeilen Plandaten sind, welche noch nicht final gebucht wurden.

Oben rechts gelangt man iiber das Zahnrad zur Projektkonfiguration. Dort lassen sich samtliche Daten
fiir das Projekt konfigurieren.

B Projekteinstellungen - Multisat

spaltentilter Ausschlussregeln Geplante Eintrage Beuilligte Mittel Export / Import
Tabelle Ziel Spalte Quelispalte Bedingung Wert Betragsspalte

1 personalbelastung v | 0812 v | Entgeltstufe v|= ~ Entgeit Erutto_EUR v
2 Personalbelastung v | 0812 v | Entgeltstufe v|= ~ Entgeit sozialabgaben VBL EUR v
3 personalbelastung v | 0812 v | Entgeltstufe v|= ~ Entgeit Zuwendungen EUR v
4 Personalbelasiung v | 0822 v | Entgeltstufe v ~ Entgeft Erutto_EUR v
s Personalbelastung v | 0822 v | Entgeltstufe v ~ Entgeft sozialabgaben VBL EUR v
6 Finanzstellenbuchungen v | 0843 v | Betrag v ~ o Betrag v
7 Finanzstellenbuchungen v | 0843 v | skonto v|= ~ 00 gez_skonto v
8 Finanzstellenbuchungen v | 0846 v | Belegart v|= v RK Betrag v
g Finanzstellenbuchungen v 0846 v | sachkonto vo= ~ | 68500000 Betrag v
10 Finanzstellenbuchungen | v | Einnahmen v | Belegart vl= ~ D3 Betrag v

+ Filterregel hinzufiigen

Abb. 5.3: GUI Filter

Die in Abbildung 5.3 gezeigten Filter lassen sich iiber den Tab Export / Import entsprechend exportieren
und importieren, was eine einfache Wiederverwendbarkeit ermoglicht. Die Filter funktionieren exakt so
wie in Kapitel 4 beschrieben.

6 Diskussion und Ausblick

In diesem Kapitel werden die im Rahmen der Entwicklung gewonnenen Ergebnisse kritisch eingeordnet,
zentrale Architekturentscheidungen bewertet, sowie Grenzen und Weiterentwicklungsmoglichkeiten des
MVP aufgezeigt.

Die wesentlichen funktionalen Anforderungen konnten erfiillt werden. Dazu zihlen insbesondere die
Verwaltung mehrerer Projekte, der Import und die Bereinigung von CSV-Daten, das Hinterlegen bewil-
ligter Mittel sowie die Definition und Anwendung von Filterregeln. Auch die persistente Speicherung
projektbezogener Konfigurationen wurde erfolgreich umgesetzt. Nicht realisiert wurde hingegen der Ex-
port der aggregierten Finanziibersichten, da das endgiiltige Ausgabeformat noch nicht abschliefend spe-
zifiziert war. Insgesamt zeigt der reduzierte Funktionsumfang im Vergleich zu SAP-Fiori-Anwendungen
eine deutliche Vereinfachung der Arbeitsablédufe.

Die gewihlte Architektur iiberzeugt durch Modularitdt und Erweiterbarkeit, fithrt jedoch zu einem hohe-
ren initialen Entwicklungsaufwand. Das Repository-Pattern erleichtert die Implementierung spezifischer
SQL-Abfragen, wihrend ein ORM groere Datenbankunabhéngigkeit geboten hitte. Die Nutzung eines
REST-Backends erfordert zwar zusitzliche Routen, erffnet jedoch langfristig die Moglichkeit, unter-
schiedliche Frontends anzubinden.

Im Hinblick auf die Zielsetzung, eine Entscheidungsgrundlage fiir eine mogliche Weiterentwicklung der
Software zu schaffen, zeigt das MVP klar, dass die automatisierte Verarbeitung der SAP-CSV-Daten
technisch beherrschbar ist und die bestehenden manuellen Arbeitsschritte der Buchhaltung erheblich
vereinfacht werden konnen. Die prototypische Umsetzung ermoglicht damit eine erste qualitative Ein-
schitzung des Nutzens einer vollstindigen Anwendung, insbesondere in Bezug auf die Reduktion von
Fehlerquellen, die Standardisierung der Datenaufbereitung und die Wiederverwendbarkeit der Konfigu-
rationen.

Gleichzeitig treten die Grenzen des MVP deutlich hervor und zeigen, an welchen Stellen weitere Investi-
tion notwendig wiren, um einen produktiven Einsatz zu ermoglichen. Die grafische Benutzeroberfliche
ist funktional, jedoch nicht produktionsreif. Eingabevalidierungen sind bislang nur rudimentir umge-
setzt, und zahlreiche Randfille werden bewusst nicht beriicksichtigt. Der aktuelle Filtermechanismus
erlaubt lediglich einfache Bedingungen. Fiir einen robusten Einsatz ist die Unterstiitzung logischer Ope-
ratoren wie AND und OR notwendig. Ebenfalls nicht umgesetzt wurden eine Mehrbenutzerfahigkeit
mit rollenbasierten Rechten, ein umfassendes Logging sowie die direkte Anbindung an SAP-OData-
Dienste.

6 Diskussion und Ausblick 30

Aus den gewonnenen Erkenntnissen ergeben sich mehrere Entwicklungsrichtungen. Vorrangig ist die
Erweiterung des Filtersystems, gefolgt von Verbesserungen der Benutzeroberflache und der Implemen-
tierung eines Exports der Finanziibersichten um diese als Verwendungsnachweise nutzen zu konnen.
Langfristig bietet sich zudem die Integration mehrerer Benutzerrollen und eine direkte SAP-Anbindung
an, um den manuellen CSV-Prozess zu ersetzen oder zu komplementieren. Zudem stellt die automati-
sche Ersetzung von Plandaten durch tatsdchliche SAP-Buchungen, sobald diese vorliegen, eine wichtige
Erweiterung dar, da dadurch die Aktualitit und Verldsslichkeit der Finanziibersicht deutlich verbessert
wiirden.

7 Fazit

Das entwickelte MVP zeigt, dass eine lokal ausfiihrbare Software zur strukturierten Verarbeitung von
Finanzdaten technisch umsetzbar und fachlich hilfreich ist. Die zentralen Funktionen wurden erfolgreich
implementiert und bilden eine solide Grundlage fiir weitere Schritte. Die Analyse verdeutlicht jedoch,
dass fiir einen produktiven Einsatz zusétzliche Erweiterungen erforderlich sind, insbesondere im Bereich
der Filterlogik, der Benutzerfiihrung und der Mehrbenutzerfihigkeit.

Im Sinne der in der Zielsetzung genannten Funktion als Entscheidungsvorlage ldsst sich festhalten, dass
die Arbeit die technischen Moglichkeiten, den erwartbaren Nutzen sowie die notwendigen Erweiterungen
klar aufzeigt. Damit bietet das MVP eine belastbare Grundlage, um iiber eine weiterfiihrende Investition
in die Entwicklung eines vollwertigen Systems zu entscheiden.

Insgesamt bestitigt die Arbeit den Nutzen eines solchen Werkzeugs fiir den buchhalterischen Arbeitsall-
tag und schafft die Basis fiir eine Weiterentwicklung zu einer vollstdndig einsetzbaren Losung.

Literatur

[1]

(2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

RWTH AACHEN. eingefiihrte SAP-Module. Abteilung 5.2 — SAP — Entwicklung und Betrieb.
2025. URL: https://intranet.rwth-aachen.de/group/qguest/articledetailpage/-
/asset_publisher/cadSeXJzMOzq/content/1d/19312687 (besucht am 23.11.2025).

RWTH AACHEN. MaCoCo - Lehrstuhlcontrolling. RWTH Aachen. URL: https://www.controlling.
rwth-aachen.de/cms/Controlling/Forschung/Forschungsprojekte/Laufende-Projekte/
~mgaz/MaCoCo-Lehrstuhlcontrolling/ (besucht am 10.12.2025).

Andrew S. TANENBAUM und Maarten van STEEN. Distributed Systems. Principles and Para-
digms. 2nd ed. Upper Saddle River, NJ: Pearson Prentice Hall, 2007. 1SBN: 0132392275.

Roy Thomas FIELDING, Mark NOTTINGHAM und Julian RESCHKE. RFC 9110 HTTP Semantics.
2022. DOI: 10.17487/RFC9110. (Besucht am 15. 12.2025).

Roy Thomas FIELDING. Architectural Styles and the Design of Network-based Software Archi-
tectures. Dissertation. Irvine: University of California, 2000.

IBM. Was ist REST-API? Hrsg. von IBM. URL: https://www.ibm.com/de~-de/think/
topics/rest-apis (besucht am 10.12.2025).

Leonard RICHARDSON und Sam RUBY. RESTful Web Services. Web Services for the Real World.
Web Services for the Real World. Beijing und Koéln: O’Reilly, 2007. ISBN: 9780596529260. URL:
https://swbplus.bsz-bw.de/bsz265585090cov.htm.

OPENAPIINITIATIVE. OpenAPI Specification. 2025. URL: https : //github . com/OAI /
OpenAPI-Specification (besucht am 04.12.2025).

Yakov SHAFRANOVICH. RFC 4180: Common Format and MIME Type for CSV Files. 2005. DOTI:
10.17487/RFC4180. URL: https://www.rfc-editor.org/info/rfc4180 (besucht am
15.12.2025).

Jay A. KREIBICH. Using SQLite. Previous programming experience is recommended — P. [4] of
cover. Includes index. Ist ed. Sebastopol, Calif.: O’Reilly, 2010. 1SBN: 9780596521189. URL:
http://gbv.eblib.com/patron/FullRecord.aspx?p=580130.

SAP SE. Terms of Use for SAP Websites. SAP SE. 2025. URL: https: //www. sap . com/
germany/about/legal/terms-of-use.html (besucht am 08. 12.2025).

SAP SE. OData. SAP SE. 2025. URL: https://help.sap.com/docs/HANA_SMART_DATA_
INTEGRATION/7952e£28a6914997abc01745fef1b607/d9f0a3b09e0£4b3eb010be8bd36871e5.
html (besucht am 22.11.2025).

Robert C. MARTIN und Kevlin HENNEY. Clean Architecture. Das Praxis-Handbuch fiir profes-
sionelles Softwaredesign: Regeln und Paradigmen fiir effiziente Softwarestrukturen. ger. Deutsche
Ausgabe, 1. Auflage. Frechen: mitp, 2018. ISBN: 9783958457249.

https://intranet.rwth-aachen.de/group/guest/articledetailpage/-/asset_publisher/cadSeXJzMOzq/content/id/19312687
https://intranet.rwth-aachen.de/group/guest/articledetailpage/-/asset_publisher/cadSeXJzMOzq/content/id/19312687
https://www.controlling.rwth-aachen.de/cms/Controlling/Forschung/Forschungsprojekte/Laufende-Projekte/~mgaz/MaCoCo-Lehrstuhlcontrolling/
https://www.controlling.rwth-aachen.de/cms/Controlling/Forschung/Forschungsprojekte/Laufende-Projekte/~mgaz/MaCoCo-Lehrstuhlcontrolling/
https://www.controlling.rwth-aachen.de/cms/Controlling/Forschung/Forschungsprojekte/Laufende-Projekte/~mgaz/MaCoCo-Lehrstuhlcontrolling/
https://doi.org/10.17487/RFC9110
https://www.ibm.com/de-de/think/topics/rest-apis
https://www.ibm.com/de-de/think/topics/rest-apis
https://swbplus.bsz-bw.de/bsz265585090cov.htm
https://github.com/OAI/OpenAPI-Specification
https://github.com/OAI/OpenAPI-Specification
https://doi.org/10.17487/RFC4180
https://www.rfc-editor.org/info/rfc4180
http://gbv.eblib.com/patron/FullRecord.aspx?p=580130
https://www.sap.com/germany/about/legal/terms-of-use.html
https://www.sap.com/germany/about/legal/terms-of-use.html
https://help.sap.com/docs/HANA_SMART_DATA_INTEGRATION/7952ef28a6914997abc01745fef1b607/d9f0a3b09e0f4b3eb010be8bd36871e5.html
https://help.sap.com/docs/HANA_SMART_DATA_INTEGRATION/7952ef28a6914997abc01745fef1b607/d9f0a3b09e0f4b3eb010be8bd36871e5.html
https://help.sap.com/docs/HANA_SMART_DATA_INTEGRATION/7952ef28a6914997abc01745fef1b607/d9f0a3b09e0f4b3eb010be8bd36871e5.html

Literatur 33

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

AzraJabeen MOHAMED ALI Optimizing Software Architecture: Using the Repository Pattern in
Decoupling Data Access Logic. In: International Scientific Journal of Engineering and Manage-
ment 1.1 (2022). DOI: 10.55041/ISJEM00104.

Ben SHNEIDERMAN u. a. Designing the User Interface. eng. 6th ed. Shneiderman, Ben; Plaisant,
Catherine; Cohen, Maxine; Jacobs, Steven; Elmqvist, Niklas. Harlow, United Kingdom: Pearson
Education Limited, 2017. 1SBN: 9781292153919. URL: https://ebookcentral . proquest .
com/lib/kxp/detail.action?docID=5832492.

Mukul MANTOSH. Django vs. FastAPI: Which is the Best Python Web Framework? JetBrains.
2023. URL: https://blog. jetbrains.com/pycharm/2023/12/django-vs - fastapi-
which-is-the-best-python-web-framework/#introduction (besucht am 15.12.2025).

Stanley ULILI. Flask vs FastAPI: An In-Depth Framework Comparison. Better Stack, Inc. 2025.
URL: https: //betterstack . com/ community /guides /scaling-python/ flask-vs-
fastapi/#documentation-and-openapi-integration.

Distinctive Features Of SQLite. SQLite. 31.05.2025. URL: https://sqlite.org/different.
html.

Martin FITZPATRICK. PyQt vs. Tkinter — Which Should You Choose for Your Next GUI Project?
What Are the Major Differences Between these Popular Python GUI Libraries. 8.04.2025. URL:
https://www.pythonguis.com/faq/pygt-vs-tkinter/ (besucht am 11.12.2025).

MOHAMMED TAWFIK. SQL vs. ORM: Choosing the Right Tool for the Job. 2024. URL: https:
// xtawfik . medium. com/sql -vs-orm-choosing-the-right -tool-for-the- job-
eObc8c6fbe62 (besucht am 08. 12.2024).

TIANGOLO. FastAPI. 2025. URL: https://fastapi.tiangolo.com/ (besucht am 04.12.2025).

https://doi.org/10.55041/ISJEM00104
https://ebookcentral.proquest.com/lib/kxp/detail.action?docID=5832492
https://ebookcentral.proquest.com/lib/kxp/detail.action?docID=5832492
https://blog.jetbrains.com/pycharm/2023/12/django-vs-fastapi-which-is-the-best-python-web-framework/#introduction
https://blog.jetbrains.com/pycharm/2023/12/django-vs-fastapi-which-is-the-best-python-web-framework/#introduction
https://betterstack.com/community/guides/scaling-python/flask-vs-fastapi/#documentation-and-openapi-integration
https://betterstack.com/community/guides/scaling-python/flask-vs-fastapi/#documentation-and-openapi-integration
https://sqlite.org/different.html
https://sqlite.org/different.html
https://www.pythonguis.com/faq/pyqt-vs-tkinter/
https://xtawfik.medium.com/sql-vs-orm-choosing-the-right-tool-for-the-job-e0bc8c6fbe62
https://xtawfik.medium.com/sql-vs-orm-choosing-the-right-tool-for-the-job-e0bc8c6fbe62
https://xtawfik.medium.com/sql-vs-orm-choosing-the-right-tool-for-the-job-e0bc8c6fbe62
https://fastapi.tiangolo.com/

A Anhang

A.1 Userstories

Tabelle A.1: User Stories des Systems

ID

Bereich

User Story

US-01

US-02

US-03

US-04

US-05

US-06

US-07

US-08

US-09

US-10

Projektverwaltung

Projektverwaltung

Projektverwaltung

Datenimport

Datenimport

Datenimport

Datenimport

Datenimport

Datenimport

Datenanalyse

Als Nutzende mochte ich neue Projekte anlegen konnen,
um projektbezogene Finanzdaten getrennt verwalten zu
konnen.

Als Nutzende mochte ich projektspezifische Einstellungen
und Spaltenkonfigurationen speichern konnen, damit wie-
derkehrende Importe weniger Aufwand erfordern.

Als Nutzende mochte ich bestehende Projekte 16schen kon-
nen, um veraltete oder nicht mehr benotigte Datenbestdnde
zu entfernen.

Als Nutzende mochte ich CSV-Dateien importieren kon-
nen, damit die aus SAP exportierten Finanz- und Personal-
daten im System verarbeitet werden konnen.

Als Nutzende mochte ich, dass das System fehlerhafte oder
uneinheitliche Spaltenbezeichnungen automatisch erkennt
und Korrekturvorschldge bietet, um den Import zu erleich-
tern.

Als Nutzende mochte ich Spaltennamen manuell anpassen
konnen, um fehlerhafte Header zu korrigieren oder die Da-
ten verstdndlicher darzustellen.

Als Nutzende mochte ich fiir jede Spalte den passenden
Datentyp festlegen konnen, damit Werte korrekt verarbeitet
und aggregiert werden.

Als Nutzende mochte ich Spalten- und Typzuordnungen
als Masken speichern und wiederverwenden konnen, um
konsistente Importe sicherzustellen.

Als Nutzende mochte ich zusitzliche Datensidtze manuell
erginzen konnen, insbesondere zukiinftige Ausgaben, die
in SAP noch nicht erfasst sind.

Als Nutzende mochte ich Daten nach bestimmten Kriterien
filtern konnen, um nur die relevanten Eintrdge betrachten
zu mussen.

Literatur

35

ID

Bereich

User Story

US-11

US-12

US-13

US-14

US-15

US-16

US-17

US-18

US-19

US-20

US-21

US-22

US-23

Datenanalyse

Datenanalyse

Datenanalyse

Datenanalyse

Export

Export

Benutzeroberfliche

Benutzeroberfliche

Benutzeroberfliche

Systemanforderungen

Systemanforderungen

Systemanforderungen

Systemanforderungen

Als Nutzende mochte ich Datensétze nach beliebigen Attri-
buten gruppieren konnen, um aggregierte Finanziibersich-
ten zu erstellen.

Als Nutzende mochte ich eine monatliche projektbezogene
Finanziibersicht erhalten, um Einnahmen, Ausgaben und
Personalkosten nachvollziehen zu konnen.

Als Nutzende mochte ich, dass Plandaten in die Auswer-
tung einbezogen werden, um zukiinftige Entwicklungen
des Projektbudgets beurteilen zu konnen.

Als Nutzende mochte ich Daten mittels regelbasierter Zu-
ordnungen Kategorien wie Einnahmen, Ausgaben oder
Personalkosten zuordnen konnen, ohne SQL-Kenntnisse
zu bendtigen.

Als Nutzende mochte ich erzeugte Ubersichten als CSV-
Datei exportieren konnen, um sie weiterzuverarbeiten oder
weiterzugeben.

Als Nutzende méchte ich Ubersichten auch als PDF oder
XLS exportieren konnen, um formale Verwendungsnach-
weise oder Berichte zu erstellen.

Als Nutzende mochte ich eine klar strukturierte und intui-
tive Benutzeroberfliche vorfinden, damit ich effizient ohne
technische Kenntnisse arbeiten kann.

Als Nutzende mochte ich Regeln, Filter und Zuordnungen
visuell konfigurieren kénnen, um komplexe Verarbeitungs-
schritte ohne Programmierkenntnisse durchfiihren zu kon-
nen.

Als Nutzende mochte ich bei kritischen Aktionen wie dem
Loschen eines Projekts eine Sicherheitsabfrage erhalten,
um unbeabsichtigte Datenverluste zu vermeiden.

Als Nutzende mochte ich, dass das System grofie CSV-
Dateien performant verarbeiten kann, damit der Arbeits-
ablauf nicht unterbrochen wird.

Als Nutzende mochte ich, dass alle Daten ausschlieBlich
lokal gespeichert werden, um die Vertraulichkeit sensibler
Finanz- und Personaldaten zu gewéhrleisten.

Als Auftraggebende mochte ich ein modular aufgebautes
System, das zukiinftige Erweiterungen wie neue Schnitt-
stellen oder Exporttypen ohne grundlegende Anderungen
erlaubt.

Als Nutzende mochte ich klare, verstidndliche und hilfrei-
che Fehlermeldungen erhalten, um Probleme selbststindig
beheben zu konnen.

Literatur

36

A.2 Rest-Api Swagger Ul

projects ~
I /api/vi/projects List Projects \/l
I fapi/vil/projects Create Project v I
I /api/vi/projects/{project_name} GetProject ~ I
I fapi/vi/projects/{project_id} Delete Project Vl
I /api/vi/projects/{project id} Rename Project Vl
I fapi/vi/projects/{project_name}/tables GetProject Tables Vl

Abb. A.1
~

imports

Japi/vi/imports Import Csv From Path

/api/vi/imports/headers GetCsvHeaders
I

ET Japi/vi/imports/{table name}/data Get Table Data

[30BN /api/vi/imports/upload Import Csv

LSUS]S8 /api/vl/imports/{table_name} Delete Import

Abb. A2

planned-entries ~

fapi/vi/planned-entries/{project_name} GetEntries v]
fapi/vi/planned-entries/{project_name} Delete All Entries AV]
fapi/vi/planned-entries/{project name}/schema/{import_type} GetSchema v]
/api/vi/planned-entries/entry/{entry_id} GetEntry v]
fapi/vi/planned-entries/entry/{entry_id} Update Entry AV]
fapi/vi/planned-entries/entry/{entry_id} DeleteEntry A]
fapi/vi/planned-entries Create Entry A]
/api/vi/planned-entries/{project _name}/rows/{import_type} GetEntries As Rows N]
fapi/vi/planned-entries/{project_name}/template/{import_type} GetTemplate v]

g

fapi/vi/planned-entries/{project_name}/template/{import_type} Save Template

Abb. A3

Literatur 37

financial ~
fapi/vi/financial/{project name}/overview GetFinancial Overview v

fapi/vi/financial/{project name}/grouping-columns GetGrouping Columns v

fapi/vi/financial/{project_name}/summary GetMonthly Summary A4

Japi/vi/financial/{project_name}/history GetBudget History N

fapi/vi/financial/{project name}/balance Get CurrentBalance | v

/api/vi/financial/{project_name}/budget-summary GetBudgetSummary N~

3

Japi/vi/financial/{project name}/date-range GetDate Range v

[} [} [} [} [}

s

fapi/fvi/financial/{project name}/columns Get Target Columns v

fapi/vi/financial/{project name}/rebuild Rebuild Financial Overview N

fapi/vi/financial/{project_name}/filters Get Column Filters hd
fapifvi/financial/{project_name}/filters Save Column Filters N
fapi/fvi/financial/{project name}/exclusions GetExclusion Rules v
m fapi/fvi/financial/{project_name}/exclusions Save Exclusion Rules N~
Japi/vi/financial/{project name}/budgets Get Approved Budgets v
fapi/vi/financial/{project name}/budgets Save Approved Budgets v
- /apifvi/financial/{project_name}/mappings/{import_type} GetColumn Mappings N

Abb. A4

I /api/vi/financial/{project name}/mappings/{import_type} Save Column Mappings ~]
I /api/vi/financial/{project_name}/config/export ExportProject Configuration ~]

|

Japi/vi/financial/{project_name}/config/import Import Project Configuration v]

Abb. A.5

Literatur 38

A.3 Datenbankschema

f projects

ame

D created_at
Qid

@@ column_filters

@ planned_entries
@ column_mappings
project_id
roject_id -

_ Prof [import_type [0 condition

) import_type 0 entry.data.is
I field_name b -
. 10 condition D notes 0 amount
0 column_name

[0 firter_value O created_at D is_caten_all
Gid

I3 id id [0 priority
D filter_group
[logic_oper
Did

@@ financial_overview
@@ project_imports 7 project_id

L project_id

0 import_type 0 planned_entry_templates B approved_budgets

[0 source_path I project_id O firma

7 table_name 0 import_type O grund
0 configuration_jso! 1 template_t o D target_column
f 9

0 betrag

D created_at
D source._¢
L id

Abb. A.6

Literatur

39

gnummer

nummer

Abb. A7

	1 Einleitung
	1.1 Motivation
	1.2 Vorgehensweise und Aufbau der Arbeit

	2 Stand der Technik
	2.1 Aktuelle Buchhaltungssysteme an der RWTH
	2.2 Aktuelle Workflows
	2.3 Theoretische Grundlagen

	3 Anforderungsanalyse
	3.1 Rahmenbedingungen und Einschränkungen
	3.2 Zielgruppe und Stakeholder
	3.3 Funktionale Anforderungen
	3.4 Nicht-funktionale Anforderungen

	4 Konzeption des MVP
	4.1 Zielsetzung des MVP
	4.2 Architekturentwurf
	4.3 Datenmodellierung
	4.4 Entwurf der Benutzeroberfläche
	4.5 Technologieauswahl
	4.6 Qualitäts- und Testkonzept
	4.7 Zusammenfassung des Konzepts

	5 Implementierung des MVP
	5.1 Verwendete Software
	5.2 Implementierung der Architektur

	6 Diskussion und Ausblick
	7 Fazit
	Bibliography
	A Anhang
	A.1 Userstories
	A.2 Rest-Api Swagger UI
	A.3 Datenbankschema

