
KONZEPTION EINER DATENMANAGEMENTSOFTWARE ZUR REALISIERUNG VON
BUCHHALTUNGSWORKFLOWS

Aachen, Dezember 2025

Diese Seminararbeit wurde vorgelegt am

Fachbereich 9
Medizintechnik und Technomathematik
Fachhochschule Aachen, Campus Jülich

von

Delvenne Tobias
Matrikelnummer: 3654037

und wurde betreut von:

1. Prüfer 2. Prüferin

Prof. Dr. rer. nat. Alexander Voß Helena Heuser, M.Sc.

Fachbereich 9 Institut für Strukturmechanik und Leichtbau

FH Aachen RWTH Aachen University

Eidesstattliche Erklärung

Hiermit versichere ich, dass ich die Seminararbeit mit dem Thema

Konzeption einer Datenmanagementsoftware zur Realisierung von Buchhaltungsworkflows

selbstständig verfasst und keine anderen als die angegebenen Quellen und Hilfsmittel benutzt habe, alle
Ausführungen, die anderen Schriften wörtlich oder sinngemäß entnommen wurden, kenntlich gemacht
sind und die Arbeit in gleicher oder ähnlicher Fassung noch nicht Bestandteil einer Studien- oder Prü-
fungsleistung war.

Im Rahmen der Erstellung dieser Arbeit wurde das KI-System “KI.connect.nrw“ unterstützend zur sprach-
lichen Überarbeitung sowie zur fachlichen Reflexion und Präzisierung eigenständig entwickelter Argu-
mente genutzt. Eine Übernahme von KI-generierten Texten oder inhaltlichen Lösungsvorschlägen er-
folgte nicht. Sämtliche fachlichen Aussagen, Bewertungen und Schlussfolgerungen wurden eigenständig
erarbeitet und verantwortet. Die Nutzung erfolgte im Einklang mit der Zweckbestimmung des Systems
sowie unter Beachtung datenschutz- und urheberrechtlicher Vorgaben.

Ich verpflichte mich, ein Exemplar der Seminararbeit fünf Jahre aufzubewahren und auf Verlangen dem
Prüfungsamt des Fachbereiches Medizintechnik und Technomathematik auszuhändigen.

Name: Tobias Delvenne

Aachen, den 15. Dezember 2025

Unterschrift des Studierenden

Kurzfassung

Buchhaltung ist ein essenzieller Bestandteil jeder Institution. Ohne eine verlässliche und aussagekräftige
Übersicht über den Finanzhaushalt sind sowohl die Planung von Investitionen als auch die laufende
Verwaltung von Finanzmitteln kaum möglich. Für diese Aufgaben werden häufig etablierte Systeme
eingesetzt, die zwar über einen umfangreichen Funktionsumfang und breiten Support verfügen, jedoch
oftmals Defizite in der Bedienbarkeit aufweisen. An dieser Stelle setzt die vorliegende Arbeit an.

Durch die Automatisierung verschiedener Arbeitsabläufe und die Bereitstellung konfigurierbarer Über-
sichten soll der Verwaltungsaufwand innerhalb der Buchhaltungsabteilung reduziert werden. Zu diesem
Zweck werden zunächst die aktuell verwendeten Technologien analysiert und bestehende Schwachstel-
len herausgearbeitet. Darauf aufbauend wird ein eigenes Softwaresystem entwickelt, beginnend mit ei-
ner strukturierten Anforderungsanalyse. Da die Zielgruppe nicht aus IT-Fachkräften besteht, sondern
aus Mitarbeitenden der Buchhaltung, liegt ein besonderer Fokus auf intuitiver Bedienbarkeit. Zu diesem
Zweck werden verschiedene Designentwürfe (Mockups) entworfen und im Rahmen eines Minimum
Viable Product (MVP) umgesetzt.

Im weiteren Verlauf werden die dabei eingesetzten Technologien sowie die technischen Herausforde-
rungen der Entwicklung erläutert. Abschließend werden mögliche Erweiterungen des Systems diskutiert
und ein Fazit gezogen.

Inhaltsverzeichnis

1 Einleitung 1
1.1 Motivation . 1
1.2 Vorgehensweise und Aufbau der Arbeit . 2

2 Stand der Technik 3
2.1 Aktuelle Buchhaltungssysteme an der RWTH . 3
2.2 Aktuelle Workflows . 4
2.3 Theoretische Grundlagen . 4

3 Anforderungsanalyse 8
3.1 Rahmenbedingungen und Einschränkungen . 8
3.2 Zielgruppe und Stakeholder . 11
3.3 Funktionale Anforderungen . 11
3.4 Nicht-funktionale Anforderungen . 15

4 Konzeption des MVP 17
4.1 Zielsetzung des MVP . 17
4.2 Architekturentwurf . 17
4.3 Datenmodellierung . 19
4.4 Entwurf der Benutzeroberfläche . 19
4.5 Technologieauswahl . 21
4.6 Qualitäts- und Testkonzept . 21
4.7 Zusammenfassung des Konzepts . 22

5 Implementierung des MVP 23
5.1 Verwendete Software . 23
5.2 Implementierung der Architektur . 23

6 Diskussion und Ausblick 29

7 Fazit 31

Bibliography 32

A Anhang 34
A.1 Userstories . 34
A.2 Rest-Api Swagger UI . 36
A.3 Datenbankschema . 38

Abkürzungsverzeichnis

ACID Atomicity, Consisteny, Isolation, Durability.

API Application Programming Interface.

CRUD Create, Read, Update, Delete.

CSV Comma-Separated Values.

FI Finanzbuchhaltung.

GUI Graphical User Interface.

HCM Human Capital Management.

HTTP Hypertext Transfer Protocol.

MaCoCo Management Cockpit für Controlling.

MVP Minimum Viable Product.

OAS OpenAPI Specification.

OData Open Data Protocol.

ORM Object-Relational Mapping.

REST Representational State Transfer.

RWTH Rheinisch-Westfälische Technische Hochschule Aachen.

URI Uniform Resource Identifier.

US User Stories.

1 Einleitung

Im Folgenden wird die Problemstellung, welche dieser Arbeit zugrunde liegt erklärt. Außerdem wird das
Ziel der Arbeit erläutert und bereits ein kleiner Überblick über die zu erwartenden Funktionen gegeben.
Des Weiteren wird der Aufbau und die Vorgehensweise in dieser Arbeit beschrieben.

1.1 Motivation

Die von der Rheinisch-Westfälische Technische Hochschule Aachen (RWTH) eingesetzte Buchhaltungs-
software SAP stellt über das Webinterface FIORI verschiedene Subsysteme bereit, unter anderem zur Er-
fassung von Personalbelastungen sowie zur Verwaltung eingehender und ausgehender Zahlungen. Durch
die Aufteilung in mehrere voneinander weitgehend isolierte Subsysteme und der fehlenden Kommuni-
kation zwischen diesen ist es der Buchhaltungsabteilung jedoch nicht ohne erheblichen manuellen Auf-
wand möglich, eine konsolidierte und strukturierte Übersicht über die Finanzsituation einzelner Projekte
zu erhalten. Dass die verwendete Software zusätzlich durch nicht funktionierende Filteroptionen und un-
übersichtliche Menüs zu weiterem Mehraufwand führt, ist ein wesentlicher Grund für die Entwicklung
eines maßgeschneiderten Systems, das diese Datenverarbeitungsfunktionen einfacher und zugänglicher
bereitstellen soll.

Hinzu kommt, dass die in der aktuell eingesetzten Software verfügbaren Datensätze häufig nur zeit-
versetzt aktualisiert werden. Dadurch kann es vorkommen, dass die Daten mehrere Monate hinter den
tatsächlich bereits erfolgten Ausgaben oder Einnahmen liegen, was eine aktuelle Budgetübersicht un-
möglich macht. Eine belastbare Finanzplanung ist unter diesen Bedingungen kaum möglich. Viele pro-
jektbezogene Ausgaben insbesondere Personalkosten lassen sich jedoch über Monate oder sogar Jahre
hinweg zuverlässig prognostizieren und müssen mit den bewilligten Finanzierungsmitteln abgeglichen
werden. Die vorhandene Software unterstützt diesen Bedarf nicht, sodass eine ergänzende Eigenentwick-
lung notwendig erscheint.

Ziel dieser Arbeit ist die Konzeption und prototypische Umsetzung einer Software, die projektbezo-
gene Finanzübersichten und Verwendungsnachweise aus den vorhandenen SAP-Exporten erzeugt und
ergänzt. Neben der Verarbeitung der Comma-Separated Values (CSV)-Daten sollen auch manuell hin-
zugefügte Informationen, insbesondere künftige oder prognostizierte Ausgaben, berücksichtigt werden.
Die entwickelte Lösung soll modular, erweiterbar und langfristig wartbar sein, um zukünftige organi-
satorische oder technische Änderungen ohne grundlegende Anpassungen zu ermöglichen. Des Weiteren
soll diese Arbeit eine Entscheidungsgrundlage schaffen, anhand derer bewertet werden kann, ob eine
Weiterentwicklung organisatorisch sinnvoll ist.

Die entwickelte Software soll SAP nicht ersetzen, sondern gezielt ergänzen, indem sie bestehende Schwä-
chen adressiert und Arbeitsprozesse erleichtert. Durch die automatisierte Aufbereitung und Zusammen-
führung der Daten wird der zeitliche Aufwand für manuelle Nachbearbeitung reduziert und die Fehler-
anfälligkeit verringert, was zu einer zuverlässigeren und effizienteren Finanzübersicht führt.

1 Einleitung 2

1.2 Vorgehensweise und Aufbau der Arbeit

Die vorliegende Arbeit ist so strukturiert, dass sie zunächst die notwendigen fachlichen und technischen
Grundlagen vermittelt und darauf aufbauend die konzeptionelle Entwicklung des MVP nachvollziehbar
darstellt.

Zu Beginn werden in Kapitel 2 die theoretischen Grundlagen erläutert, die für das Verständnis der späte-
ren Architekturentscheidungen erforderlich sind. Dazu zählen insbesondere grundlegende Konzepte der
Softwarearchitektur, der Representational State Transfer (REST)-Kommunikation sowie der relationalen
Datenmodellierung.

Darauf aufbauend erfolgt in Kapitel 3 eine systematische Anforderungsanalyse, in der sowohl funktio-
nale als auch nicht-funktionale Anforderungen erhoben und durch User Stories ergänzt werden.

Kapitel 4 beschreibt anschließend die Konzeption des MVP, einschließlich des Architekturentwurfs, der
Datenmodellierung, der Benutzeroberfläche sowie der eingesetzten Technologien.

Das darauf folgende Kapitel 5 widmet sich der prototypischen Umsetzung ausgewählter Kernfunktionen
und zeigt exemplarisch, wie die konzeptionellen Elemente in Software überführt wurden.

Kapitel 6 diskutiert die erzielten Ergebnisse im Hinblick auf die definierten Anforderungen und bewertet
die Eignung des MVP für den Einsatz im buchhalterischen Arbeitskontext.

Abschließend fasst Kapitel 7 die wesentlichen Erkenntnisse kurz zusammen.

2 Stand der Technik

In nachfolgendem Kapitel wird der aktuelle Stand der Technik an der RWTH erklärt. Dazu werden das
eingesetzte Buchhaltungssystem von SAP und dessen Module sowie die eigens entwickelte Software
Management Cockpit für Controlling (MaCoCo) erläutert. Außerdem werden die theoretischen Grund-
lagen beschrieben.

2.1 Aktuelle Buchhaltungssysteme an der RWTH

Die derzeit eingesetzte Technik verfügt zwar theoretisch über die meisten benötigten Funktionalitäten, ist
in der praktischen Nutzung jedoch häufig nur schwer bedienbar oder arbeitet teilweise nicht zuverlässig.
So ist es beispielsweise in der SAP-Finanzübersicht nicht möglich, Buchungen nach Jahren zu gruppie-
ren, da entsprechende Abfragen über das Webinterface nach mehreren Minuten ohne Ergebnis abbrechen.
Ebenso lassen sich die Daten aus verschiedenen Subsystemen nicht über gemeinsame Schlüsselattribu-
te verknüpfen, sodass etwa eine Zuordnung von Mitarbeitenden zu ihren jeweiligen Entgeltstufen nicht
ohne zusätzliche manuelle Schritte möglich ist.

Die Eigenentwicklung MaCoCo der RWTH stellt zwar erweiterte Möglichkeiten zur Datenanalyse bereit,
ist jedoch kostenpflichtig und deckt nicht alle für dieses Projekt relevanten Funktionen ab. Durch die
Bestrebung der RWTH, große Teile der finanzbuchhalterischen Prozesse über MaCoCo abzubilden, hat
sich zudem im Laufe der Zeit für unsere Buchhaltungsabteilung eine zunehmende Unübersichtlichkeit
ergeben.

Insbesondere für den hier betrachteten Anwendungsfall der Erzeugung von Verwendungsnachweisen
bietet MaCoCo weder eine ausreichend klare Aufbereitung der projektbezogenen Finanzdaten noch eine
einfache Möglichkeit zur manuellen Eingabe und Verwaltung von Plandaten. Aufgrund dieser funktio-
nalen Einschränkungen stellt MaCoCo keine geeignete Alternative zur entwickelten Lösung dar.

Im Rahmen des Projekts SARA wurde im Jahr 2014 RWTH weit das Softwaresystem SAP für betriebs-
wirtschaftliche Abläufe eingeführt. Dabei wurden unter anderem die Bereiche Finanzbuchhaltung, An-
lagenbuchhaltung, Drittmittelverwaltung, Haushalt und Budgetierung auf SAP umgestellt. Im Jahr 2016
folgte die Integration des Personalwesens, einschließlich Reisekostenabrechnung, sowie der Logistik mit
den Themengebieten Beschaffung und Facility Management.[1]

SAP ist modular aufgebaut. An der RWTH sind insbesondere folgende Module im Einsatz:

• FI: Finanzbuchhaltung

• FI-AA: Anlagenbuchhaltung

• CO: Controlling

• PS: Projektsystem

2 Stand der Technik 4

• PSM: Public Sector Management

• BW: Business Warehouse

• HCM: Personalwesen

• OM: Organisationsmanagement

• MM: Materialwirtschaft

• FI-TV: Reisekostenmanagement

[1]

Das Projekt MaCoCo wurde ebenfalls im Jahr 2016 initiiert, nachdem sich verschiedene Einschränkun-
gen der neu eingeführten SAP-Landschaft gezeigt hatten. In einer Kooperation zwischen dem Lehrstuhl
für Controlling und dem Lehrstuhl für Software Engineering wurde die Software mit dem Ziel entwi-
ckelt, das Controlling an Lehr- und Forschungseinrichtungen der RWTH zu professionalisieren.[2]

2.2 Aktuelle Workflows

Derzeit werden die benötigten Daten manuell aus verschiedenen SAP-Subsystemen zusammengesucht,
einzeln exportiert und anschließend in mehrere Excel-Tabellen übertragen. Die Ausgaben werden ma-
nuell mit den bewilligten Drittmitteln verrechnet um einen Überblick über die noch verfügbaren Gelder
zu erhalten. Dieser Prozess ist zeitaufwendig und mit einem erheblichen verwaltungstechnischen Auf-
wand verbunden. Zudem ist die manuelle Zusammenführung der Daten anfällig für Übertragungs- und
Eingabefehler.

Durch eine digitale Abbildung und Automatisierung dieses Workflows können menschliche Fehler syste-
matisch vermieden und der Aufwand für wiederkehrende Tätigkeiten deutlich reduziert werden. Gleich-
zeitig wird eine konsistente, reproduzierbare und nachvollziehbare Datenbasis geschaffen, die als Grund-
lage für weitere Analysen und Auswertungen dient.

2.3 Theoretische Grundlagen

In diesem Abschnitt werden die grundlegenden technischen Konzepte erläutert, die für das Verständnis
der später beschriebenen Architekturentscheidungen und Implementierungsdetails erforderlich sind.

2.3.1 Client-Server-Architektur

Die Client-Server-Architektur beschreibt ein verteiltes System, in dem mindestens ein zentraler Server
spezifische Dienste bereitstellt, während die Clients diese Dienste anfragen. Ein Client ist somit ein Pro-
zess, der eine bestimmte Funktionalität konsumiert, während der Server diese bereitstellt. Eine strikte
Trennung ist in der Praxis jedoch nicht immer gegeben, da ein Server wiederum als Client gegenüber an-
deren Servern auftreten kann, etwa wenn ein Anwendung Anfragen an einen separaten Datenbankserver
stellt.[3]

2 Stand der Technik 5

Für die Kommunikation zwischen Client und Server wird in webbasierten Architekturen üblicherweise
das Hypertext Transfer Protocol (HTTP) verwendet. HTTP ist ein zustandsloses, textbasiertes Übertra-
gungsprotokoll, bei dem der Client eine Request sendet und der Server darauf mit einer Response ant-
wortet.[4] Zu den zentralen HTTP-Methoden, die auch in dieser Arbeit eingesetzt werden, gehören:

• GET: Abrufen von Ressourcen oder Daten,

• POST: Erstellen neuer Ressourcen bzw. übermitteln von Daten,

• PUT: Ersetzen einer bestehenden Ressource,

• PATCH: Teilweises Aktualisieren einer Ressource,

• DELETE: Löschen einer Ressource.

2.3.2 REST-Architekturstil

Der REST-Architekturstil wurde von Roy Thomas Fielding im Rahmen seiner Dissertation definiert [5].
REST beschreibt keine spezifische Technologie, sondern architektonische Prinzipien für verteilte Sys-
teme, insbesondere für webbasierten Datenaustausch. Die grundlegende Idee besteht darin, Ressourcen
über eindeutige Uniform Resource Identifier (URI)s zu adressieren und sämtliche Interaktionen über ein
einheitliches Interface, typischerweise HTTP, abzuwickeln.

REST basiert auf mehreren konzeptionellen Einschränkungen, die die Skalierbarkeit und Austauschbar-
keit von Systemkomponenten fördern. Dazu gehören insbesondere:

• Client-Server-Entkopplung: Die Benutzeroberfläche ist strikt von der Datenverarbeitung ge-
trennt.

• Zustandslosigkeit: Jeder Request enthält alle Informationen, die der Server benötigt; Sessions auf
Serverseite sind nicht notwendig.

• Einheitliche Schnittstellen (Uniform Interface): Ressourcen werden über standardisierte HTTP-
Methoden manipuliert.

• Cachefähigkeit: Ressourcen sollen Client- oder serverseitig gecacht werden können.

• Mehrschichtige Systemarchitektur: Aufrufe und Antworten können beliebig viele Schichten
durchlaufen. Client und Serveranwendung müssen nicht direkt miteinander verbunden sein.

[6]

Ein praktischer Bestandteil dieses Uniform-Interface-Prinzips ist die semantische Zuordnung der grund-
legenden Create, Read, Update, Delete (CRUD)-Operationen zu den entsprechenden HTTP-Methoden.
Diese Zuordnung stellt sicher, dass REST-basierte Web-Application Programming Interface (API)s kon-
sistent und vorhersehbar sind.[7] Die typischen Abbildungen lauten:

• Create� POST: Erstellen neuer Ressourcen unter einer vom Server verwalteten URI.

• Read� GET: Abrufen bestehender Ressourcen ohne Änderung ihres Zustands.

• Update� PUT/PATCH: PUT ersetzt eine Ressource vollständig, während PATCH Teiländerun-
gen vornimmt.

2 Stand der Technik 6

• Delete� DELETE: Entfernen einer Ressource.

Diese semantische Kopplung zwischen CRUD-Operationen und HTTP-Methoden bildet die Grundlage
für die in dieser Arbeit implementierte REST-API, da sämtliche Operationen auf Projekten, Importvor-
gängen und Finanzübersichten anhand dieser Prinzipien umgesetzt werden.

Durch diese Eigenschaften ermöglicht REST eine lose Kopplung zwischen Client und Server sowie eine
hohe Flexibilität bei der Weiterentwicklung einzelner Systemteile.[5] Dies ist insbesondere für das in
dieser Arbeit vorgestellte System relevant, da die Desktop-Graphical User Interface (GUI) unabhängig
vom Backend betrieben werden kann und sich alternative Frontends leicht integrieren lassen.

2.3.3 API-Dokumentation mit OpenAPI und SwaggerUI

Die OpenAPI Specification (OAS) ist ein standardisiertes Format zur Beschreibung von REST-basierten
Web-APIs. Es ermöglicht die formale Definition aller Endpunkte, Datenmodelle, Parameter und Ant-
wortstrukturen in einer maschinen- und menschenlesbaren Form. Eine korrekt definierte OAS bildet die
Grundlage für automatisierte Dokumentation und Testwerkzeuge.[8]

SwaggerUI ist ein Werkzeugset, das auf der OAS aufbaut und eine interaktive Weboberfläche zur Verfü-
gung stellt, in der API-Endpunkte ausführlich dokumentiert und direkt getestet werden können. Frame-
works wie FastAPI erzeugen diese Dokumentation automatisch, indem sie Typhinweise und Datenmo-
delle aus dem Quellcode ableiten.

Die Vorteile einer formalen API-Spezifikation umfassen unter anderem:

• Automatisierte und immer aktuelle Dokumentation,

• Interaktive Testmöglichkeiten ohne separate Tools,

• Verbesserte Wartbarkeit und Konsistenz der API.

Für dieses Projekt ist die automatische SwaggerUI-Dokumentation besonders relevant, da sie die interne
Entwicklung unterstützt und die Erweiterbarkeit des Systems erleichtert.

2.3.4 CSV als Datenformat

Das CSV-Format ist ein textbasiertes Format, das tabellarische Daten in Zeilen- und Spaltenstruktur spei-
chert. Es gehört zu den am weitesten verbreiteten Formaten für Datenexporte aus Informationssystemen,
da es einfach, universell lesbar und ohne proprietäre Software nutzbar ist.[9]

CSV-Dateien besitzen allerdings keine fest definierte Spezifikation[9]. Typische Herausforderungen, die
auch in dieser Arbeit auftreten, umfassen:

• Uneinheitliche Trennzeichen (z. B. “;” vs. “,”),

• fehlende oder mehrzeilige Header,

• uneinheitliche Datums- und Zahlenformate,

• Darstellung numerischer Werte als Text,

2 Stand der Technik 7

• keine eingebaute Unterstützung für Datentypen.

Das MVP implementiert daher Mechanismen zur automatischen Erkennung von Datentypen, zur Norma-
lisierung von Datums- und Betragsfeldern sowie zur Bereinigung problematischer Headerstrukturen.

2.3.5 SQLite: Grundlagen eingebetteter Datenbanken

SQLite ist ein relationales Datenbankmanagementsystem, das sich vollständig als Bibliothek in eine An-
wendung einbetten lässt. Es benötigt keinen separaten Serverprozess und speichert alle Daten in einer
einzigen lokalen Datei [10]. Durch die Unterstützung des vollständigen SQL-Standards (inkl. Atomicity,
Consisteny, Isolation, Durability (ACID)-Konformität) eignet es sich besonders für Desktopanwendun-
gen, lokale Datenanalysen und prototypische Entwicklungen.

Zu den wesentlichen Eigenschaften von SQLite zählen:

• Serverlosigkeit: keine Installation oder Wartung eines separaten Datenbankservers,

• ACID-garantierte Transaktionen: sichere Schreib- und Leseoperationen,

• hohe Performance bei lokalen Datenzugriffen,

• breite Unterstützung in Programmiersprachen und Frameworks.

Für das MVP dient SQLite als persistente Grundlage für Projekte, Importtabellen, Plandaten und Zwi-
schenauswertungen. Die Wahl fällt insbesondere aufgrund der einfachen Integration und der guten Eig-
nung für Einzelplatzsysteme.

3 Anforderungsanalyse

Die Entwicklung eines Systems zur automatisierten Aufbereitung und Analyse projektbezogener Fi-
nanzdaten setzt eine präzise Definition der fachlichen, organisatorischen und technischen Anforderungen
voraus. Dieses Kapitel beschreibt die Rahmenbedingungen, die Zielgruppe sowie die funktionalen und
nicht-funktionalen Anforderungen und verweist dabei auf die in Abschnitt A.1 formulierten User Stories
(US).

3.1 Rahmenbedingungen und Einschränkungen

Die Konzeption und Entwicklung des Systems unterliegt mehreren organisatorischen, technischen und
regulatorischen Rahmenbedingungen. Wie bereits erwähnt, ist der Zugriff auf die Open Data Protocol
(OData)-Services von SAP aufgrund des notwendigen Genehmigungsprozesses durch mehrere Abteilun-
gen der RWTH nicht im zeitlichen Rahmen dieser Seminararbeit realisierbar. Ebenso ist es aus rechtli-
chen Gründen nicht gestattet, Daten aus dem Webinterface mittels Reverse Engineering auszulesen.[11]
Daher müssen sämtliche Daten aus den bereitgestellten CSV-Exporten sowie aus manuellen Eingaben
gewonnen werden (vgl. US-09).

3.1.1 Verfügbare Datenquellen

Für diese Seminararbeit stehen zwei wesentliche Datenquellen zur Verfügung: die CSV-Exporte aus der
Personalbelastungsanzeige, im Folgenden als Human Capital Management (HCM) bezeichnet, und die
CSV-Exporte der Finanzstellenbuchungen, im Folgenden als Finanzbuchhaltung (FI) bezeichnet.

Über die HCM-Daten lassen sich Mitarbeitende ihren jeweiligen Entgeltstufen sowie einzelnen Projekten
zuordnen. Darüber hinaus enthalten die CSV-Exporte Informationen zu gezahlten Gehältern und Zuwen-
dungen. Letztere umfassen beispielsweise jährlich gewährte Sonderzahlungen wie das Weihnachtsgeld
in Form eines 13. Monatsgehalts.

Die FI-Daten umfassen unter anderem eingehende Drittmittelzahlungen, bezahlte Rechnungen und ver-
gebene Aufträge. Somit bilden sie die zentrale Grundlage für die Darstellung projektbezogener Ein- und
Ausgaben.

Im Hinblick auf die Benutzerfreundlichkeit ist anzumerken, dass SAP OData-Schnittstellen anbietet,
die eine regelmäßige und automatisierte Aktualisierung dieser Daten ermöglichen würden.[12] Da die
Freischaltung dieser Schnittstellen jedoch durch mehrere Abteilungen der RWTH genehmigt werden
muss, ist die Umsetzung dieser Funktionalität im Rahmen dieser Seminararbeit nicht realisierbar.

3 Anforderungsanalyse 9

Charakteristika der verfügbaren Daten

Die aus den SAP-Systemen exportierten Daten weisen mehrere Besonderheiten auf, die bei der Ver-
arbeitung und Analyse berücksichtigt werden müssen. Zum einen werden die Exporte ausschließlich
als CSV-Dateien bereitgestellt, ohne dass eine garantierte einheitliche Struktur oder ein standardisiertes
Schema vorliegt. Zum anderen enthalten die Daten sowohl historisch gewachsene als auch domänenspe-
zifische Bezeichnungen, die eine direkte maschinelle Verarbeitung ohne zusätzliche Übersetzungs- und
Bereinigungsprozesse erschweren.

Ein weiterer Aspekt ist die teilweise zeitverzögerte Aktualisierung der Datensätze, insbesondere in den
Bereichen Personalbelastung und Drittmittelfinanzierung. Diese Verzögerungen können mehrere Wo-
chen bis Monate betragen, wodurch die Exporte nicht immer den aktuellen Stand der Finanzsituation
abbilden. Zusätzlich werden die Werte nicht relational verknüpft exportiert, sodass keine konsistenten
Primär- oder Fremdschlüsselbeziehungen zwischen den verschiedenen Systemen (FI, HCM) vorhanden
sind. Dies führt dazu, dass Zuordnungen zwischen Mitarbeitenden, Projekten und Kostenarten häufig nur
über eine manuelle Betrachtung möglich sind.

CSV-Struktur

Die Struktur der exportierten CSV-Dateien variiert stark zwischen den einzelnen SAP-Subsystemen und
sogar zwischen verschiedenen Exportvorgängen desselben Systems. Diese Inhomogenität erschwert ei-
ne automatisierte Weiterverarbeitung erheblich. Die wichtigsten strukturellen Herausforderungen umfas-
sen:

• Uneinheitliche Headerzeilen: Manche Exporte enthalten keine Spaltenbezeichnungen, andere
hingegen verwenden mehrzeilige Header oder mehrfach vorkommende Bezeichner. Dadurch ist
eine eindeutige Zuordnung der Spalten nicht ohne manuelle Nachbearbeitung möglich.

• Uneinheitliche Datumsformate: Datumsangaben liegen je nach Export entweder im Format MM/YYYY
oder TT.MM.YYYY vor. Ein konsistentes Parsing erfordert daher eine Normalisierung der Formate.

• Numerische Werte als Text: Beträge werden standardmäßig als Text exportiert und enthalten
Tausendertrennzeichen (z. B. 1.234,56). Dies verhindert eine numerische Sortierung und erfor-
dert eine explizite Umwandlung in numerische Datentypen.

• Domänenspezifische Kodierungen: Viele Felder enthalten SAP-interne Schlüssel, Kürzel oder
Domänenbeschreibungen, die ohne Übersetzungstabellen nicht interpretierbar sind. Ein Beispiel
dafür ist der Belegart-Schlüssel D3 für Drittmittel.

Das folgende Beispiel zeigt exemplarisch eine CSV-Struktur, die ähnliche Probleme wie die SAP-Exporte
aufweist. Es illustriert mehrere der beschriebenen Probleme gleichzeitig, insbesondere mehrzeilige bzw.
unvollständige Header bzw. Header in mehreren Zeilen, leere Spalten, redundante Bezeichnungen sowie
uneinheitliche Formatierungen numerischer Werte und Daten:

3 Anforderungsanalyse 10

1 ;;;;;;;;;
2 ;;;;;;;;;
3 ;;Geburt;Wohnort;Euro;Euro;;;;
4 Name;Alter;Stadt;Stadt;Gehalt;Sozialabgaben;Netto;Geburtsdatum;Ausbildungsbeginn;
5 "Tom";"25";"Berlin";"Berlin";"3000";"500";"2.500,00EUR";"2000.1.21";"2023/09";
6 "Anna";"28";"";"";"3200";"600";"2.600,00EUR";"1997.09.21";"2020/09";
7 "Max";"20";"Hamburg";"Hamburg";#;#;#;"2005.07.13";"2025/09";

Listing 3.1: CSV-Beispiel

Diese Herausforderungen machen eine systematische Datenbereinigung und Normalisierung zwingend
erforderlich, bevor eine Analyse oder Zusammenführung der unterschiedlichen Datenquellen möglich
ist.

3.1.2 Technische Rahmenvorgaben

Zusätzlich zu den organisatorischen und datenbezogenen Einschränkungen bestehen mehrere technische
Vorgaben, die die Architektur und Umsetzung des Systems wesentlich beeinflussen:

• Verwendung von Python: Die Implementierung des Systems hat zwingend in der Programmier-
sprache Python zu erfolgen. Das ist eine Vorgabe der Auftraggebenden und ist mit der Wartbarkeit
zu begründen.

• Lokale Desktop-Anwendung unter Windows: Die Anwendung soll als lokale Desktop-Applikation
auf Windows-Arbeitsplätzen der Buchhaltung betrieben werden. Daraus ergibt sich, dass sämtli-
che Datenverarbeitung und Speicherung lokal erfolgen muss. Diese Einschränkung gilt nur für das
MVP.

• Serverbasierte Multi-User-Funktionalität Um die Software zukunftssicher und skalierbar zu
machen, ist es wichtig, die Software so zu gestalten, dass eine spätere Umstellung auf eine Multiuser-
Architektur mit einem Client-Server-Modell möglichst einfach zu gewährleisten ist.(vgl. US-22)

• CSV-basierte Datenimporte: Als Datenbasis stehen ausschließlich die manuell erzeugten CSV-
Exporte aus SAP Fiori zur Verfügung. Diese Dateiformate sind fest vorgegeben und bilden die
einzige maschinell verarbeitbare Eingabequelle. Die Architektur des Systems muss daher auf den
Import, die Bereinigung und Normalisierung solcher CSV-Dateien ausgerichtet sein.

• OData-Importe Eine spätere Anbindung an die von SAP bereitgestellten OData-Services soll im
Rahmen der Planung berücksichtigt jedoch nicht implementiert werden.

3 Anforderungsanalyse 11

Tabelle 3.1: Übersicht der Rahmenbedingungen und Einschränkungen

ID Kurzbeschreibung

RB-01 Zugriff auf SAP-OData-Services ist aufgrund des Genehmigungsprozesses im Rahmen der
Seminararbeit nicht realisierbar. Kein direkter Online-Zugriff.

RB-02 Auslesen von Daten aus dem SAP-Webinterface mittels Reverse Engineering ist rechtlich
unzulässig.

RB-03 Sämtliche Daten müssen aus bereitgestellten CSV-Exporten und manuellen Eingaben ge-
wonnen werden.

RB-04 Verwendete Datenquellen sind ausschließlich die HCM- und FI-CSV-Exporte mit projekt-
bezogenen Personal- und Finanzinformationen.

RB-05 Die CSV-Exporte besitzen keine einheitliche Struktur und sind teilweise zeitverzögert; eine
Bereinigung und Normalisierung ist zwingend erforderlich.

RB-06 Die Implementierung hat zwingend in Python zu erfolgen.

RB-07 Das MVP ist als lokale Desktop-Anwendung unter Windows mit vollständig lokaler Verar-
beitung und Speicherung auszuführen.

RB-08 Die Architektur soll eine spätere Umstellung auf eine Multi-User-Client-Server- Architektur
ermöglichen.

RB-09 Eine spätere Anbindung an SAP-OData-Services ist konzeptionell zu berücksichtigen, wird
im MVP aber nicht implementiert.

3.2 Zielgruppe und Stakeholder

Die primäre Zielgruppe des Systems sind die Mitarbeitenden der Buchhaltung, die regelmäßig Finanz-
und Personaldaten aus SAP exportieren und weiterverarbeiten müssen. Da diese Nutzenden üblicher-
weise nicht über tiefgehende technische Kenntnisse verfügen, ist eine klar strukturierte und intuitive
Benutzeroberfläche entscheidend für die erfolgreiche Nutzung des Systems.(vgl. US-17)
Auch visuelle Werkzeuge zur Definition von Filter- oder Zuordnungsregeln müssen ohne Programmier-
kenntnisse nutzbar sein(vgl. US-18). Neben den operativen Nutzenden sind die Auftraggebenden wich-
tige Stakeholder, da sie besonderen Wert auf Erweiterbarkeit und langfristige Wartbarkeit legen (vgl.
US-22). Die IT-Abteilung schließlich stellt Anforderungen hinsichtlich Nachvollziehbarkeit und Feh-
lerdiagnose, welche in den User Stories zur Klarheit von Fehlermeldungen wiederzufinden sind (vgl.
US-23).

3.3 Funktionale Anforderungen

Die funktionalen Anforderungen beschreiben das Verhalten des Systems sowie die Funktionen, die das
System bereitstellen muss. Hier werden alle Anforderungen an die zu entwickelnde Software erhoben.
Später werden die im Rahmen des MVP zu berücksichtigen Funktionen abgegrenzt.

3 Anforderungsanalyse 12

Tabelle 3.2: Zielgruppen und zentrale Anforderungen

Stakeholder Zentrale Anforderungen User Stories

Mitarbeitende der Buchhaltung Intuitive, klar strukturierte Benutzerober-
fläche; möglichst wenige Interaktionen pro
Arbeitsschritt.

US-17, US-18, US-19

Mitarbeitende der Buchhaltung Visuelle Konfiguration von Filtern, Regeln
und Zuordnungen ohne SQL- oder Pro-
grammierkenntnisse.

US-14, US-18

Auftraggebende Modularer, erweiterbarer Aufbau des Sys-
tems, um zukünftige Schnittstellen, Expor-
te und Architekturänderungen ohne grund-
legende Umbauten zu ermöglichen.

US-22

IT-Abteilung Nachvollziehbarkeit von Fehlern und Sys-
temzuständen durch klare, verständliche
Fehlermeldungen und Logging.

US-23

3.3.1 Projektverwaltung

Um projektbezogene Finanzübersichten erstellen zu können, muss das System die Anlage und Verwal-
tung beliebiger Projekte ermöglichen (vgl. US-01). Für jedes Projekt sollen die bewilligten Mittel pro
Jahr hinterlegt und den entsprechenden Kategorien wie z.B. Personalkosten der Finanzübersicht zuge-
ordnet werden können (vgl. US-02). Darüber hinaus ist die Möglichkeit erforderlich, Projekte vollständig
zu entfernen, wobei sicherheitsrelevante Bestätigungsdialoge den Löschvorgang absichern müssen (vgl.
US-03 und US-19).

Für jedes Projekt müssen die aus SAP stammenden CSV-Exporte aus den Modulen HCM und FI einge-
lesen und verarbeitet werden können (vgl. US-04). Dazu gehört insbesondere, das System uneinheitliche
oder fehlerhafte Headerstrukturen erkennt, bereinigt und automatisiert geeignete Korrekturvorschläge
generiert (vgl. US-05). Die Nutzenden sollen zusätzlich die Möglichkeit haben, Spaltenbezeichnungen
manuell anzupassen (vgl. US-06) und jedem Feld einen passenden Datentyp zuzuweisen (vgl. US-07).
Die so definierten Zuordnungen und Datentypen müssen als wiederverwendbare Masken gespeichert
werden können, um zukünftige Importe von gleich strukturierten Daten effizient durchführen zu können
(vgl. US-08).

Neben den über CSV importierten Daten sollen langfristig auch die SAP-OData-Schnittstellen als al-
ternative Importquelle genutzt werden können, um den manuellen Aufwand zu reduzieren. Ergänzend
müssen Nutzende weitere Daten manuell erfassen können, insbesondere geplante oder zukünftige Fi-
nanzvorgänge wie prognostizierte Personalkosten oder noch nicht gebuchte Rechnungen. Diese soge-
nannten Plandaten sollen später automatisch durch die entsprechenden SAP-Einträge ersetzt werden,
sobald diese vorliegen (vgl. US-09 und US-13).

3 Anforderungsanalyse 13

Tabelle 3.3: Funktionale Anforderungen Projektverwaltung

User Story Kurzbeschreibung

US-01 Anlegen neuer Projekte zur getrennten Verwaltung projektbezogener Finanzdaten.

US-02 Speichern projektspezifischer Einstellungen und Spaltenkonfigurationen, um wieder-
kehrende Importe zu vereinfachen.

US-03 Löschen bestehender Projekte mit Sicherheitsabfrage zur Vermeidung unbeabsichtigter
Löschvorgänge.

US-04 Import von CSV-Dateien aus den Modulen HCM und FI.

US-05 Automatische Erkennung und Korrekturvorschläge für fehlerhafte oder uneinheitliche
Spaltenbezeichnungen.

US-06 Manuelle Anpassung von Spaltennamen zur Verbesserung der Verständlichkeit.

US-07 Festlegung passender Datentypen pro Spalte (Text, Datum, Zahl) für korrekte Verarbei-
tung.

US-08 Speichern von Spalten- und Typzuordnungen als wiederverwendbare Masken für kon-
sistente Importe.

US-09 Manuelles Ergänzen zusätzlicher Datensätze, insbesondere zukünftiger Ausgaben und
Plandaten, die in SAP noch nicht erfasst sind.

US-13 Automatische Berücksichtigung von Plandaten in Auswertungen und späteres Ersetzen
durch tatsächliche SAP-Buchungen.

3.3.2 Datenverarbeitung, Analyse und Export

Nach dem Import müssen die Daten weiter analysiert werden können. Dazu gehört die Möglichkeit,
Datensätze nach frei definierbaren Kriterien zu filtern und zu gruppieren, um nur die jeweils relevanten
Informationen anzuzeigen (vgl. US-10 und US-11). Auf dieser Grundlage sollen monatliche projektbe-
zogene Übersichten generiert werden, die Einnahmen, Ausgaben, Personalkosten und die daraus resul-
tierenden Budgetentwicklungen darstellen (vgl. US-12). Hierbei müssen sowohl die realen SAP-Daten
als auch die manuell erfassten Plandaten berücksichtigt werden, um einen vollständigen Überblick über
die finanzielle Situation zu vermitteln (vgl. US-13).

Für die Zuordnung der Daten zu den Zielspalten der Finanzübersicht soll ein regelbasiertes System be-
reitstehen, das ohne technische oder SQL-spezifische Kenntnisse nutzbar ist (vgl. US-14). Alle berech-
neten Übersichten müssen exportierbar sein. Der Export ist in erster Linie im CSV-Format vorzusehen,
darüber hinaus sollen jedoch auch druckbare Ausgabeformen wie PDF oder XLS unterstützt werden (vgl.
US-15 und US-16). Dies ermöglicht die Erstellung formaler Verwendungsnachweise oder die Weitergabe
von Finanzübersichten an externe Stellen.

3 Anforderungsanalyse 14

Tabelle 3.4: Funktionale Anforderungen Datenverarbeitung, Analyse und Export

User Story Kurzbeschreibung

US-10 Filtern von Daten nach frei definierbaren Kriterien.

US-11 Gruppieren von Datensätzen nach beliebigen Attributen zur Erstellung aggregierter
Übersichten.

US-12 Monatliche projektbezogene Finanzübersicht mit Einnahmen, Ausgaben und Personal-
kosten.

US-13 Einbeziehung von Plandaten in die Auswertung zur Beurteilung zukünftiger Budgetent-
wicklungen.

US-14 Regelbasierte Zuordnung von Daten zu Kategorien (z. B. Einnahmen, Ausgaben, Per-
sonalkosten) ohne SQL-Kenntnisse.

US-15 Export der erzeugten Übersichten als CSV-Datei.

US-16 Export der Übersichten als PDF oder XLS zur Erstellung formaler Nachweise und Be-
richte.

3.3.3 Benutzeroberfläche

Das System benötigt eine grafische Benutzeroberfläche, die ohne technische Vorkenntnisse bedienbar ist
und alle wichtigen Arbeitsschritte übersichtlich abbildet(vgl. US-17). Es muss Dialoge zur Erstellung
von Projekten und zum Import von CSV-Dateien geben, idealerweise auch per Drag-and-Drop. Um die
Headerinformationen der CSV-Daten zu bearbeiten, soll eine grafische Oberfläche vorhanden sein, in der
die Zuordnung von Originalspaltennamen zu einem neuen Spaltennamen möglich ist. Die Felder für den
neuen Spaltennamen sollen bereits mit den automatisch angepassten Headerfeldern befüllt sein. Durch
Klicken in dieses Feld sollen die Namen aber noch bearbeitbar sein (vgl. US-06). Außerdem soll zu jeder
Spalte ein Dropdown-Menü existieren, welches es den Nutzenden ermöglicht ein Datentyp für das Feld
festzulegen. Datentypen können Text, Datum und Zahl sein. Die Datentypen sollen ebenfalls bereits mit
den geschätzten richtigen Werten populiert sein (vgl. US-07).

Für jedes Projekt soll eine Finanzübersicht verfügbar sein, bestehend aus aktuellem Kontostand, Einnah-
men, Ausgaben, gezahlten Gehältern, geplanten Ausgaben sowie der Verrechnung mit den bewilligten
Finanzierungsmitteln.

Für die Erstellung der Übersichten muss eine Zuordnung von Quell- zu Zielspalten möglich sein. Dazu
soll das User Interface entsprechende Konfigurationseinstellungen bereitstellen (vgl. US-18). Im Export-
bereich sollen die Nutzenden das Ausgabeformat auswählen und die zu exportierenden Spalten festlegen
können (vgl. US-15). Sämtliche Arbeitsabläufe sollen mit möglichst wenigen Interaktionen auskommen,
um die Bedienbarkeit zu maximieren. Alle erstellten Daten müssen auch wieder gelöscht werden kön-
nen. Um versehentliches Löschen zu vermeiden muss bei jedem Löschvorgang eine Bestätigungsanfrage
gestellt werden (vgl. US-19).

3 Anforderungsanalyse 15

Tabelle 3.5: Funktionale Anforderungen Benutzeroberfläche

User Story Kurzbeschreibung

US-17 Klar strukturierte, intuitive Benutzeroberfläche ohne technischen Vorwissensbedarf.

US-18 Visuelle Konfiguration von Regeln, Filtern und Zuordnungen über die GUI, ohne Pro-
grammierkenntnisse.

US-19 Sicherheitsabfragen bei kritischen Aktionen (z. B. Löschen von Projekten), um unbeab-
sichtigte Datenverluste zu vermeiden.

3.4 Nicht-funktionale Anforderungen

Neben den funktionalen Anforderungen muss das System mehrere qualitative Eigenschaften erfüllen, die
die Bedienbarkeit, Leistungsfähigkeit, Sicherheit sowie die langfristige Erweiterbarkeit und Wartbarkeit
betreffen. Die im Anhang aufgeführten User Stories konkretisieren diese Anforderungen.

Ein wesentlicher Aspekt betrifft die Usability. Da die primären Nutzenden keine technischen Vorkennt-
nisse besitzen, muss die Benutzeroberfläche intuitiv verständlich, klar strukturiert und logisch aufgebaut
sein (vgl. US-17). Fehlermeldungen sollen präzise formuliert sein und konkrete Hinweise zur Problem-
lösung geben (vgl. US-23). Darüber hinaus sollen typische Arbeitsschritte mit möglichst wenigen In-
teraktionen durchgeführt werden können. Visuelle Konfigurationsoptionen sollen komplexe Tätigkeiten
erleichtern(vgl. US-18).

Auch die Performance stellt eine zentrale Anforderung dar. Das System muss in der Lage sein, große
CSV-Dateien ohne spürbare Verzögerungen zu importieren, zu filtern und zu gruppieren (vgl. US-20).
Zudem sollen sowohl der Programmstart als auch das Laden bestehender Projekte schnell erfolgen, um
den Einsatz im regelmäßigen Arbeitsalltag der Buchhaltung nicht zu verlangsamen.

Im Hinblick auf die Sicherheit ist im Rahmen des MVP sicherzustellen, dass alle sensiblen Finanz-
und Personaldaten ausschließlich lokal verarbeitet und gespeichert werden (vgl. US-21). Da keine Über-
tragung an externe Systeme erfolgt, reduziert sich die Angriffsfläche auf den jeweiligen Arbeitsplatz.
Zukünftig, im Kontext einer möglichen Multi-User- oder Serverarchitektur, müssen erweiterte Sicher-
heitsmechanismen wie Zugriffskontrollen, Verschlüsselung oder Netzwerkabsicherung ergänzt werden.
Für das MVP gilt jedoch ausdrücklich das Prinzip der reinen lokalen Verarbeitung.

Auch spielt die Erweiterbarkeit der Software eine zentrale Rolle. Die Architektur muss so gestaltet
sein, dass zukünftige Erweiterungen ohne grundlegende Eingriffe in die bestehende Struktur möglich
sind (vgl. US-22). Dies umfasst einen modularen Aufbau, der Import, Analyse, Export, Benutzeroberflä-
che und Datenhaltung klar voneinander trennt. Neue Datenquellen oder zusätzliche SAP-Exporte sollen
sich durch die Erweiterung einzelner Module integrieren lassen, ohne dass die Gesamtarchitektur ange-
passt werden muss. Ebenso muss die interne Datenrepräsentation so flexibel sein, dass unterschiedliche
CSV-Strukturen oder neue Mapping-Mechanismen unterstützt werden können. Die spätere Integration
automatisierter Schnittstellen wie SAP OData sowie der mögliche Wechsel von lokalen zu externen Da-
tenbanken sollen konzeptionell bereits vorgesehen sein.

3 Anforderungsanalyse 16

Schließlich ist für eine langfristige Nutzbarkeit eine hohe Wartbarkeit erforderlich. Diese setzt eine kla-
re Trennung zwischen Benutzeroberfläche, Geschäftslogik und Datenzugriff voraus, um gezielte Weiter-
entwicklungen zu ermöglichen. Darüber hinaus soll das System so gestaltet sein, dass zentrale Funktio-
nen wie CSV-Parsing oder Filtermechanismen über die Benutzeroberfläche konfiguriert werden können,
ohne den Quellcode anpassen zu müssen. Ein strukturiertes Fehler- und Ereignis-Logging unterstützt die
Diagnose von Problemen und trägt ebenfalls zur Wartbarkeit bei (vgl. US-23).

Tabelle 3.6: Nicht-funktionale Anforderungen

User Story Kurzbeschreibung

US-17 Hohe Usability durch eine intuitive, klar strukturierte und logisch aufgebaute Benutze-
roberfläche.

US-18 Reduktion der Komplexität durch visuelle Konfigurationsmöglichkeiten für Filter- und
Zuordnungsregeln.

US-20 Performante Verarbeitung großer CSV-Dateien ohne spürbare Verzögerungen beim Im-
port, Filtern und Gruppieren.

US-21 Ausschließlich lokale Verarbeitung und Speicherung aller sensiblen Finanz- und Perso-
naldaten im MVP.

US-22 Modularer, erweiterbarer Systemaufbau zur Unterstützung zukünftiger Schnittstellen,
Exporttypen und Architekturänderungen.

US-23 Klare, verständliche und hilfreiche Fehlermeldungen sowie Logging zur Unterstützung
von Diagnose und Wartung.

4 Konzeption des MVP

Auf Grundlage der zuvor erhobenen funktionalen und nicht-funktionalen Anforderungen wird in die-
sem Kapitel das Konzept für das zu entwickelnde MVP vorgestellt. Ziel ist es, eine konsistente, modu-
lar aufgebaute und erweiterbare Systemarchitektur zu definieren, die die Kernanforderungen erfüllt und
gleichzeitig die spätere Erweiterbarkeit insbesondere im Hinblick auf Multi-User-Funktionalität sowie
verschiedener Benutzeroberflächen gewährleistet.

Das Kapitel umfasst die Zielsetzung des MVP, den grundlegenden Architekturentwurf, das Datenmo-
dellierungskonzept sowie den Entwurf der Benutzeroberfläche. Darüber hinaus wird begründet, warum
bestimmte Technologien ausgewählt wurden und wie sie zur Erfüllung der Anforderungen beitragen.

4.1 Zielsetzung des MVP

Das MVP soll eine erste funktionsfähige Version des Systems darstellen, welche die grundlegenden
Prozesse des Datenimports, der Normalisierung und der finanziellen Auswertung implementiert. Es fo-
kussiert sich auf die Kernfunktionalitäten, die für die tägliche Arbeit der Buchhaltung relevant sind, oh-
ne bereits sämtliche Komfortfunktionen oder langfristig geplanten Erweiterungen wie Multi-User oder
OData-Datenimport zu implementieren.

Im Mittelpunkt steht die Funktionalität, CSV-Exporte aus SAP strukturiert zu importieren, zu bereini-
gen und auszuwerten. Auf Grundlage dieser Daten soll das MVP eine übersichtliche Darstellung der
Einnahmen, Ausgaben und Personalkosten auf Monatsbasis ermöglichen und grundlegende Exportfunk-
tionen bereitstellen. Ergänzend können zukünftige Finanzvorgänge als Plandaten erfasst werden, um eine
Abbildung der Budgetentwicklung zu ermöglichen.

Das MVP verfolgt darüber hinaus das Ziel, eine Architektur zu etablieren, die spätere Erweiterungen
wie alternative Benutzeroberflächen oder den Einsatz externer Datenbanken vereinfacht. Diese Aspekte
werden jedoch nicht funktional umgesetzt, sondern lediglich strukturell vorbereitet.

4.2 Architekturentwurf

Das System wird als modular aufgebautes Client-Server-System konzipiert. Obwohl die Anwendung
im MVP ausschließlich lokal ausgeführt wird, bietet die Trennung zwischen Frontend und Backend
erhebliche Vorteile. Sie ermöglicht die spätere Auslagerung des Backends auf einen externen Server,
ohne dass Anpassungen an der Benutzeroberfläche erforderlich sind. Ebenso eröffnet sie die Möglichkeit,
alternative Frontends wie ein Web- oder Mobile-Interface einzusetzen, ohne die zugrunde liegende Logik
verändern zu müssen.[13]

4 Konzeption des MVP 18

Die Kommunikation zwischen Benutzeroberfläche und Backend erfolgt vollständig über eine interne
REST-API. Die Desktopanwendung, welche mit PySide6 implementiert wird, fungiert als Client und in-
teragiert ausschließlich über klar definierte HTTP-Endpunkte mit dem Backend. Auf diese Weise entsteht
eine lose Kopplung zwischen Benutzeroberfläche und Geschäftslogik, was sowohl die Austauschbarkeit
des Frontends als auch die langfristige Erweiterbarkeit erleichtert.[5]

Das Backend selbst ist in mehrere klar abgegrenzte Schichten gegliedert. Die API-Schicht (FastAPI)
dient als Zugangspunkt zur Geschäftslogik und stellt sämtliche Funktionen nach außen bereit. Die Ge-
schäftslogik selbst ist in Services organisiert, die unabhängig von der konkreten Datenhaltung implemen-
tiert sind. Der Zugriff auf die Datenbank erfolgt über eine Repository-Schicht, deren Interfaces einheit-
liche Zugriffsmuster definieren. Diese Struktur ermöglicht es, die zugrunde liegende SQLite Datenbank
im MVP künftig ohne Veränderungen an der Geschäftslogik durch alternative Systeme wie MariaDB
oder PostgreSQL zu ersetzen.[14]

Die Modularität ergibt sich somit aus der Entkopplung von Benutzeroberfläche, Geschäftslogik und Da-
tenzugriff. Jede dieser Schichten kann unabhängig weiterentwickelt, ausgetauscht oder erweitert werden.
Die REST-basierte Kommunikation stellt sicher, dass selbst tiefgreifende Änderungen an der Datenhal-
tung oder der Architektur des Backends keine Auswirkungen auf die Bedienoberfläche haben. Gleich-
zeitig schafft diese Struktur die Grundlage dafür, das System in späteren Entwicklungsstufen als Multi-
User-System mit externem Server zu betreiben, ohne das grundlegende Architekturkonzept verändern
zu müssen. Die folgende Abbildung zeigt den Aufbau der Architektur mit ihren Schichten. Die Pfeile
zeigen die Datenflussrichtung sowie die Interaktionsrichtung.

Abb. 4.1

4 Konzeption des MVP 19

4.3 Datenmodellierung

Die Datenmodellierung des MVP verfolgt das Ziel, die CSV-Exporte aus SAP so aufzubereiten, dass sie
unabhängig von ihrer ursprünglichen Struktur einheitlich verarbeitet werden können. Die relevanten Ker-
nobjekte wie Projekte, Importvorgänge oder Zuordnungskonfigurationen werden als feste Datenmodelle
abgebildet und bilden die Grundlage für sämtliche weitere Auswertungen. (vgl. Abbildung A.6) Die ei-
gentlichen Buchungs- und Personaldaten aus den CSV-Dateien werden hingegen in dynamisch erzeugten
Tabellen pro Projekt gespeichert, deren Schemas direkt aus den bereinigten Spaltenüberschriften gebildet
werden.(vgl. Abbildung A.7) Dadurch entfällt die Notwendigkeit eines starren Tabellenschemas. Das ist
insbesondere angesichts der inhaltlich und strukturell wechselnden SAP-Exporte ein Vorteil. Während
der Importphase werden Datums- und Betragsangaben in einheitliche, maschinenlesbare Formate trans-
formiert, um zuverlässige Aggregationen und Berechnungen zu ermöglichen. Die Trennung zwischen
stabilen fachlichen Entitäten und den dynamischen Importtabellen schafft damit sowohl Flexibilität als
auch Konsistenz und bildet eine robuste Grundlage für spätere Erweiterungen des Systems und Sicherheit
bezüglich sich verändernder CSV-Strukturen.

Ein Nachteil dieses Ansatzes besteht darin, dass die dynamisch generierten Importtabellen nicht über
klassische Foreign-Key-Beziehungen in das restliche Datenmodell eingebunden werden können. Da Ta-
bellenname und Spaltenstruktur erst zur Laufzeit entstehen, lassen sich keine stabilen referenziellen Ver-
knüpfungen definieren. Wird eine Tabelle umbenannt oder ein Importvorgang entfernt, können beste-
hende Verweise nicht durch das Datenbankmanagementsystem abgesichert oder automatisch aktualisiert
werden. Dies erhöht das Risiko inkonsistenter Konfigurationen, da alle Relationen ausschließlich über
frei benennbare Zeichenketten (z. B. Tabellennamen oder Spaltenbezeichner) realisiert werden.

Mit zunehmender Zahl an Projekten führt dieser Ansatz zudem zu einer starken Fragmentierung der
Datenbasis. Für jedes Projekt entstehen mehrere eigenständige Tabellen mit teils ähnlicher Struktur, was
langfristig zu einem Wildwuchs an Tabellen führt. Dies erschwert die Wartung und Fehlersuche.

Diese Nachteile sind für ein MVP tolerierbar, da der Ansatz maximale Flexibilität bei unstrukturier-
ten CSV-Dateien bietet und die Implementierung deutlich vereinfacht. Für ein zukünftiges produktives
System wäre jedoch eine Anpassung des Datenbankschemas zu betrachten.

4.4 Entwurf der Benutzeroberfläche

Die Benutzeroberfläche des MVP ist so konzipiert, dass sie die wesentlichen Arbeitsschritte der Buch-
haltung in klar nachvollziehbarer Reihenfolge abbildet. Sie besteht aus einer Projektverwaltung, einem
Bereich für den CSV-Import sowie einer Ansicht zur Darstellung und Analyse der eingelesenen Daten.
Des Weiteren werden verschiedene Ansichten zur Konfiguration bereitgestellt. Der Entwurf folgt dem
Prinzip einer möglichst reduzierten und leicht verständlichen Bedienführung, da die Zielgruppe keine
technischen Vorkenntnisse besitzt. Ein zentraler Bestandteil ist ein visueller Filter- und Zuordnungsme-
chanismus, der die Erstellung von Regeln ohne direkte SQL-Kenntnisse ermöglicht. Die gesamte Ober-
fläche ist funktional gehalten und beschränkt sich auf die für den MVP notwendigen Funktionen.[15]
Zur prototypischen Entwicklung des Designs wurden Mockups mit der Software Figma erstellt. Die

4 Konzeption des MVP 20

beschriebenen Gestaltungskonzepte adressieren insbesondere die in den User Stories formulierten An-
forderungen an eine einfache, nicht-technische Bedienbarkeit und eine visuelle Konfiguration der Filter-
und Zuordnungsregeln.(vgl. US-14, US-17)

Abb. 4.2: Mockup der Startoberfläche mit Projektliste und Finanzübersicht

Abbildung 4.1 zeigt das Mockup der Startoberfläche für bereits konfigurierte Projekte. Links befindet
sich eine Übersicht aller Projekte. Durch Klicken auf einen Eintrag wird die entsprechende Projektüber-
sicht geöffnet.

Abb. 4.3: Mockup der Zuordnung von Quellspalten und Filtern zu Zielspalten der Finanzübersicht

4 Konzeption des MVP 21

In Abbildung 4.2 wird das Design für die Zuordnung der Spalten zu den in der Übersicht gewünsch-
ten Zielspalten zusammen mit den entsprechenden Filtern dargestellt. Links wird der Datenursprung in
Form der Quelltabelle ausgewählt. Anschließend erfolgt die Auswahl der Zielspalte in der Finanzüber-
sicht. Um die Werte aus den Originaldaten eindeutig zuordnen zu können, wird ein Filter definiert, der
aus einer Quellspalte, einer Bedingung und einem Wert besteht, der diese Bedingung erfüllt. Rechts wird
zusätzlich festgelegt, in welcher Spalte der Originaldaten der zu übernehmende Wert zu finden ist. Diese
visuelle Konfiguration unterstützt die in den User Stories formulierte Anforderung, Klassifizierungsre-
geln ohne direkte SQL-Kenntnisse definieren und anpassen zu können.

4.5 Technologieauswahl

Die für das MVP ausgewählten Technologien orientieren sich an der Zielsetzung, eine lokal lauffähige
Anwendung mit klarer Trennung von Benutzeroberfläche und Geschäftslogik zu realisieren. Python dient
als zentrale Programmiersprache, da es eine schnelle Entwicklung und eine umfangreiche Unterstützung
für Datenverarbeitung bietet. Außerdem wird die Wartbarkeit erhöht, da die am Institut eingesetzte Pro-
grammiersprache Python ist.

Für das Backend wird FastAPI eingesetzt, um die Geschäftslogik über eine interne REST-Schnittstelle
bereitzustellen. FastAPI ist im Vergleich zu anderen Frameworks wie Django eher leichtgewichtig und
bringt keinen eigenen Object-Relational Mapping (ORM), kein Session-Management und keine Templating-
Engine mit sich. Django ist für das Projekt überdimensioniert und würde den Implementierungsaufwand
nur erhöhen, ohne Vorteile zu bieten. Flask ist zwar ähnlich leichtgewichtig wie FastAPI, bietet aber
keine automatische Dokumentation.[16, 17]

Die Daten werden lokal in einer SQLite-Datenbank gespeichert, da diese keinen zusätzlichen Installati-
onsaufwand erfordert und gleichzeitig für spätere Erweiterungen durch andere Datenbanken vorbereitet
ist.[18]

Die Benutzeroberfläche wird mit PySide6 umgesetzt, wodurch eine klassische Desktopanwendung ent-
steht, deren Interaktion vollständig über die REST-Schnittstelle erfolgt. PySide6 basiert auf Qt6, welches
eines der modernsten GUI-Frameworks ist. Im Vergleich zu anderen GUI-Frameworks wie Tkinter bietet
es eine Vielzahl an Widgets, unter anderem auch geeignete Widgets zur Darstellung von CSV-Daten in
Tabellen.[19]

4.6 Qualitäts- und Testkonzept

Die Validierung des MVP erfolgt vollständig manuell, da im Rahmen der Seminararbeit keine automa-
tisierten Tests implementiert werden. Dennoch wird der Testprozess so strukturiert, dass die wichtigsten
Funktionen reproduzierbar geprüft werden können.

Für die Tests werden repräsentative CSV-Dateien aus der Buchhaltung sowie künstlich erzeugte Fehler-
beispiele verwendet. Zu den geprüften Szenarien gehören insbesondere uneinheitliche oder mehrzeilige
Header, fehlende Werte sowie unterschiedliche Datums- und Zahlenformate. Für jedes Szenario wird
geprüft, ob die Anwendung die Struktur der Datei korrekt erkennt, sinnvolle Korrekturvorschläge macht
und eine konsistente Weiterverarbeitung erlaubt.

4 Konzeption des MVP 22

Die Validierung erfolgt über das Webinterface und die bereitgestellten REST-Endpunkte. Dabei werden
folgende Schritte durchgeführt:

• Upload einer CSV-Datei über das Webinterface und Prüfung der erkannten Header.

• Kontrolle der automatisch zugewiesenen Datentypen und Korrekturvorschläge.

• Prüfung der bereinigten und normalisierten Daten in der tabellarischen Darstellung.

• Überprüfung der Aggregationen und Berechnungen in der Finanzübersicht.

Ein Test gilt als erfolgreich, wenn alle Daten ohne Fehler eingelesen, korrekt normalisiert und in der
Finanzübersicht ohne Abweichungen dargestellt werden. Werden Probleme erkannt, zeigt das System
verständliche Fehlermeldungen an und verhindert fehlerhafte Weiterverarbeitung.

Zwar werden im MVP keine automatisierten Tests implementiert, jedoch ermöglicht die klare Trennung
zwischen Benutzeroberfläche, REST-Service und Geschäftslogik eine spätere Erweiterung um Unit- und
Integrationstests ohne strukturelle Änderungen.

4.7 Zusammenfassung des Konzepts

Das Konzept des MVP definiert eine modulare und erweiterbare Architektur, die die Verarbeitung un-
terschiedlichster CSV-Exporte ermöglicht und eine klare Trennung zwischen Benutzeroberfläche, Ge-
schäftslogik und Datenhaltung vorsieht. Durch die Nutzung einer internen REST-Schnittstelle bleibt das
System langfristig flexibel und kann sowohl um weitere Frontends als auch um alternative Datenbanken
ergänzt werden. Die Datenmodellierung kombiniert eine stabile fachliche Struktur mit dynamischen Ta-
bellen für die Importdaten, während das UI auf eine verständliche und reduzierte Bedienführung ausge-
legt ist. Insgesamt bildet das Konzept eine kompakte, auf die Kernanforderungen fokussierte Grundlage
für die Umsetzung eines funktionsfähigen MVP.

5 Implementierung des MVP

Das folgende Kapitel beschreibt die Implementierung des MVP auf Grundlage der in Kapitel 4 beschrie-
benen Softwarearchitektur. Das Ziel dieses Kapitels ist nicht die vollständige Darstellung jedes Pro-
grammteils, sondern die Herausarbeitung der wesentlichen Prinzipien, die das Verhalten und die Qualität
des MVP bestimmen.

5.1 Verwendete Software

Die nachfolgende Tabelle listet die verwendeten Softwaremodule und gibt einen kurzen Überblick über
deren Funktion.

Komponente Technologie Einsatzbereich

PySide6 Python / Qt Desktop-Benutzeroberfläche, Dialoge, Widgets

Qt Widgets Qt Tabellen, Dialoge, Layouts und Eingabekomponenten

QSS Qt Style Sheets Gestaltung der GUI

FastAPI Python REST-API, Routing, Request-Validierung

Uvicorn Python ASGI-Server zur Ausführung der FastAPI-Anwendung

Pydantic Python Datenvalidierung, Serialisierung, API-Modelle

HTTPX Python REST-Client für die Kommunikation zwischen GUI und Ba-
ckend

SQLite3 Relationale DB Lokale Speicherung von Projekten, Importtabellen, Finanz-
übersichten

Tabelle 5.1: Übersicht der im MVP verwendeten Technologien

5.2 Implementierung der Architektur

Die Umsetzung folgt konsequent der zuvor beschriebenen Client-Server-Trennung. Frontend und Ba-
ckend kommunizieren über eine interne REST-API miteinander. Die Desktopanwendung agiert als rei-
ner Client und implementiert selbst keine Logik zur Datenverarbeitung. Sämtliche Anfragen wie etwa
der Import von CSV-Dateien, die Generierung von Finanzübersichten oder das Erstellen von Projekten
werden über HTTP an das lokal laufende FastAPI-Backend gesendet.

5 Implementierung des MVP 24

Die Schichten kommunizieren ausschließlich über definierte Schnittstellen, wodurch die Geschäftslogik
vollständig von der Datenhaltung isoliert bleibt. Durch diese Trennung ist die Software für eine spätere
Umstellung von SQLite zu einer anderen Datenbank wie MariaDB oder PostgreSQL bestens vorberei-
tet.

5.2.1 Implementierung der Repository-Schicht

Über die Repository-Schicht werden sämtliche Datenbankzugriffe gekapselt. Sie stellt einheitliche Inter-
faces für die CRUD-Operationen bereit. Dadurch wird die Geschäftslogik von den SQL-Anweisungen
und Datenbankspezifika getrennt. Da durch die stark variierenden Tabellenstrukturen, welche dynamisch
zur Laufzeit generiert werden keine festen Schemata verwendet werden können, wurde auf den Einsatz
eines ORMs verzichtet. ORMs wie SQLAlchemy gehen davon aus, dass die Schemata weitgehend stabil
und im Vorhinein bekannt sind. Das steht in direktem Konflikt mit den dynamisch erzeugten Datenbank-
tabellen der CSV-Importe.[20] Die Repository-Schicht ersetzt die ORM-Funktionalität und sorgt so für
eine höhere Wartbarkeit und bessere Testbarkeit.[14]

Listing 5.1 zeigt einen beispielhaften Ausschnitt aus dem Interface.

1 # interfaces.py
2 class ProjectRepository(ABC):
3 @abstractmethod
4 def get_by_name(self , name: str) -> Optional[Project]: ...
5

6 @abstractmethod
7 def create(self , project: ProjectCreate) -> Project: ...

Listing 5.1: Interface Beispiel

Die Implementierung des Interfaces erfolgt analog in den entsprechenden Repositories. Im Falle des
MVP ist dass das SQLite Repository.

1 class SQLiteProjectRepository(ProjectRepository):
2 def get_by_name(self , name: str) -> Optional[Project]:
3 with self._db.connection() as conn:
4 cursor = conn.execute(
5 "SELECT * FROM projects WHERE name = ?", (name ,)
6)
7 row = cursor.fetchone()
8 return Project(**row) if row else None

Listing 5.2: Repository Beispiel

5.2.2 Implementierung der Service-Schicht

Die Serviceschicht enthält die gesamte Geschäftslogik und steuert die Repository-Operationen. Sie ist
vollständig frei von SQL-Befehlen und besitzt keine Abhängigkeit von der konkreten Datenbank. Als
zentrales Beispiel dient hier der ImportService. Er nimmt einen Projektnamen, Dateipfad, Configuration
und import_type als Parameter und fügt anhand dieser Informationen die CSV-Datei in die Datenbank
ein.

5 Implementierung des MVP 25

1 class ImportService:
2 def __init__(self , project_repo , import_repo):
3 self._project_repo = project_repo
4 self._import_repo = import_repo
5

6 def import_csv(self , project_name: str, ...):
7 project = self._project_repo.get_by_name(project_name)
8 if not project:
9 project = self._project_repo.create(...)

10

11 # weitere Schritte: Tabellenerstellung , Datentypinferenz , Speicherung

Listing 5.3: Service Beispiel

Die Serviceschicht ist bewusst so implementiert, dass alle komplexen Operationen zentralisiert sind. Zu-
sätzlich zum ImportService existieren der FinancialService, welcher die Berechnung der Budgets
und Finanzübersichten orchestriert. Der ProjectService dient der Erstellung und Verwaltung von Pro-
jekten. Als letzten Service stellt die Software den PlannedEntryService bereit. Dieser ist für sämtliche
Operationen die mit dem Erstellen und Verwalten von Plandaten in Form von zukünftigen Rechnungen
und der Personalkosten in Zusammenhang stehen.

5.2.3 Implementierung der API

Die REST-API bildet die Schnittstelle zwischen GUI und Geschäftslogik. Hier werden die Funktio-
nen aus den Services über klar abgegrenzte REST-Endpunkte dem Frontend zur Verfügung gestellt.
Als Framework zur effizienten Erstellung der API kommt FastAPI zum Einsatz. FastAPI ist ein moder-
nes, schnelles und hochperformantes Webframework zur Erstellung von APIs mit Python auf Basis von
Standard-Python-Typhinweisen.[21] Eine beispielhafte Routendefinition zur Erzeugung eines Projekts
ist in Listing 5.4 zu sehen.

1 # routes/projects.py
2 @router.post("/projects")
3 def create_project(data: ProjectCreate , service: ProjectService = Depends (...)):
4 return service.create_project(data)

Listing 5.4: REST-Endpunkt Beispiel

Durch die router.post() Annotation wird spezifiziert, dass es sich um eine POST-Anfrage handelt.
Alle Post-Anfragen an die Route .../projects werden also von dieser Funktion bedient. Alle Endpunkte
sind den Services entsprechend getrennt in:

• financial

• imports

• planned_entries

• projects

5 Implementierung des MVP 26

Zu allen Endpunkten existiert eine von FastAPI automatisch generierte Beschreibung nach der OpenAPI-
Spezifikation. Die API ist als interaktive Dokumentation über eine Weboberfläche die mittels SwaggerUI
aus der OpenAPI generiert wird erreichbar. Das bietet große Vorteile bei der Wartbarkeit und Erweiter-
barkeit der Software. Außerdem lassen sich alle Endpunkte direkt über das Webinterface testen. Die
SwaggerUI Dokumentation aller REST-Endpunkte ist den Abbildungen Abschnitt A.2 im Anhang zu
entnehmen.

5.2.4 Implementierung des Client-Layers und der GUI

Der Client-Layer kapselt sämtliche HTTP-Kommunikation mit dem REST-Backend. Zentrale Kompo-
nente ist die APIClient Klasse. Diese stellt mithilfe von httpx einen HTTP-Client bereit.

Die GUI greift nicht direkt auf HTTP-Endpunkte zu, sondern verwendet ausschließlich Methoden des
APIClient. Für alle fachlichen Funktionen wie Projektverwaltung, CSV-Import, Abruf der Finanzüber-
sicht existieren jeweils klar benannte Methoden, die die REST-Routen kapseln. Listing 5.5 zeigt die
ApiClient Kapselung der Route /api/v1/projects. Über diese wird eine Auflistung aller Projekt zu-
rückgeliefert.

1 def list_projects(self) -> list[Project]:
2 """Get all projects."""
3 response = self._client.get("/api/v1/projects")
4 response.raise_for_status()
5 return [Project(**p) for p in response.json()]

Listing 5.5: ApiClient Beispiel

Die Antworten des Backends werden ebenfalls im Client-Layer konsumiert und in Pydantic-Modelle
überführt. Mit diesen Modellen arbeitet das GUI.

Durch die strikte Entkopplung von der Präsentationsschicht und dem Transportprotokoll ist die Test-
barkeit deutlich erhöht. In Unit-Tests können Aufrufe an das Backend einfach durch Mockups von
ApiClient-Instanzen ersetzt werden, ohne die GUI selbst anpassen zu müssen.

Die Implementierung der GUI basiert vollständig auf PySide6 und folgt einem modularen Aufbau. Zen-
trale UI-Komponenten sind in unterschiedliche Klassen aufgeteilt. Der Einstiegspunkt ist das main_window,
welches als Container für die unterschiedlichen Funktionsbereiche dient.

Ein zentraler Aspekt der Implementierung ist der Umgang mit dynamischen Datenstrukturen. Da die
Benutzenden beliebige CSV-Exporte mit variierender Spaltenstruktur importieren können. Aus diesem
Grund muss die GUI in der Lage sein, Tabellenansichten komplett dynamisch zu erzeugen. Dazu wer-
den die Headerinformationen aus dem Backend gelesen und die Tabellenansichten entsprechend aufge-
baut.

5 Implementierung des MVP 27

Abb. 5.1: GUI Projektübersicht

Das entwickelte Frontend orientiert sich eng an den zuvor erstellten Mockups. Abbildung 5.1 zeigt die
Projektübersicht, auf der die berechneten Budgets sowie der aktuelle Kontostand dargestellt werden.
Auf der linken Seite befindet sich die Liste aller Projekte. Der Kontostand ist in zwei Bereiche unter-
teilt: Links wird der Wert unter Einbezug der geplanten Ausgaben angezeigt, rechts hingegen wird der
Kontostand ausschließlich auf Basis der tatsächlich gebuchten Werte angezeigt.

Im unteren Bereich sind die bewilligten Mittel nach Jahren gruppiert in einer Tabelle dargestellt. Die
Spalte Bewilligte Mittel enthält die jeweils für ein Jahr zugesprochenen Beträge. Kumuliert bewilligt
zeigt die Summe aller bis zu diesem Jahr bewilligten Mittel. Verbrauchte Mittel geben die tatsächlich
im jeweiligen Jahr angefallenen Ausgaben an, während Kumuliert verbraucht die insgesamt bis zu
diesem Jahr aufgelaufenen Ausgaben ausweist. Die Spalte Verfügbare Mittel entspricht schließlich der
Differenz zwischen den kumulierten bewilligten und den kumulierten verbrauchten Mitteln.

Abb. 5.2: GUI Finanzübersicht

5 Implementierung des MVP 28

Die Finanzübersicht zeigt die individuellen Rechnungen und lässt sich beliebig zeitlich eingrenzen. In
Abbildung 5.2 werden beispielsweise die Buchungen aus Dezember 2016 gezeigt. Diese sind entspre-
chend der Filterkonfigurationen in Abbildung 5.3 den individuellen Spalten zugeordnet. Zu beachten ist,
dass alle blau hinterlegten Zeilen Plandaten sind, welche noch nicht final gebucht wurden.

Oben rechts gelangt man über das Zahnrad zur Projektkonfiguration. Dort lassen sich sämtliche Daten
für das Projekt konfigurieren.

Abb. 5.3: GUI Filter

Die in Abbildung 5.3 gezeigten Filter lassen sich über den Tab Export / Import entsprechend exportieren
und importieren, was eine einfache Wiederverwendbarkeit ermöglicht. Die Filter funktionieren exakt so
wie in Kapitel 4 beschrieben.

6 Diskussion und Ausblick

In diesem Kapitel werden die im Rahmen der Entwicklung gewonnenen Ergebnisse kritisch eingeordnet,
zentrale Architekturentscheidungen bewertet, sowie Grenzen und Weiterentwicklungsmöglichkeiten des
MVP aufgezeigt.

Die wesentlichen funktionalen Anforderungen konnten erfüllt werden. Dazu zählen insbesondere die
Verwaltung mehrerer Projekte, der Import und die Bereinigung von CSV-Daten, das Hinterlegen bewil-
ligter Mittel sowie die Definition und Anwendung von Filterregeln. Auch die persistente Speicherung
projektbezogener Konfigurationen wurde erfolgreich umgesetzt. Nicht realisiert wurde hingegen der Ex-
port der aggregierten Finanzübersichten, da das endgültige Ausgabeformat noch nicht abschließend spe-
zifiziert war. Insgesamt zeigt der reduzierte Funktionsumfang im Vergleich zu SAP-Fiori-Anwendungen
eine deutliche Vereinfachung der Arbeitsabläufe.

Die gewählte Architektur überzeugt durch Modularität und Erweiterbarkeit, führt jedoch zu einem höhe-
ren initialen Entwicklungsaufwand. Das Repository-Pattern erleichtert die Implementierung spezifischer
SQL-Abfragen, während ein ORM größere Datenbankunabhängigkeit geboten hätte. Die Nutzung eines
REST-Backends erfordert zwar zusätzliche Routen, eröffnet jedoch langfristig die Möglichkeit, unter-
schiedliche Frontends anzubinden.

Im Hinblick auf die Zielsetzung, eine Entscheidungsgrundlage für eine mögliche Weiterentwicklung der
Software zu schaffen, zeigt das MVP klar, dass die automatisierte Verarbeitung der SAP-CSV-Daten
technisch beherrschbar ist und die bestehenden manuellen Arbeitsschritte der Buchhaltung erheblich
vereinfacht werden können. Die prototypische Umsetzung ermöglicht damit eine erste qualitative Ein-
schätzung des Nutzens einer vollständigen Anwendung, insbesondere in Bezug auf die Reduktion von
Fehlerquellen, die Standardisierung der Datenaufbereitung und die Wiederverwendbarkeit der Konfigu-
rationen.

Gleichzeitig treten die Grenzen des MVP deutlich hervor und zeigen, an welchen Stellen weitere Investi-
tion notwendig wären, um einen produktiven Einsatz zu ermöglichen. Die grafische Benutzeroberfläche
ist funktional, jedoch nicht produktionsreif. Eingabevalidierungen sind bislang nur rudimentär umge-
setzt, und zahlreiche Randfälle werden bewusst nicht berücksichtigt. Der aktuelle Filtermechanismus
erlaubt lediglich einfache Bedingungen. Für einen robusten Einsatz ist die Unterstützung logischer Ope-
ratoren wie AND und OR notwendig. Ebenfalls nicht umgesetzt wurden eine Mehrbenutzerfähigkeit
mit rollenbasierten Rechten, ein umfassendes Logging sowie die direkte Anbindung an SAP-OData-
Dienste.

6 Diskussion und Ausblick 30

Aus den gewonnenen Erkenntnissen ergeben sich mehrere Entwicklungsrichtungen. Vorrangig ist die
Erweiterung des Filtersystems, gefolgt von Verbesserungen der Benutzeroberfläche und der Implemen-
tierung eines Exports der Finanzübersichten um diese als Verwendungsnachweise nutzen zu können.
Langfristig bietet sich zudem die Integration mehrerer Benutzerrollen und eine direkte SAP-Anbindung
an, um den manuellen CSV-Prozess zu ersetzen oder zu komplementieren. Zudem stellt die automati-
sche Ersetzung von Plandaten durch tatsächliche SAP-Buchungen, sobald diese vorliegen, eine wichtige
Erweiterung dar, da dadurch die Aktualität und Verlässlichkeit der Finanzübersicht deutlich verbessert
würden.

7 Fazit

Das entwickelte MVP zeigt, dass eine lokal ausführbare Software zur strukturierten Verarbeitung von
Finanzdaten technisch umsetzbar und fachlich hilfreich ist. Die zentralen Funktionen wurden erfolgreich
implementiert und bilden eine solide Grundlage für weitere Schritte. Die Analyse verdeutlicht jedoch,
dass für einen produktiven Einsatz zusätzliche Erweiterungen erforderlich sind, insbesondere im Bereich
der Filterlogik, der Benutzerführung und der Mehrbenutzerfähigkeit.

Im Sinne der in der Zielsetzung genannten Funktion als Entscheidungsvorlage lässt sich festhalten, dass
die Arbeit die technischen Möglichkeiten, den erwartbaren Nutzen sowie die notwendigen Erweiterungen
klar aufzeigt. Damit bietet das MVP eine belastbare Grundlage, um über eine weiterführende Investition
in die Entwicklung eines vollwertigen Systems zu entscheiden.

Insgesamt bestätigt die Arbeit den Nutzen eines solchen Werkzeugs für den buchhalterischen Arbeitsall-
tag und schafft die Basis für eine Weiterentwicklung zu einer vollständig einsetzbaren Lösung.

Literatur

[1] RWTH AACHEN. eingeführte SAP-Module. Abteilung 5.2 – SAP – Entwicklung und Betrieb.
2025. URL: https://intranet.rwth-aachen.de/group/guest/articledetailpage/-
/asset_publisher/cadSeXJzMOzq/content/id/19312687 (besucht am 23. 11. 2025).

[2] RWTH AACHEN. MaCoCo - Lehrstuhlcontrolling. RWTH Aachen. URL: https://www.controlling.
rwth-aachen.de/cms/Controlling/Forschung/Forschungsprojekte/Laufende-Projekte/
~mgaz/MaCoCo-Lehrstuhlcontrolling/ (besucht am 10. 12. 2025).

[3] Andrew S. TANENBAUM und Maarten van STEEN. Distributed Systems. Principles and Para-
digms. 2nd ed. Upper Saddle River, NJ: Pearson Prentice Hall, 2007. ISBN: 0132392275.

[4] Roy Thomas FIELDING, Mark NOTTINGHAM und Julian RESCHKE. RFC 9110 HTTP Semantics.
2022. DOI: 10.17487/RFC9110. (Besucht am 15. 12. 2025).

[5] Roy Thomas FIELDING. Architectural Styles and the Design of Network-based Software Archi-
tectures. Dissertation. Irvine: University of California, 2000.

[6] IBM. Was ist REST-API? Hrsg. von IBM. URL: https://www.ibm.com/de- de/think/
topics/rest-apis (besucht am 10. 12. 2025).

[7] Leonard RICHARDSON und Sam RUBY. RESTful Web Services. Web Services for the Real World.
Web Services for the Real World. Beijing und Köln: O’Reilly, 2007. ISBN: 9780596529260. URL:
https://swbplus.bsz-bw.de/bsz265585090cov.htm.

[8] OPENAPIINITIATIVE. OpenAPI Specification. 2025. URL: https://github.com/OAI/
OpenAPI-Specification (besucht am 04. 12. 2025).

[9] Yakov SHAFRANOVICH. RFC 4180: Common Format and MIME Type for CSV Files. 2005. DOI:
10.17487/RFC4180. URL: https://www.rfc- editor.org/info/rfc4180 (besucht am
15. 12. 2025).

[10] Jay A. KREIBICH. Using SQLite. Previous programming experience is recommended – P. [4] of
cover. Includes index. 1st ed. Sebastopol, Calif.: O’Reilly, 2010. ISBN: 9780596521189. URL:
http://gbv.eblib.com/patron/FullRecord.aspx?p=580130.

[11] SAP SE. Terms of Use for SAP Websites. SAP SE. 2025. URL: https://www.sap.com/
germany/about/legal/terms-of-use.html (besucht am 08. 12. 2025).

[12] SAP SE. OData. SAP SE. 2025. URL: https://help.sap.com/docs/HANA_SMART_DATA_
INTEGRATION/7952ef28a6914997abc01745fef1b607/d9f0a3b09e0f4b3eb010be8bd36871e5.
html (besucht am 22. 11. 2025).

[13] Robert C. MARTIN und Kevlin HENNEY. Clean Architecture. Das Praxis-Handbuch für profes-
sionelles Softwaredesign: Regeln und Paradigmen für effiziente Softwarestrukturen. ger. Deutsche
Ausgabe, 1. Auflage. Frechen: mitp, 2018. ISBN: 9783958457249.

https://intranet.rwth-aachen.de/group/guest/articledetailpage/-/asset_publisher/cadSeXJzMOzq/content/id/19312687
https://intranet.rwth-aachen.de/group/guest/articledetailpage/-/asset_publisher/cadSeXJzMOzq/content/id/19312687
https://www.controlling.rwth-aachen.de/cms/Controlling/Forschung/Forschungsprojekte/Laufende-Projekte/~mgaz/MaCoCo-Lehrstuhlcontrolling/
https://www.controlling.rwth-aachen.de/cms/Controlling/Forschung/Forschungsprojekte/Laufende-Projekte/~mgaz/MaCoCo-Lehrstuhlcontrolling/
https://www.controlling.rwth-aachen.de/cms/Controlling/Forschung/Forschungsprojekte/Laufende-Projekte/~mgaz/MaCoCo-Lehrstuhlcontrolling/
https://doi.org/10.17487/RFC9110
https://www.ibm.com/de-de/think/topics/rest-apis
https://www.ibm.com/de-de/think/topics/rest-apis
https://swbplus.bsz-bw.de/bsz265585090cov.htm
https://github.com/OAI/OpenAPI-Specification
https://github.com/OAI/OpenAPI-Specification
https://doi.org/10.17487/RFC4180
https://www.rfc-editor.org/info/rfc4180
http://gbv.eblib.com/patron/FullRecord.aspx?p=580130
https://www.sap.com/germany/about/legal/terms-of-use.html
https://www.sap.com/germany/about/legal/terms-of-use.html
https://help.sap.com/docs/HANA_SMART_DATA_INTEGRATION/7952ef28a6914997abc01745fef1b607/d9f0a3b09e0f4b3eb010be8bd36871e5.html
https://help.sap.com/docs/HANA_SMART_DATA_INTEGRATION/7952ef28a6914997abc01745fef1b607/d9f0a3b09e0f4b3eb010be8bd36871e5.html
https://help.sap.com/docs/HANA_SMART_DATA_INTEGRATION/7952ef28a6914997abc01745fef1b607/d9f0a3b09e0f4b3eb010be8bd36871e5.html

Literatur 33

[14] AzraJabeen MOHAMED ALI. Optimizing Software Architecture: Using the Repository Pattern in
Decoupling Data Access Logic. In: International Scientific Journal of Engineering and Manage-
ment 1.1 (2022). DOI: 10.55041/ISJEM00104.

[15] Ben SHNEIDERMAN u. a. Designing the User Interface. eng. 6th ed. Shneiderman, Ben; Plaisant,
Catherine; Cohen, Maxine; Jacobs, Steven; Elmqvist, Niklas. Harlow, United Kingdom: Pearson
Education Limited, 2017. ISBN: 9781292153919. URL: https://ebookcentral.proquest.
com/lib/kxp/detail.action?docID=5832492.

[16] Mukul MANTOSH. Django vs. FastAPI: Which is the Best Python Web Framework? JetBrains.
2023. URL: https://blog.jetbrains.com/pycharm/2023/12/django- vs- fastapi-
which-is-the-best-python-web-framework/#introduction (besucht am 15. 12. 2025).

[17] Stanley ULILI. Flask vs FastAPI: An In-Depth Framework Comparison. Better Stack, Inc. 2025.
URL: https : / / betterstack . com / community / guides / scaling - python / flask - vs -
fastapi/#documentation-and-openapi-integration.

[18] Distinctive Features Of SQLite. SQLite. 31.05.2025. URL: https://sqlite.org/different.
html.

[19] Martin FITZPATRICK. PyQt vs. Tkinter — Which Should You Choose for Your Next GUI Project?
What Are the Major Differences Between these Popular Python GUI Libraries. 8.04.2025. URL:
https://www.pythonguis.com/faq/pyqt-vs-tkinter/ (besucht am 11. 12. 2025).

[20] MOHAMMED TAWFIK. SQL vs. ORM: Choosing the Right Tool for the Job. 2024. URL: https:
//xtawfik.medium.com/sql- vs- orm- choosing- the- right- tool- for- the- job-
e0bc8c6fbe62 (besucht am 08. 12. 2024).

[21] TIANGOLO. FastAPI. 2025. URL: https://fastapi.tiangolo.com/ (besucht am 04. 12. 2025).

https://doi.org/10.55041/ISJEM00104
https://ebookcentral.proquest.com/lib/kxp/detail.action?docID=5832492
https://ebookcentral.proquest.com/lib/kxp/detail.action?docID=5832492
https://blog.jetbrains.com/pycharm/2023/12/django-vs-fastapi-which-is-the-best-python-web-framework/#introduction
https://blog.jetbrains.com/pycharm/2023/12/django-vs-fastapi-which-is-the-best-python-web-framework/#introduction
https://betterstack.com/community/guides/scaling-python/flask-vs-fastapi/#documentation-and-openapi-integration
https://betterstack.com/community/guides/scaling-python/flask-vs-fastapi/#documentation-and-openapi-integration
https://sqlite.org/different.html
https://sqlite.org/different.html
https://www.pythonguis.com/faq/pyqt-vs-tkinter/
https://xtawfik.medium.com/sql-vs-orm-choosing-the-right-tool-for-the-job-e0bc8c6fbe62
https://xtawfik.medium.com/sql-vs-orm-choosing-the-right-tool-for-the-job-e0bc8c6fbe62
https://xtawfik.medium.com/sql-vs-orm-choosing-the-right-tool-for-the-job-e0bc8c6fbe62
https://fastapi.tiangolo.com/

A Anhang

A.1 Userstories

Tabelle A.1: User Stories des Systems

ID Bereich User Story

US-01 Projektverwaltung Als Nutzende möchte ich neue Projekte anlegen können,
um projektbezogene Finanzdaten getrennt verwalten zu
können.

US-02 Projektverwaltung Als Nutzende möchte ich projektspezifische Einstellungen
und Spaltenkonfigurationen speichern können, damit wie-
derkehrende Importe weniger Aufwand erfordern.

US-03 Projektverwaltung Als Nutzende möchte ich bestehende Projekte löschen kön-
nen, um veraltete oder nicht mehr benötigte Datenbestände
zu entfernen.

US-04 Datenimport Als Nutzende möchte ich CSV-Dateien importieren kön-
nen, damit die aus SAP exportierten Finanz- und Personal-
daten im System verarbeitet werden können.

US-05 Datenimport Als Nutzende möchte ich, dass das System fehlerhafte oder
uneinheitliche Spaltenbezeichnungen automatisch erkennt
und Korrekturvorschläge bietet, um den Import zu erleich-
tern.

US-06 Datenimport Als Nutzende möchte ich Spaltennamen manuell anpassen
können, um fehlerhafte Header zu korrigieren oder die Da-
ten verständlicher darzustellen.

US-07 Datenimport Als Nutzende möchte ich für jede Spalte den passenden
Datentyp festlegen können, damit Werte korrekt verarbeitet
und aggregiert werden.

US-08 Datenimport Als Nutzende möchte ich Spalten- und Typzuordnungen
als Masken speichern und wiederverwenden können, um
konsistente Importe sicherzustellen.

US-09 Datenimport Als Nutzende möchte ich zusätzliche Datensätze manuell
ergänzen können, insbesondere zukünftige Ausgaben, die
in SAP noch nicht erfasst sind.

US-10 Datenanalyse Als Nutzende möchte ich Daten nach bestimmten Kriterien
filtern können, um nur die relevanten Einträge betrachten
zu müssen.

Literatur 35

ID Bereich User Story

US-11 Datenanalyse Als Nutzende möchte ich Datensätze nach beliebigen Attri-
buten gruppieren können, um aggregierte Finanzübersich-
ten zu erstellen.

US-12 Datenanalyse Als Nutzende möchte ich eine monatliche projektbezogene
Finanzübersicht erhalten, um Einnahmen, Ausgaben und
Personalkosten nachvollziehen zu können.

US-13 Datenanalyse Als Nutzende möchte ich, dass Plandaten in die Auswer-
tung einbezogen werden, um zukünftige Entwicklungen
des Projektbudgets beurteilen zu können.

US-14 Datenanalyse Als Nutzende möchte ich Daten mittels regelbasierter Zu-
ordnungen Kategorien wie Einnahmen, Ausgaben oder
Personalkosten zuordnen können, ohne SQL-Kenntnisse
zu benötigen.

US-15 Export Als Nutzende möchte ich erzeugte Übersichten als CSV-
Datei exportieren können, um sie weiterzuverarbeiten oder
weiterzugeben.

US-16 Export Als Nutzende möchte ich Übersichten auch als PDF oder
XLS exportieren können, um formale Verwendungsnach-
weise oder Berichte zu erstellen.

US-17 Benutzeroberfläche Als Nutzende möchte ich eine klar strukturierte und intui-
tive Benutzeroberfläche vorfinden, damit ich effizient ohne
technische Kenntnisse arbeiten kann.

US-18 Benutzeroberfläche Als Nutzende möchte ich Regeln, Filter und Zuordnungen
visuell konfigurieren können, um komplexe Verarbeitungs-
schritte ohne Programmierkenntnisse durchführen zu kön-
nen.

US-19 Benutzeroberfläche Als Nutzende möchte ich bei kritischen Aktionen wie dem
Löschen eines Projekts eine Sicherheitsabfrage erhalten,
um unbeabsichtigte Datenverluste zu vermeiden.

US-20 Systemanforderungen Als Nutzende möchte ich, dass das System große CSV-
Dateien performant verarbeiten kann, damit der Arbeits-
ablauf nicht unterbrochen wird.

US-21 Systemanforderungen Als Nutzende möchte ich, dass alle Daten ausschließlich
lokal gespeichert werden, um die Vertraulichkeit sensibler
Finanz- und Personaldaten zu gewährleisten.

US-22 Systemanforderungen Als Auftraggebende möchte ich ein modular aufgebautes
System, das zukünftige Erweiterungen wie neue Schnitt-
stellen oder Exporttypen ohne grundlegende Änderungen
erlaubt.

US-23 Systemanforderungen Als Nutzende möchte ich klare, verständliche und hilfrei-
che Fehlermeldungen erhalten, um Probleme selbstständig
beheben zu können.

Literatur 36

A.2 Rest-Api Swagger UI

Abb. A.1

Abb. A.2

Abb. A.3

Literatur 37

Abb. A.4

Abb. A.5

Literatur 38

A.3 Datenbankschema

Abb. A.6

Literatur 39

Abb. A.7

	1 Einleitung
	1.1 Motivation
	1.2 Vorgehensweise und Aufbau der Arbeit

	2 Stand der Technik
	2.1 Aktuelle Buchhaltungssysteme an der RWTH
	2.2 Aktuelle Workflows
	2.3 Theoretische Grundlagen

	3 Anforderungsanalyse
	3.1 Rahmenbedingungen und Einschränkungen
	3.2 Zielgruppe und Stakeholder
	3.3 Funktionale Anforderungen
	3.4 Nicht-funktionale Anforderungen

	4 Konzeption des MVP
	4.1 Zielsetzung des MVP
	4.2 Architekturentwurf
	4.3 Datenmodellierung
	4.4 Entwurf der Benutzeroberfläche
	4.5 Technologieauswahl
	4.6 Qualitäts- und Testkonzept
	4.7 Zusammenfassung des Konzepts

	5 Implementierung des MVP
	5.1 Verwendete Software
	5.2 Implementierung der Architektur

	6 Diskussion und Ausblick
	7 Fazit
	Bibliography
	A Anhang
	A.1 Userstories
	A.2 Rest-Api Swagger UI
	A.3 Datenbankschema

