
Fachhochschule Aachen
Campus Jülich

Detailliertes Infrastrukturkonzept zur Entwicklung einer

Configuration Management Database (CMDB)

Seminararbeit
Luiz Post

Matr. No.: 3651388
Erstbetreuer:Prof. Dr. rer. nat. Alexander

Voß
Zweitbetreuer: B.Sc Andre Kapp

Fachbereich 9
Medizintechnik und Technomathematik

Angewandte Mathematik und Informatik B.Sc.

Aachen, Dezember 2025

Eidesstattliche Erklärung

Hiermit versichere ich, dass ich die Seminararbeit mit dem Thema „Detailliertes
Infrastrukturkonzept zur Entwicklung einer Configuration Management Da-
tabase (CMDB)“ selbstständig verfasst und keine anderen als die angegebenen Quellen
und Hilfsmittel benutzt habe. Alle Ausführungen, die anderen Schriften wörtlich oder
sinngemäß entnommen wurden, sind kenntlich gemacht. Die Arbeit wurde in gleicher
oder ähnlicher Form noch nicht als Studien- oder Prüfungsleistung eingereicht.
Im Rahmen der Erstellung dieser Arbeit wurde das KI-System „GPT-5.1“ unterstützend
zur sprachlichen Überarbeitung sowie zur fachlichen Reflexion und Präzisierung eigen-
ständig entwickelter Argumente genutzt. Eine Übernahme von KI-generierten Texten oder
inhaltlichen Lösungsvorschlägen erfolgte nicht. Sämtliche fachlichen Aussagen, Bewertun-
gen und Schlussfolgerungen wurden eigenständig erarbeitet und verantwortet. Die Nut-
zung erfolgte im Einklang mit der Zweckbestimmung des Systems sowie unter Beachtung
datenschutz- und urheberrechtlicher Vorgaben.

Ich verpflichte mich, ein Exemplar der Seminararbeit fünf Jahre aufzubewahren und es
auf Verlangen dem Prüfungsamt des Fachbereichs Medizintechnik und Technomathematik
auszuhändigen.

Ort, Datum: Unterschrift:

i

Mobile User
Aachen, den 15.12.2025

Zusammenfassung

Die vorliegende Arbeit befasst sich mit der Konzeption eines technischen Gesamt-
architekturmodells einschließlich der zugrunde liegenden Infrastruktur einer Confi-
guration Management Database (CMDB) auf Basis einer modernen Open-Source-
Technologie namens Datagerry. Ziel der Untersuchung war es, eine skalierbare und
modular erweiterbare Architektur zu entwickeln, die den Anforderungen an Trans-
parenz, Automatisierung und Integrationsfähigkeit in bestehende IT-Umgebungen
gerecht wird. Als zentrale Plattform wurde das Open-Source-Tool DataGerry aus-
gewählt und einem systematischen Feasibility-Check unterzogen, um seine Eignung
als CMDB zu bewerten. Darauf aufbauend entstand ein Architekturkonzept, das
die für eine CMDB erforderlichen Kernkomponenten – Datenmodellierung, API-
Zugri!sschicht und Verwaltungsoberfläche – strukturiert beschreibt und ihre Rolle
innerhalb der Systemlandschaft definiert. Die Implementierung der automatisierten
Bereitstellung erfolgte mittels Infrastructure as Code unter Verwendung von Ansible
und containerisierten Deployments über Docker Compose. Zudem wurde die Integra-
tion in CI/CD-Pipelines und Monitoring-Systeme konzeptionell berücksichtigt, um
nach der Entwicklung einen durchgängigen Automatisierungsprozess sicherzustellen.
Die Ergebnisse zeigen, dass die untersuchten Technologien grundsätzlich das Potenzi-
al bieten, eine flexible, wartbare und erweiterbare Grundlage für ein CMDB-System
zu bilden. Die Arbeit liefert hierfür erste konzeptionelle Ansätze, die in zukünftigen
Projekten weiter ausgearbeitet und praktisch validiert werden müssen. Perspekti-
visch ergeben sich insbesondere Ansatzpunkte für technische Implementierungen,
Security-Härtung sowie den Ausbau automatisierter Schnittstellen.

ii

Inhaltsverzeichnis

1 Einleitung 1
1.1 Motivation und Relevanz des Themas . 1
1.2 Problemstellung: Fehlende Transparenz und Nachvollziehbarkeit in IT-Infrastrukturen 1
1.3 Zielsetzung der Arbeit . 2
1.4 Abgrenzung und Vorgehensweise . 3

2 Theoretische und technische Grundlagen 4
2.1 Begri! des Configuration Managements . 4
2.2 Rolle und Bedeutung einer CMDB im IT-Service-Management 4
2.3 ITIL-Referenzmodell und Best Practices 5
2.4 Open-Source-Ansätze im Configuration Management 5
2.5 Einordnung und Architektur von DataGerry 6

3 Anforderungsanalyse 7
3.1 Methodik der Anforderungsanalyse . 7
3.2 Funktionale Anforderungen an eine CMDB 8
3.3 Nicht-funktionale Anforderungen (Sicherheit, Skalierbarkeit, Wartbarkeit) . 10
3.4 Konkrete Use Cases für die CMDB-Implementierung 12

4 Konzeptionelle Architektur einer CMDB 14
4.1 Überblick über die Zielarchitektur . 14
4.2 Modularer Aufbau und Schnittstellen . 15
4.3 Datenflüsse und Kommunikation . 16
4.4 Integration und Sicherheit . 17
4.5 Bezug zum Feasibility Check . 18
4.6 Zusammenfassung . 18

5 Integration und Automatisierung 19
5.1 Ziel und Bedeutung der Integration . 19
5.2 Technologische Grundlagen . 19
5.3 Umsetzung der Automatisierung . 19

5.3.1 Infrastructure as Code mit Ansible 19
5.3.2 Containerisierung mit Docker Compose 20
5.3.3 Integration mit CI/CD . 20

5.4 Integration der CMDB mit Monitoring-Systemen 21
5.5 Zusammenfassung . 21

iii

6 Fazit und Ausblick 22
6.1 Zusammenfassung der Ergebnisse . 22
6.2 Ausblick auf weiterführende Arbeiten . 23

7 Anhang 23

iv

1 Einleitung

1.1 Motivation und Relevanz des Themas

In modernen Unternehmensumgebungen gewinnt die e"ziente Verwaltung von IT-Infrastrukturen
zunehmend an Bedeutung. Mit der stetig wachsenden Anzahl an Servern, Containern,
Cloud-Diensten und Applikationen nimmt die Komplexität der Systemlandschaft deut-
lich zu. Unternehmen stehen dabei vor der Herausforderung, ihre Systeme nicht nur zu
betreiben, sondern auch deren Konfigurationen, Abhängigkeiten und Zustände transpa-
rent zu dokumentieren und nachzuvollziehen.

Eine Configuration Management Database (CMDB) stellt in diesem Zusammenhang
ein zentrales Werkzeug dar, um sämtliche Konfigurationsobjekte (Configuration Items,
CIs) einer IT-Landschaft systematisch zu erfassen und deren Beziehungen zueinander
zu modellieren. Sie bildet damit die Grundlage für Prozesse wie Change Management,
Incident Management und Problem Management im Sinne des ITIL-Frameworks1.

Gleichzeitig gewinnen Open-Source-Technologien an Bedeutung, da sie neben der Kos-
tenersparnis vor allem durch ihre Anpassbarkeit und Transparenz überzeugen. Durch frei
zugängliche Quelltexte lassen sich Sicherheitsaspekte nachvollziehbar prüfen, Integratio-
nen über o!ene Schnittstellen leichter realisieren und individuelle Erweiterungen ohne
Bindung an proprietäre Anbieter umsetzen. Werkzeuge wie DataGerry zeigen, dass ein
transparenter und erweiterbarer Ansatz zur Verwaltung von Infrastrukturkonfigurationen
auch ohne kommerzielle Lizenzmodelle realisierbar ist. Neben DataGerry existieren auch
etablierte Open-Source-CMDBs wie i-doit oder iTop sowie Asset-Tools wie Snipe-IT. Die
Wahl fiel bewusst auf DataGerry, da dessen generisches Datenmodell eine besonders flexi-
ble Objektdefinition ermöglicht[1]. Die Integration solcher Lösungen kann wesentlich zur
E"zienzsteigerung und Standardisierung von IT-Prozessen beitragen.

1.2 Problemstellung: Fehlende Transparenz und Nachvollziehbar-

keit in IT-Infrastrukturen

Laut der „State of the Nation Survey Findings – CMS/CMDB“ der Georg-August-Universität
Göttingen besitzen lediglich etwa 42% der befragten Unternehmen eine implementier-
te CMDB; rund 24% befinden sich noch in der Entwicklung, 18% haben keine CMDB
oder planen derzeit keine [2]. Es fehlt also trotz der Verfügbarkeit moderner Tools und
DevOps-Ansätze wie Infrastructure as Code, Continous Delivery oder automatisierter
Service Discovery, in vielen Organisationen an einer klar strukturierten und einheitlichen

1ITIL (Information Technology Infrastructure Library) ist ein weltweit anerkanntes Rahmenwerk für
das IT-Service-Management (ITSM). Es bietet eine Sammlung von Best Practices, Prozessen und Kon-
zepten zur Planung, Bereitstellung und Unterstützung von IT-Services mit dem Ziel, E!zienz, Qualität
und Kundenzufriedenheit zu verbessern.

1

Dokumentation der IT-Komponenten. Informationen über Systeme, Dienste, Abhängig-
keiten und Verantwortlichkeiten liegen oft verteilt in verschiedenen Abteilungen, Tools
oder gar nur in individueller Kenntnis einzelner Mitarbeiter vor.

Diese Fragmentierung führt zu Intransparenz, erschwert Fehleranalysen und verzö-
gert Entscheidungen bei Änderungen oder Störungen im IT-Betrieb. Besonders in Umge-
bungen, in denen DevOps- und Automatisierungsstrategien eingesetzt werden, kann das
Fehlen einer zentralen und aktuellen Konfigurationsdatenbasis zu erheblichen betriebli-
chen Risiken führen – etwa durch falsche oder veraltete Konfigurationsobjekte, fehlerhafte
Abhängigkeitsmodelle oder Relationen zwischen Systemen. Solche Inkonsistenzen können
wiederum zu längeren Ausfallzeiten, Fehlentscheidungen im Change-Management und un-
erwarteten Störungen im Produktivbetrieb führen.

Vor diesem Hintergrund besteht die Notwendigkeit, ein ganzheitliches Konzept zu
entwickeln, das sowohl die technische Architektur als auch die organisatorischen Anfor-
derungen einer modernen CMDB abbildet. Dieses Konzept muss auf o!enen Standards
beruhen und Integrationsmöglichkeiten in bestehende Systeme wie CI/CD-Pipelines oder
Monitoring-Umgebungen berücksichtigen.

1.3 Zielsetzung der Arbeit

Ziel dieser Arbeit ist die Entwicklung eines detaillierten Infrastrukturkonzepts für den
Aufbau einer Configuration Management Database (CMDB). Dieses Konzept soll die
funktionalen und nicht-funktionalen Anforderungen an eine CMDB erfassen, eine geeig-
nete Systemarchitektur vorschlagen und mögliche Technologien sowie Integrationspunkte
aufzeigen.

Besonderes Augenmerk liegt dabei auf der Modularität der Architektur sowie der
Möglichkeit, diese durch o!ene Schnittstellen, erweiterbare Datenmodelle und flexible In-
tegrationsmechanismen problemlos an bestehende IT-Landschaften anzubinden und bei
Bedarf um zusätzliche Funktionen zu erweitern. Zudem soll das Konzept anhand existie-
render Open-Source-Lösungen – insbesondere DataGerry – untersucht werden, um pra-
xisnahe Ansätze sowie mögliche Verbesserungspotenziale zu identifizieren. Die Analyse
umfasst dabei insbesondere das Datenmodell, die verfügbaren APIs, Import- und Export-
mechanismen, Aspekte der Skalierbarkeit, Authentifizierungsverfahren sowie die vorhan-
dene Historisierung2.

Durch die konzeptionelle Ausarbeitung soll aufgezeigt werden, wie eine strukturierte
und gut integrierbare CMDB-Architektur grundsätzlich zur Erhöhung von Transparenz
und E"zienz in der IT-Infrastrukturverwaltung beitragen kann.

2

1.4 Abgrenzung und Vorgehensweise

Die vorliegende Arbeit konzentriert sich auf die konzeptionelle Ausarbeitung der für ei-
ne CMDB relevanten infrastrukturellen Komponenten. Dazu gehören insbesondere Über-
legungen zur Containerisierung, Netzwerk- und Service-Architektur, Datenhaltung, Au-
thentifizierungsmechanismen sowie möglichen Monitoring-Integrationen. Es werden keine
vollständigen Implementierungen oder produktiven Deployments durchgeführt; vielmehr
werden die technischen und methodischen Grundlagen beschrieben, die als Basis für ei-
ne spätere praktische Umsetzung dienen können. Anschließend erfolgt eine detaillierte
Anforderungsanalyse, in der konkrete Use-cases erarbeitet werden, die als Basis für das
Architekturdesign dient. Darauf aufbauend wird ein Infrastrukturkonzept vorgestellt, das
den Aufbau und Betrieb einer modularen, containerisierten CMDB beschreibt.

Abschließend werden Integrationsmöglichkeiten und Automatisierungsstrategien mit
gängigen CI/CD- und Monitoring-Tools diskutiert. Die Arbeit schließt mit einer Zusam-
menfassung der Ergebnisse und einem Ausblick auf die weiterführende Entwicklung der
CMDB.

3

2 Theoretische und technische Grundlagen

2.1 Begri! des Configuration Managements

Configuration Management (CM) beschreibt den systematischen Prozess zur Erfassung,
Dokumentation und Steuerung der Konfigurationselemente (Configuration Items, CIs)
einer IT-Infrastruktur über deren gesamten Lebenszyklus hinweg. Ziel des Configurati-
on Managements ist es, sicherzustellen, dass die Integrität und Nachvollziehbarkeit der
Systemkonfigurationen zu jedem Zeitpunkt gewährleistet ist. Moderne CMDBs können
prinzipiell über APIs automatisch aktualisiert werden, sofern entsprechende Discovery-
oder Integrationsprozesse vorhanden sind.

Nach ITIL[3] umfasst das Configuration Management die Identifikation, Kontrolle,
Statusüberwachung und Verifizierung aller CIs, die zur Erbringung von IT-Services bei-
tragen. Zu den typischen Configuration Items zählen Hardwarekomponenten, Softwarever-
sionen, Netzwerkelemente, virtuelle Maschinen, Container und sogar Dokumentationen.
Diese werden in einer zentralen Datenbank – der sogenannten Configuration Management
Database (CMDB) – verwaltet, um den aktuellen Zustand der IT-Landschaft konsistent
und transparent abzubilden.

Durch die Einführung eines strukturierten Configuration Managements können Fehler-
quellen reduziert, Änderungen besser nachvollzogen und Risiken im IT-Betrieb minimiert
werden. Insbesondere in dynamischen Infrastrukturen, in denen Cloud- und Container-
Technologien eingesetzt werden, gewinnt ein automatisiertes und skalierbares Configura-
tion Management zunehmend an Bedeutung.

2.2 Rolle und Bedeutung einer CMDB im IT-Service-Management

Die CMDB stellt das zentrale Informationssystem im IT-Service-Management (ITSM)
dar. Sie dient als Datenquelle für zahlreiche operative und strategische Prozesse, darunter
Change Management, Incident Management, Problem Management, Asset Management
und Service Level Management.

Ihre Hauptaufgabe besteht darin, die Beziehungen und Abhängigkeiten zwischen den
verschiedenen Configuration Items abzubilden. Diese Beziehungen ermöglichen eine geziel-
te Analyse von Auswirkungen bei Systemänderungen oder Störungen. Beispielsweise kann
bei einem Ausfall eines Servers sofort ermittelt werden, welche Applikationen, Benutzer
oder Geschäftsprozesse davon betro!en sind.

Darüber hinaus unterstützt eine CMDB die Einhaltung regulatorischer Anforderungen
und interner Compliance-Vorgaben, indem sie eine nachvollziehbare Historie von Änderun-
gen und Zuständen bereitstellt. In größeren Organisationen dient sie zudem als Grundlage
für Audits und Sicherheitsprüfungen.

In einem modernen ITSM-Kontext wird die CMDB zunehmend in automatisierte Pro-

4

zesse integriert. Über Schnittstellen zu Monitoring-, Deployment- und Orchestrierungs-
werkzeugen kann sie aktuelle Konfigurationsdaten automatisch erfassen und aktualisieren.
Dadurch entwickelt sich die CMDB von einem rein dokumentarischen System zu einem
aktiven Bestandteil der operativen IT-Steuerung.

2.3 ITIL-Referenzmodell und Best Practices

Das Information Technology Infrastructure Library (ITIL 4)-Framework definiert Best
Practices für das moderne IT-Service-Management und beschreibt anhand seiner Practices
und Value Streams2, wie Organisationen ihre Services ganzheitlich planen, bereitstellen
und kontinuierlich verbessern können. Innerhalb dieses Frameworks nimmt das Service
Configuration Management eine zentrale Rolle ein.

In ITIL 4 bildet die Configuration Management Database (CMDB) einen wesentlichen
Bestandteil dieser Practice. Sie stellt sicher, dass Informationen über Konfigurationsele-
mente (CIs) und deren Beziehungen konsistent verwaltet werden. Die CMDB unterstützt
dabei andere ITIL-4-Practices wie Change Enablement, indem sie die Bewertung poten-
zieller Auswirkungen geplanter Änderungen erleichtert, sowie das Incident Management,
das durch aktuelle CI-Daten Störungen schneller analysieren und beheben kann.

ITIL 4 empfiehlt, den Aufbau einer CMDB schrittweise und bedarfsgerecht vorzu-
nehmen. Ein überdimensioniertes oder zu detailliertes Modell erhöht das Risiko hoher
Pflegekosten, mangelnder Datenqualität und unübersichtlicher Strukturen. Stattdessen
wird ein pragmatischer Ansatz empfohlen, bei dem zunächst die wichtigsten Services, CIs
und Abhängigkeiten modelliert und anschließend sukzessive erweitert werden.

Neben ITIL 4 existieren weitere Frameworks wie COBIT oder ISO/IEC 20000, die
ebenfalls Leitlinien für das Configuration Management bereitstellen. Diese Standards be-
tonen die Bedeutung einer konsistenten, nachvollziehbaren und transparenten Konfigura-
tionsverwaltung als Grundlage für ein e!ektives IT-Service-Management.

2.4 Open-Source-Ansätze im Configuration Management

Mit dem zunehmenden Einsatz von Open-Source-Software in Unternehmensumgebungen
haben sich auch im Bereich des Configuration Managements zahlreiche quello!ene Werk-
zeuge etabliert. Bekannte Vertreter sind etwa Ansible, Puppet, Chef und SaltStack, die
primär auf die Automatisierung von Infrastrukturkonfigurationen ausgerichtet sind.

Im Gegensatz zu diesen Tools, die operative Konfigurationsänderungen durchführen,
fokussieren sich Open-Source-CMDB-Systeme wie i-doit, OCS Inventory NG oder Data-
Gerry auf die zentrale Erfassung und Verwaltung von Konfigurationsdaten. Diese Systeme

2In ITIL4 bezeichnet ein Value Stream die Gesamtheit aller Schritte und Aktivitäten, die notwendig
sind, um einen Service oder ein Produkt von der Anforderung bis zur Wertschöpfung für den Kunden
bereitzustellen.

5

bieten eine flexible Datenstruktur, um individuelle Objekttypen und Abhängigkeiten zu
modellieren.

Der Einsatz von Open-Source-Lösungen bringt dabei mehrere Vorteile mit sich: Un-
ternehmen vermeiden Vendor Lock-ins3 , können Anpassungen an eigene Anforderun-
gen vornehmen und profitieren von einer aktiven Entwickler-Community. Darüber hinaus
ermöglichen o!ene Schnittstellen (REST-APIs) eine einfache Integration in bestehende
DevOps- und ITSM-Umgebungen.

Die Kombination von Automatisierungswerkzeugen und Open-Source-CMDBs bietet
somit eine leistungsfähige Basis für moderne, dynamische IT-Infrastrukturen, in denen
Transparenz, Skalierbarkeit und Nachvollziehbarkeit zentrale Anforderungen darstellen.

2.5 Einordnung und Architektur von DataGerry

DataGerry ist ein Open-Source-CMDB-System, das speziell darauf ausgelegt ist, eine fle-
xible und anpassbare Verwaltung von Configuration Items zu ermöglichen. Im Gegensatz
zu klassischen CMDB-Lösungen, die häufig starre Datenmodelle verwenden, verfolgt Da-
taGerry einen generischen Ansatz, bei dem Benutzer eigene Objekttypen, Attribute und
Relationen definieren können.

Die Architektur von DataGerry basiert auf einem modularen Aufbau. Es wird Rab-
bitMQ als Mesagging-System benutzt und im Backend werden die Daten in einer Mon-
goDB -NoSQL-Datenbank gespeichert, die eine hohe Flexibilität und Skalierbarkeit bei
der Verwaltung unstrukturierter Daten ermöglicht. Über eine REST-API können externe
Systeme auf die gespeicherten Konfigurationsdaten zugreifen, was eine Integration mit
Monitoring-Systemen, CI/CD-Pipelines oder Inventarisierungstools erleichtert.

Das Frontend von DataGerry ist webbasiert und ermöglicht eine intuitive Verwaltung
der Datenmodelle, Konfigurationsobjekte und Beziehungen. Die Anwendung ist in Python
implementiert und lässt sich durch containerisierte Bereitstellung (z. B. via Docker oder
Podman) leicht in bestehende Infrastrukturen integrieren.

Im Kontext dieser Arbeit dient DataGerry als Referenzsystem, um die konzeptionellen
Überlegungen einer modernen, o!enen CMDB zu konkretisieren. Dabei wird insbesondere
untersucht, wie sich eine skalierbare Architektur, o!ene Schnittstellen und Automatisie-
rungskonzepte in ein integriertes Infrastrukturdesign einfügen lassen[1].

3Der Begri" Vendor Lock-in bezeichnet die Abhängigkeit eines Unternehmens von einem bestimmten
Anbieter (Vendor) aufgrund proprietärer Technologien, Formate oder Schnittstellen. Diese Bindung er-
schwert oder verhindert den Wechsel zu alternativen Produkten oder Anbietern, da hohe Umstellungs-
und Integrationskosten entstehen können. Im Kontext von IT-Infrastrukturen bedeutet ein Vendor Lock-
in, dass Organisationen bei Software, Cloud-Diensten oder Hardware an einen Hersteller gebunden sind,
was Flexibilität und Innovationsfähigkeit einschränken kann [4, 5].

6

3 Anforderungsanalyse

3.1 Methodik der Anforderungsanalyse

Die Anforderungsanalyse stellt einen zentralen Bestandteil bei der Konzeption und Ent-
wicklung von Softwaresystemen dar. Sie dient der systematischen Erhebung, Strukturie-
rung und Dokumentation aller Anforderungen, die an das zu entwickelnde System gestellt
werden . Im Kontext dieser Arbeit bildet die Anforderungsanalyse die Grundlage für
die spätere Konzeption einer Configuration Management Database (CMDB). Dabei wer-
den die methodischen Schritte beschrieben, die typischerweise bei der Ermittlung von
Anforderungen zum Einsatz kommen, ohne dass eine vollständige empirische Erhebung
durchgeführt wird.

Vorgehensweise bei der Anforderungserhebung

Zur Ermittlung von Anforderungen existieren verschiedene bewährte Methoden, die je
nach Projektumfang und Zielsetzung kombiniert werden können. Zu den klassischen An-
sätzen zählen insbesondere:

• Interviews: Gespräche mit relevanten Stakeholdern – wie IT-Administratoren, DevOps-
Ingenieuren oder IT-Service-Managern – dienen dazu, ein Verständnis für bestehen-
de Prozesse, Probleme und Erwartungen zu entwickeln. Durch halbstrukturierte
Interviews lassen sich sowohl explizite Anforderungen als auch implizite Bedürfnisse
erfassen [6].

• Dokumentenanalyse: Die Untersuchung vorhandener Dokumentationen (z. B.
Systemhandbücher, Netzwerkpläne, ITIL-Prozessbeschreibungen) ermöglicht es, be-
stehende Strukturen und Schnittstellen zu identifizieren. Für eine CMDB sind ins-
besondere Informationen über vorhandene Konfigurationsobjekte und ihre Abhän-
gigkeiten von Bedeutung.

• Workshops und Use-Case-Analysen: In gemeinsamen Workshops mit Stakehol-
dern können Anforderungen konsolidiert und priorisiert werden. Die Modellierung
von Use Cases hilft, Systemfunktionen aus Anwendersicht zu verstehen und konkrete
Nutzungsszenarien zu definieren [7].

Für das vorliegende konzeptionelle Projekt wird ein hypothetisches Vorgehen ange-
nommen, das sich an diesen Methoden orientiert. Ziel ist es, eine konsistente und nach-
vollziehbare Sammlung von Anforderungen zu erstellen, die als Grundlage für das Sys-
temdesign dienen kann.

7

Klassifizierung der Anforderungen

Die ermittelten Anforderungen werden üblicherweise in funktionale und nicht-funktionale
Anforderungen unterteilt [8]:

• Funktionale Anforderungen beschreiben, was das System leisten soll – also kon-
krete Funktionen, Prozesse oder Verhaltensweisen. Im Falle einer CMDB betri!t dies
etwa die Verwaltung von Configuration Items (CIs), die Darstellung von Abhängig-
keiten, Such- und Filterfunktionen oder Schnittstellen zu anderen IT-Systemen.

• Nicht-funktionale Anforderungen legen fest, wie das System seine Aufgaben
erfüllen soll. Dazu zählen unter anderem Anforderungen an Sicherheit, Verfügbar-
keit, Skalierbarkeit, Performance und Wartbarkeit. Für eine CMDB ist beispielsweise
sicherzustellen, dass die Datenintegrität gewährleistet ist, sensible Systeminforma-
tionen geschützt werden und die Lösung in wachsenden IT-Umgebungen performant
bleibt.

Zusammenfassung und Ausblick

Die in diesem Abschnitt beschriebenen methodischen Schritte bilden die Grundlage für
die nachfolgende Spezifikation der Anforderungen. Während hier der Fokus auf der all-
gemeinen Methodik der Anforderungserhebung und -klassifizierung lag, werden in den
folgenden Abschnitten (3.2 und 3.3) die konkreten funktionalen und nicht-funktionalen
Anforderungen an die zu konzipierende CMDB im Detail beschrieben.

3.2 Funktionale Anforderungen an eine CMDB

Die funktionalen Anforderungen definieren die zentralen Aufgaben und Eigenschaften, die
eine Configuration Management Database (CMDB) erfüllen muss, um ihre Kernfunktio-
nen im Rahmen des IT-Service-Managements (ITSM) nach ITIL e!ektiv zu unterstützen.
Diese Anforderungen ergeben sich aus der Analyse der ITIL-Prozesse, den betrieblichen
Zielsetzungen sowie den typischen Herausforderungen moderner IT-Infrastrukturen.

Erfassung und Verwaltung von Configuration Items (CIs)

Eine der primären Funktionen einer CMDB besteht in der strukturierten Erfassung und
Verwaltung von Configuration Items (CIs). Hierbei handelt es sich um sämtliche Kom-
ponenten einer IT-Umgebung, die für den Betrieb und die Verwaltung relevant sind –
beispielsweise Server, virtuelle Maschinen, Container, Netzwerkelemente, Softwarepakete
oder Cloud-Ressourcen [3, 9]. Jedes CI muss eindeutig identifizierbar sein und über At-
tribute wie Name, Typ, Status, Verantwortlicher und Version verfügen. Die CMDB sollte
dabei die Möglichkeit bieten, unterschiedliche CI-Typen zu modellieren und benutzerde-
finierte Attribute zu ergänzen, um anwendungsspezifische Informationen abzubilden.

8

Beziehungsmanagement und Abhängigkeitsmodellierung

Neben der isolierten Erfassung einzelner Objekte ist die Abbildung von Beziehungen zwi-
schen den CIs ein zentraler Bestandteil einer CMDB. Diese Beziehungen ermöglichen eine
ganzheitliche Sicht auf die IT-Landschaft und bilden die Grundlage für Impact-Analysen
im Change- und Incident-Management. Ein funktionales CMDB-System muss daher Rela-
tionstypen wie „läuft auf“, „abhängig von“ oder „gehört zu“ unterstützen. Dies erlaubt die
Visualisierung von Infrastrukturabhängigkeiten und fördert das Verständnis komplexer
Systemzusammenhänge [3, 1].

Änderungs- und Versionshistorie

Zur Sicherstellung der Nachvollziehbarkeit ist die Versionierung von Konfigurationen und
Änderungen unerlässlich. Eine CMDB soll in der Lage sein, Veränderungen an CIs au-
tomatisch oder manuell zu protokollieren und frühere Zustände wiederherstellbar zu ma-
chen. Dies bildet die Grundlage für eine revisionssichere Dokumentation und unterstützt
das Problem- und Change-Management bei der Ursachenanalyse von Störungen. Open-
Source-Systeme wie DataGerry bieten hierfür bereits modulare Audit-Mechanismen, die
auf bestehenden Datenbankstrukturen (z. B. MongoDB) aufbauen [1].

Schnittstellen und Integrationen

Da die CMDB häufig als zentrales Informationssystem in einer heterogenen IT-Landschaft
fungiert, sind o!ene Schnittstellen (z. B. REST- oder GraphQL-APIs) eine zentrale funk-
tionale Anforderung. Diese ermöglichen die Integration mit Monitoring-Tools (z. B. Pro-
metheus, Zabbix), ITSM-Systemen (z. B. OTRS, ServiceNow) oder CI/CD-Pipelines (Jen-
kins). Dadurch können Konfigurationsdaten automatisiert aktualisiert, neue CIs erkannt
und Änderungen in Echtzeit bzw. "near real-time" synchronisiert werden [10, 11].

Such-, Filter- und Reporting-Funktionalität

Eine CMDB muss leistungsfähige Mechanismen zur Suche, Filterung und Auswertung der
gespeicherten Daten bereitstellen. Hierzu zählen einfache Textsuchen, Attribut-basierte
Filter sowie erweiterte Query-Funktionen, die beispielsweise alle CIs eines bestimmten
Typs oder Status ausgeben können. Zusätzlich sind Funktionen zur Erstellung von Re-
ports oder Dashboards erforderlich, um Management-Entscheidungen datenbasiert zu un-
terstützen [12].

Benutzer- und Rechtemanagement

Für den produktiven Einsatz in größeren Organisationen ist ein fein granuliertes Benutzer-
und Rechtemanagement notwendig. Dabei müssen unterschiedliche Rollen (z. B. Adminis-

9

trator, Operator, Auditor) mit jeweils spezifischen Berechtigungen ausgestattet werden
können. Diese Zugri!skontrollen gewährleisten sowohl die Informationssicherheit als auch
die Einhaltung von Compliance-Richtlinien [3].

Zusammenfassung

Die funktionalen Anforderungen einer CMDB lassen sich somit in fünf Kernbereiche un-
terteilen:

1. Erfassung und Verwaltung von CIs

2. Modellierung von Beziehungen und Abhängigkeiten

3. Änderungs- und Versionsmanagement

4. Schnittstellenintegration und Automatisierung

5. Benutzer- und Zugri!skontrolle

Diese Anforderungen bilden die Grundlage für das in Kapitel 4 vorgestellte Architektur-
konzept und dienen als Basis für die spätere Evaluierung der Lösung.

3.3 Nicht-funktionale Anforderungen (Sicherheit, Skalierbarkeit,

Wartbarkeit)

Neben den funktionalen Anforderungen spielen nicht-funktionale Anforderungen eine zen-
trale Rolle bei der Konzeption einer Configuration Management Database (CMDB). Sie
definieren die Qualitätsmerkmale des Systems und bestimmen, in welchem Maße die funk-
tionalen Anforderungen unter realen Betriebsbedingungen erfüllt werden können. Zu den
wichtigsten nicht-funktionalen Aspekten zählen Sicherheit, Skalierbarkeit, Wartbarkeit,
Verfügbarkeit und Performance.

Sicherheitsanforderungen

Die CMDB enthält zentrale Informationen über die gesamte IT-Infrastruktur und stellt
somit ein besonders schützenswertes System dar. Sicherheitsanforderungen umfassen da-
her sowohl technische als auch organisatorische Maßnahmen. Zu den technischen Anfor-
derungen zählen Authentifizierungs- und Autorisierungsmechanismen, verschlüsselte Da-
tenübertragung (z. B. HTTPS/TLS), rollenbasiertes Zugri!skonzept und Audit-Logging
[13, 11]. Darüber hinaus müssen Datenschutzanforderungen nach geltenden Normen (z. B.
DSGVO4) berücksichtigt werden, insbesondere wenn personenbezogene Daten oder Zu-

4Die Datenschutz-Grundverordnung (DSGVO) ist eine EU-Verordnung, die seit dem 25. Mai 2018
gilt und den Schutz personenbezogener Daten sowie den freien Datenverkehr innerhalb der Europäischen
Union regelt [14].

10

ordnungen zu Benutzern gespeichert werden. Eine sichere CMDB implementiert daher
„Privacy by Design“ und „Least Privilege“-Prinzipien.

Skalierbarkeit und Performance

Da moderne IT-Landschaften stark dynamisch und oft hybrid aufgebaut sind, muss eine
CMDB in der Lage sein, große Datenmengen e"zient zu verarbeiten und bei Bedarf ho-
rizontal oder vertikal zu skalieren. Eine containerisierte Architektur – etwa basierend auf
Podman oder Kubernetes – ermöglicht eine flexible Skalierung von Services wie Daten-
bank, API und Frontend [15]. Auch das zugrunde liegende Datenmodell muss so gestaltet
sein, dass Lese- und Schreiboperationen performant bleiben, selbst bei mehreren zehntau-
send Configuration Items (CIs). NoSQL-Datenbanken wie MongoDB eignen sich hierfür
besonders gut, da sie durch horizontale Skalierung und flexible Schemata eine hohe An-
passungsfähigkeit bieten [16].

Wartbarkeit und Erweiterbarkeit

Eine CMDB ist ein langfristiges Kernsystem im IT-Betrieb. Ihre Architektur muss daher
so ausgelegt sein, dass sie auch über Jahre hinweg wartbar und erweiterbar bleibt. Hierzu
zählen eine saubere Code- und API-Struktur, modularer Aufbau der Komponenten sowie
automatisierte Tests und Deployment-Prozesse (z. B. via CI/CD-Pipelines) [10]. Durch
die Nutzung von Open-Source-Frameworks und Containerisierung kann die CMDB zudem
einfacher aktualisiert und erweitert werden, ohne dass der laufende Betrieb gestört wird.
Dies fördert die Nachhaltigkeit der IT-Systemlandschaft.

Verfügbarkeit und Zuverlässigkeit

Da die CMDB ein zentrales Informationssystem ist, sollte sie eine hohe Verfügbarkeit ge-
währleisten. Dies kann durch den Einsatz von Redundanzmechanismen (z. B. Replikation
der Datenbank), Load-Balancing und Monitoring realisiert werden. Eine Integration mit
Überwachungssystemen wie Prometheus oder Zabbix ermöglicht frühzeitige Erkennung
von Anomalien und trägt zur Stabilität des Betriebs bei [12]. Darüber hinaus sollten
Backup- und Wiederherstellungsstrategien fester Bestandteil des Betriebskonzepts sein,
um Datenverlust und Ausfallzeiten zu minimieren.

Benutzerfreundlichkeit und Transparenz

Ein weiterer Qualitätsaspekt betri!t die Benutzerfreundlichkeit der CMDB. Nur wenn die
Benutzeroberfläche intuitiv gestaltet und die Daten klar strukturiert dargestellt sind, kann
das System im Alltag e!ektiv genutzt werden. Ziel ist eine transparente Informationsdar-
stellung, die sowohl technischen als auch organisatorischen Stakeholdern den Zugri! auf

11

relevante Daten ermöglicht. Dashboards, visuelle Beziehungsdarstellungen und kontext-
basierte Filter tragen wesentlich zur E"zienz im Betrieb bei [1].

Zusammenfassung

Nicht-funktionale Anforderungen bilden die Grundlage für die langfristige Stabilität, Si-
cherheit und Leistungsfähigkeit einer CMDB. Sie ergänzen die funktionalen Anforderun-
gen und definieren die qualitativen Rahmenbedingungen, unter denen die in Kapitel 4 vor-
gestellte Architektur betrieben werden soll.Eine erfolgreiche Implementierung berücksich-
tigt daher sowohl technische als auch organisatorische Aspekte, um eine nachhaltige, siche-
re und erweiterbare Lösung zu gewährleisten. Außerdem bilden alle Anforderungen(sowohl
Funktionale als auch nicht-Funktionale) die Grundlage für den Feasability-Check auf den
sich in Kapitel 4.5 bezogen wird. Dieser soll prüfen ob das Open Source-Tool Datagerry
allen Anforderungen die wir in Kapitel 3.2 und 3.3 erarbeitet haben standhält.

3.4 Konkrete Use Cases für die CMDB-Implementierung

Um die im Rahmen der Anforderungsanalyse ermittelten funktionalen und nicht-funktionalen
Anforderungen praxisnah zu validieren, werden in diesem Abschnitt konkrete Use Cases
definiert. Diese dienen als exemplarische Szenarien, anhand derer das spätere Architek-
turkonzept (vgl. Kapitel 4) entwickelt werden kann.

Die ausgewählten Use Cases orientieren sich an typischen Herausforderungen im IT-
Infrastrukturmanagement und spiegeln die Kernprozesse einer Configuration Management
Database (CMDB) wieder. Dabei wird ein besonderer Fokus auf Aspekte wie Dateninte-
gration, Automatisierung und Transparenz gelegt.

Use Case 1: Automatisierte Erfassung von Infrastrukturkomponenten

Ein zentraler Anwendungsfall einer CMDB besteht in der automatisierten Erfassung von
physischen und virtuellen Infrastrukturkomponenten. In modernen, containerisierten Um-
gebungen werden Systeme häufig dynamisch bereitgestellt und wieder entfernt. Der Use
Case beschreibt die automatische Erkennung und Synchronisation von neuen Servern,
Containern oder Netzwerkgeräten mit der CMDB.

Ziel: Sicherstellung, dass die CMDB jederzeit den aktuellen Zustand der Infrastruk-
tur abbildet. Akteure: Systemadministrator, Monitoring-System, Discovery-Agent. Der
Discovery-Prozess erfolgt nicht nativ. Er müsste über Skripte oder externe Tools wie OCS
Inventory NG implementiert werden. Ablauf:

1. Ein neues System wird in einer Cloud- oder Containerumgebung bereitgestellt.

2. Ein Discovery-Agent erfasst relevante Metadaten (z. B. Hostname, IP-Adresse, Be-
triebssystemversion).

12

3. Die Daten werden über eine API an die CMDB (DataGerry) übermittelt und dort
als Configuration Item (CI) gespeichert.

4. Änderungen werden versioniert, um historische Zustände nachvollziehbar zu ma-
chen.

Erwartetes Ergebnis: Eine konsistente und stets aktuelle Datenbasis, die als Grund-
lage für Monitoring, Incident- und Change-Management dient [17].

Use Case 2: Integration mit Monitoring- und CI/CD-Systemen

Dieser Use Case beschreibt ein mögliches Integrationsszenario, in dem die CMDB in be-
stehende IT-Operations-Prozesse eingebunden wird. Da für gängige Monitoring-Lösungen
wie Prometheus oder Zabbix sowie für CI/CD-Systeme wie Jenkins oder GitLab CI kei-
ne o"ziellen oder vorkonfigurierten Integrationen existieren, erfolgt der Datenaustausch
ausschließlich über individuell entwickelte Skripte oder API-Aufrufe.

Ziel: Verbesserung der Transparenz und Automatisierung, indem Konfigurationsdaten
für Build-, Deployment- und Überwachungsprozesse zentral verfügbar sind.

Akteure: DevOps-Engineer, CI/CD-System, Monitoring-System. Ablauf:

1. Die CMDB stellt Informationen zu Services und Abhängigkeiten über eine REST-
API bereit.

2. CI/CD-Jobs können diese Daten abrufen, um Deployment-Umgebungen dynamisch
zu konfigurieren.

3. Monitoring-Systeme nutzen dieselben Daten, um automatisch neue Services zu er-
fassen oder Alarme zu konfigurieren.

Erwartetes Ergebnis: Reduzierter manueller Aufwand bei der Systemintegration
sowie verbesserte Nachvollziehbarkeit von Änderungen in der Produktionsumgebung [18].

Use Case 3: Änderungsmanagement und Nachvollziehbarkeit

Ein wesentlicher Aspekt jeder CMDB ist die Unterstützung des Change Managements
im Sinne des ITIL-Frameworks. Dieser Use Case beschreibt die Nachvollziehbarkeit von
Konfigurationsänderungen und deren Auswirkungen auf abhängige Systeme.

Ziel: Minimierung von Risiken bei Änderungen durch eine klare Versionshistorie und
Abhängigkeitsanalyse.

Akteure: Change Manager, IT-Service-Desk, CMDB-System. Ablauf:

1. Ein geplanter Change wird im ITSM-System (z. B. ServiceNow) erfasst.

2. Das CMDB-System identifiziert alle betro!enen CIs und zeigt deren Beziehungen
an.

13

3. Nach Durchführung des Changes wird der neue Zustand automatisch dokumentiert.

Erwartetes Ergebnis: Erhöhte Transparenz und verbesserte Entscheidungsgrundla-
ge bei geplanten Änderungen.

Zusammenfassung der Use Cases Die drei beschriebenen Use Cases bilden die
Basis für die konzeptionelle und technologische Ausarbeitung der CMDB in Kapitel 4. Sie
decken zentrale Funktionsbereiche ab:

• Erfassung und Pflege von Configuration Items(CIs) (Use Case 1),

• Integration in bestehende Betriebsprozesse (Use Case 2),

• Transparenz und Kontrolle im Änderungsmanagement (Use Case 3).

4 Konzeptionelle Architektur einer CMDB

Die konzeptionelle Architektur bildet das zentrale Ergebnis der vorliegenden Arbeit. Sie
beschreibt die grundlegenden Systemkomponenten, deren logische Zusammenhänge sowie
die Kommunikationsflüsse innerhalb der geplanten Configuration Management Database
(CMDB). Ziel ist es, eine skalierbare, modular aufgebaute und erweiterbare Systemland-
schaft zu entwerfen, die auf o!enen Standards und Open-Source-Technologien basiert.

4.1 Überblick über die Zielarchitektur

Die in dieser Arbeit konzipierte Architektur folgt einem modularen Aufbau, bei dem ein-
zelne Funktionsbereiche in klar abgegrenzten Systemkomponenten realisiert sind. Diese
Modularität erlaubt es, Komponenten unabhängig voneinander zu entwickeln, zu warten
und bei Bedarf zu erweitern. Die logische Struktur der Architektur ist in Abbildung 1
im Anhang dargestellt. Sie zeigt die wesentlichen Systemelemente und in welchen Netz-
werken sie deployt werden sollen. Datenflüsse und Integrationspunkte zu bestehenden
IT-Systemen sind ebenfalls abgebildet.

Das Gesamtsystem gliedert sich in drei Hauptschichten:

• Präsentationsschicht: Verantwortlich für die Benutzerinteraktion über Webober-
flächen und APIs. Dazu gehören das Frontend (Svelte-basiert) und die DataGerry
Admin UI.

• Applikations- und Logikschicht: In dieser Schicht befinden sich zentrale Dienste
wie das BFF - Backend For Frontend (Java/Quarkus) sowie die DataGerry-API, die
als Schnittstelle zur Datenhaltung fungiert.

14

• Datenhaltungsschicht: Besondere Aufmerksamkeit erfordert dabei die Sicherstel-
lung der Datenkonsistenz sowie der referenziellen Beziehungen zwischen den gespei-
cherten Konfigurationsobjekten, insbesondere im Hinblick auf Hochverfügbarkeitss-
zenarien. Obwohl Docker Compose benutzt wurde vgl. Unterkapitel 5.3.2, müssen
Mechanismen zur Replikation und Konsistenzwahrung der MongoDB-Datenbank ge-
sondert berücksichtigt werden, da Docker Compose keine native HA-Unterstützung
bietet

Ergänzt wird die Architektur durch unterstützende Komponenten, wie den Keycloak -
Cluster zur Authentifizierung und Autorisierung, sowie externe Systeme (z. B. Confluence,
GitHub, CyberArk, Jenkins, Prometheus), die über standardisierte Schnittstellen einge-
bunden werden; für sicherheitskritische Anwendungen wie die Secret-Verwaltung durch
CyberArk wäre jedoch ein klar definiertes, abgesichertes Integrationskonzept erforderlich,
etwa über rollenbasierte Zugri!skontrollen, Token-Verwaltung und den Einsatz kurzlebi-
ger Anmeldeinformationen.[19]

4.2 Modularer Aufbau und Schnittstellen

Der modulare Aufbau gewährleistet eine klare Trennung der Verantwortlichkeiten und
minimiert Abhängigkeiten zwischen den Komponenten. Die Hauptmodule der Architektur
lassen sich wie folgt beschreiben:

1. DataGerry Core: Stellt die zentrale Plattform zur Verwaltung und Strukturie-
rung von Konfigurationsdaten bereit. Über die REST-API werden alle Operationen
(CRUD) auf den Configuration Items ausgeführt.

2. BFF – Backend For Frontend: Realisiert in Java/Quarkus und fungiert als Ver-
mittler zwischen Frontend, DataGerry und externen Systemen wie Confluence (Do-
kumentation), GitHub (Quellcode-Verwaltung), CyberArk (Secret Management),
Jenkins (CI/CD-Pipeline) und Prometheus (monitoring-Tool).

3. Frontend: Eine Svelte-basierte Benutzeroberfläche, die Nutzern einen intuitiven
Zugri! auf die CMDB-Daten ermöglicht.

4. Authentifizierung und Zugri!skontrolle: Der Keycloak -Cluster (RHBK) über-
nimmt zentrale Funktionen der Benutzerverwaltung und Single-Sign-On-Integration.

5. Persistenzschicht: basiert auf einer MongoDB -Instanz, in der DataGerry die CMDB-
Objekte sowie die zugehörigen Metadaten ablegt. Beziehungen zwischen Konfigura-
tionselementen und Änderungsinformationen werden durch die Anwendung selbst
verwaltet und als strukturierte Dokumente in MongoDB gespeichert, da MongoDB
keine native referentielle Integrität oder Versionierung bereitstellt.

15

Durch diesen modularen Aufbau ist die Architektur flexibel erweiterbar und kann zu-
künftig um zusätzliche Module, wie etwa ein automatisiertes Discovery- oder Monitoring-
Modul, ergänzt werden.

Begründung des BFFs und des Frontends

Für die Zielarchitektur wird ein Backend-for-Frontend (BFF) eingesetzt, um Funktionen
bereitzustellen, die über die Möglichkeiten der reinen DataGerry-API hinausgehen. Da
DataGerry architekturbedingt dem Repo-first-Ansatz folgt – das heißt, das Datenmodell
wird primär in der MongoDB definiert und die REST-API anschließend als Zugri!sschicht
darübergelegt – fehlt ein vorab spezifizierter, stabiler Integrationsvertrag, wie er in einem
API-first-Ansatz üblich wäre. Dies erschwert insbesondere Integrationen mit Monitoring-
Systemen, CI/CD-Pipelines oder externen Automatisierungsprozessen.

Das BFF schließt diese Lücke, indem es als Vermittlungsschicht zwischen Frontend,
CMDB und weiteren Systemen fungiert. Es aggregiert und transformiert Daten aus ver-
schiedenen Quellen, validiert Eingaben, setzt Sicherheits- und Zugri!skontrollen durch
und stellt eine konsolidierte, integrations- und frontendgerechte API bereit. Zudem ermög-
licht es Mechanismen wie Caching und die Entkopplung der Frontend-Kommunikation von
internen Systemen. Dadurch kann sowohl Performance als auch Sicherheit erhöht und eine
konsistente sowie erweiterbare Bereitstellung der CMDB-Daten gewährleistet werden.

Obwohl DataGerry bereits über eine eigene Benutzeroberfläche verfügt, wird im Ar-
chitekturkonzept ein zusätzliches Frontend vorgesehen. Die vorhandene UI ist primär auf
administrative Aufgaben und die generische Verwaltung von Konfigurationsobjekten aus-
gelegt, bietet jedoch nur eingeschränkte Möglichkeiten für organisationsspezifische Work-
flows, eigene Visualisierungen oder domänenspezifische Interaktionen. Durch ein dediziert
entwickeltes Frontend können gezielte Nutzungsprozesse vereinfacht, komplexe Datenbe-
ziehungen übersichtlich dargestellt und zusätzliche Funktionen implementiert werden, die
über den Standardumfang von DataGerry hinausgehen. Das Frontend nutzt dabei exklusiv
die abstrahierte API des BFF, wodurch eine klare Trennung zwischen Präsentation, Lo-
gik und Datenhaltung gewährleistet bleibt und die Anpassbarkeit des Systems langfristig
sichergestellt wird.

4.3 Datenflüsse und Kommunikation

Alle Komponenten – einschließlich des Backend-for-Frontend (BFF) – kommunizieren über
standardisierte REST-Schnittstellen und tauschen Daten ausschließlich über etablierte
Protokolle (z. B. HTTPS, JSON) aus. Dies gewährleistet Interoperabilität5 und erleichtert

5Der Begri" Interoperabilität beschreibt die Fähigkeit unterschiedlicher Systeme, Anwendungen oder
Komponenten, miteinander zu kommunizieren, Daten auszutauschen und diese Informationen e!zient
weiterzuverarbeiten, ohne dass eine Anpassung der beteiligten Systeme erforderlich ist. Vgl. ISO/IEC
2382:2015, Information technology – Vocabulary.

16

zukünftige Integrationen.

• Der Developer interagiert über das Cockpit-Frontend mit der CMDB. Änderungen
oder Abfragen werden über das Cockpit-BFF an die DataGerry-API weitergeleitet.

• Die DataGerry-API dient als zentrales Gateway zur Datenhaltung. Sie führt
Schreib- und Leseoperationen auf der MongoDB aus.

• Das Authentifizierungssystem (Keycloak) validiert Benutzerzugri!e und gibt
Access Tokens an die Kommunikationspartner zurück. Dabei wird OAuth2 ein-
gesetzt. Eine vollständige OIDC-Kompatibilität besteht seitens DataGerry jedoch
nicht, da lediglich der Token-basierte Zugri! unterstützt wird und keine vollstän-
dige Umsetzung der OIDC-Spezifikation (z. B. standardisierte Claims, UserInfo-
Endpoint oder automatisiertes Rollenmapping) erfolgt.

• Über den Datenmigrationsprozess werden Informationen aus dem bestehenden
Asset Inventory (Microsoft Access) in eine CSV exportiert und andschließend per
CSV Import Funktion, welche die Datagerry UI bietet, in die CMDB überführt.

Die vollständige Darstellung der Datenflüsse, einschließlich der Netzwerkschichten und
Clusterebenen, findet sich in Abbildung 1.

4.4 Integration und Sicherheit

Ein wesentliches Ziel des Architekturkonzepts besteht darin, die CMDB sicher in beste-
hende Unternehmenssysteme zu integrieren, ohne gegen vorhandene Sicherheitsrichtlinien
zu verstoßen. Die einzelnen Komponenten werden zwar in Containern betrieben, jedoch
stellt die Containerisierung allein keinen Sicherheitsgewinn dar. Sicherheit entsteht erst
durch zusätzliche Maßnahmen wie Image-Hardening 6, regelmäßige Updates, kontrollierte
Netzsegmentierung und das Prinzip der minimalen Berechtigungen.

Die Kommunikation zwischen den Modulen erfolgt über verschlüsselte HTTPS-Verbindungen,
wobei die TLS-Terminierung typischerweise nicht in den einzelnen Containern, sondern
an zentralen Infrastrukturkomponenten wie einem Reverse Proxy stattfindet. Dadurch
können Zertifikate konsistent verwaltet und Verbindungen kontrolliert überwacht werden.

Für die Authentifizierung und Autorisierung kommt Keycloak zum Einsatz, das rollen-
und gruppenbasierte Zugri!skontrollen bereitstellt. Sensible Anmeldeinformationen wer-
den nicht in der CMDB selbst gespeichert. Der Einsatz von CyberArk kann hierbei sinnvoll
sein, sofern er auf die Verwaltung kurzlebiger API-Tokens, Service-Accounts oder ande-
rer betriebskritischer Zugangsdaten beschränkt bleibt. Eine direkte Kopplung zwischen

6Image-Hardening umfasst alle Maßnahmen zur Absicherung von Container- oder VM-Images, indem
unnötige Komponenten entfernt, sichere Konfigurationen umgesetzt und Integritätskontrollen etabliert
werden. Ziel ist es, die Angri"sfläche zu minimieren und die Images nahtlos in bestehende Sicherheits-
und Integrationsprozesse einzubetten.

17

CMDB und CyberArk im Sinne eines automatischen Credential-Austauschs wäre hinge-
gen sicherheitstechnisch kritisch und ist nicht vorgesehen.[20].

4.5 Bezug zum Feasibility Check

Der in Abbildung 2 dokumentierte Feasibility Check dient als Grundlage für die Bewertung
der Umsetzbarkeit der vorgeschlagenen Architektur. Er überprüft die technische Eignung
der eingesetzten Open-Source-Komponente Datagerry, hinsichtlich der Anforderungen die
in Kapitel 3.2 und 3.3 erarbeitet wurden.

Gleichzeitig zeigt der Feasibility Check eine klare Trennung zwischen funktionalen
und nicht-funktionalen Anforderungen: Während DataGerry die funktionalen Anforde-
rungen – insbesondere hinsichtlich Flexibilität, Modellierbarkeit und Erweiterbarkeit der
Konfigurationsobjekte – erfüllt, wird deutlich, dass die Lösung bei den nicht-funktionalen
Anforderungen an ihre Grenzen stößt. Dies betri!t insbesondere Aspekte wie Verfüg-
barkeit, Performance bei großen Datenmengen, Skalierbarkeit sowie die Fähigkeit, defi-
nierte SLA-Vorgaben einzuhalten. DataGerry bietet keine native HA-Unterstützung, was
für produktive CMDB-Systeme ein zentrales Kriterium darstellt. DataGerry selbst ist
nicht HA-fähig. Die Verfügbarkeit muss über Infrastrukturkomponenten wie Container-
Orchestrierung (z. B. Kubernetes), Load Balancer und MongoDB-Replica-Sets hergestellt
werden. Diese Abhängigkeit von externer Infrastruktur bedeutet, dass hohe Verfügbar-
keit, horizontale Skalierung oder Lastverteilung nicht durch die CMDB-Anwendung selbst,
sondern ausschließlich durch zusätzliche Plattformkomponenten gewährleistet werden kön-
nen. Insgesamt zeigt der Feasibility Check, dass DataGerry zwar als funktionale Grundlage
und prototypische Implementierungsbasis geeignet ist, die Anforderungen an einen ska-
lierbaren, SLA-konformen und hochverfügbaren Produktivbetrieb jedoch nicht vollständig
erfüllt.[21].

4.6 Zusammenfassung

Das vorgestellte Architekturkonzept bietet eine skalierbare, modulare und sichere Grund-
lage für den Aufbau einer modernen CMDB. Durch den Einsatz von Open-Source-Technologien
und standardisierten Schnittstellen wird die Interoperabilität mit bestehenden IT-Systemen
gewährleistet. Der modulare Aufbau fördert dabei die langfristige Wartbarkeit und An-
passungsfähigkeit des Systems.

18

5 Integration und Automatisierung

5.1 Ziel und Bedeutung der Integration

Die Integration einer Configuration Management Database (CMDB) in bestehende IT-
Prozesse bildet die Grundlage für eine e"ziente, automatisierte und nachvollziehbare In-
frastrukturverwaltung. Eine moderne CMDB wie DataGerry fungiert nicht als isoliertes
System, sondern als zentrales Bindeglied zwischen Monitoring, Deployment und Change-
Management-Prozessen. Im Sinne der DevOps-Philosophie wird dabei die enge Verzah-
nung zwischen Entwicklung, Betrieb und Automatisierung angestrebt [18].

5.2 Technologische Grundlagen

Zur Umsetzung der Integrations- und Automatisierungsstrategie werden Containerisie-
rung, Infrastructure as Code (IaC)7 sowie kontinuierliche Integrations- und Deployment-
prozesse (CI/CD) genutzt. Die Containerisierung erfolgt mittels Podman, wodurch die
CMDB und ihre Abhängigkeiten in standardisierte, portable Umgebungen verpackt wer-
den können [22]. Ansible dient als Orchestrierungs- und Automatisierungs-Tool für die
Bereitstellung der Systemkomponenten (DataGerry, RabbitMQ, MongoDB) [23]. Die Ver-
sionskontrolle und Integration in CI/CD-Pipelines wird über Jenkins sichergestellt.

5.3 Umsetzung der Automatisierung

5.3.1 Infrastructure as Code mit Ansible

Das Ansible-Playbook automatisiert die Bereitstellung der zentralen CMDB-Komponenten.
Dabei werden folgende Hauptaufgaben realisiert:

• Installation und Konfiguration von DataGerry, RabbitMQ und MongoDB,

• Sicherstellung der Serviceabhängigkeiten (Startreihenfolge),

• Integration in das Netzwerkumfeld (Ports, Volumes, Security),

• Implementierung eines idempotenten Deployments, d. h. wiederholte Ausführungen
führen zu keinem fehlerhaften Zustand.

Der modulare Aufbau des Playbooks erlaubt eine Wiederverwendung einzelner Rollen
und Tasks für zukünftige Erweiterungen. Das Vorgehen folgt den Best Practices der IaC-
Methodik, wonach Infrastrukturänderungen versioniert, dokumentiert und reproduzierbar

7Infrastructure as Code (IaC) bezeichnet den Ansatz, IT-Infrastruktur über Code zu definieren, zu
verwalten und automatisiert bereitzustellen, anstatt sie manuell zu konfigurieren. Dadurch wird eine
reproduzierbare, versionierbare und skalierbare Bereitstellung von Systemen ermöglicht. Vgl. Hüttermann,
M. (2012): DevOps for Developers. Apress.

19

bereitgestellt werden sollen. Das im Listing 2 dokumentierte Ansible Playbook beschreibt
folgenden Automatisierungsprozess: Lädt den DataGerry-Quellcode herunter, installiert
notwendige Abhängigkeiten, kopiert Konfigurationsdateien (cmdb.conf, datagerry.conf)
und richtet den Service (datagerry.service) ein [24].

5.3.2 Containerisierung mit Docker Compose

Die Containerisierung erfolgt über ein docker-compose.yml-File (vgl. Listing 1). Hier
werden die Dienste datagerry, rabbitmq und mongodb als voneinander abhängige Con-
tainer beschrieben. Docker Compose ermöglicht die einfache Verwaltung der Dienste über
Befehle wie:

docker-compose up -d
docker-compose down

Diese Methode bietet Vorteile hinsichtlich Portabilität und Wiederholbarkeit, insbesonde-
re bei Deployments auf Red Hat Enterprise Linux (RHEL 9) oder vergleichbaren Systemen
[21].

5.3.3 Integration mit CI/CD

Die Integration der CMDB in bestehende CI/CD-Pipelines (Continuous Integration/Con-
tinuous Deployment) stellt einen wesentlichen Schritt dar, um Infrastruktur- und Anwen-
dungsbereitstellungen automatisiert, konsistent und nachvollziehbar zu gestalten. Ziel ist
es, Konfigurationsdaten aus der CMDB automatisiert in Build-, Test- und Deployment-
Prozesse einzubinden, sodass Deployments stets auf aktuellen und verifizierten Systemin-
formationen basieren.

Automatisierte Bereitstellung von Konfigurationsdaten

CI/CD-Systeme wie Jenkins greifen nicht direkt auf die CMDB zu, sondern beziehen die
benötigten Infrastruktur- und Servicedaten über das Backend-for-Frontend (BFF), das
als vermittelnde Schicht dient. Das BFF ruft die Informationen über die REST-API von
DataGerry ab, bereitet sie für Integrationsprozesse auf und stellt sie CI/CD-Pipelines in
konsolidierter Form bereit. Typische Anwendungsfälle sind unter anderem:

• Dynamisches Abrufen von Server-, Cluster- oder Containerinformationen zur Lauf-
zeit von Pipeline-Jobs,

• bereitstellung strukturierter Konfigurationsparameter – etwa IP-Adressen, Zielum-
gebungen oder Abhängigkeitsinformationen – die durch das BFF aus der CMDB
abgefragt und CI/CD-Jobs als Variablen oder Artefakt-Dateien zur Verfügung ge-
stellt werden. Die eigentliche Einbindung in Deployment-Skripte erfolgt anschließend
durch die Pipeline selbst,

20

• Sicherstellung, dass Deployments nur auf Systeme durchgeführt werden, die in der
CMDB als “bereit” oder “freigegeben” markiert sind.

5.4 Integration der CMDB mit Monitoring-Systemen

Zur Scha!ung einer geschlossenen Systemlandschaft wird die CMDB über das BFF mit
Monitoring-Systemen wie Prometheus integriert. Diese Systeme können automatisch Da-
ten aus der CMDB abrufen, um beispielsweise neue Services oder Hosts zu überwachen.
Durch diese Integration wird die Transparenz erhöht und eine automatische Synchroni-
sierung zwischen Inventar und Überwachung erreicht (vgl. Use Case 2 in Kapitel 3.4).
DataGerry bietet hierfür eine gut dokumentierte REST-API, die Abfragen, Filterungen
und CRUD-Operationen auf Objekten erlaubt [1].

5.5 Zusammenfassung

Die prototypische Integration zeigt, dass sich durch den Einsatz von Automatisierungs-
werkzeugen wie Ansible und CI/CD-Pipelines einzelne Arbeitsschritte reproduzierbar und
teilweise automatisiert ausführen lassen. Eine quantitative Bewertung der Verbesserungen
– etwa in Form konkreter Messwerte zu Stabilität, Ausführungszeiten oder Fehlerreduk-
tion – wurde im Rahmen dieser Arbeit jedoch nicht durchgeführt, sodass die Ergebnisse
qualitativ zu interpretieren sind.

Die Umsetzung des Deployments mit Docker Compose ermöglicht eine vereinfachte
Bereitstellung der benötigten Komponenten, stellt jedoch keine skalierbare oder hochver-
fügbare Umgebung bereit. Vielmehr dient Compose in diesem Kontext als leichtgewichti-
ge Laufzeitumgebung für Entwicklungs- und Testzwecke. Für produktive Szenarien wären
Orchestrierungswerkzeuge wie Kubernetes erforderlich, um Skalierung, Self-Healing oder
Rolling Updates sicherzustellen.

Durch die Verwendung von Infrastructure-as-Code-Ansätzen werden Transparenz und
Nachvollziehbarkeit der Konfiguration verbessert, dennoch handelt es sich nicht um eine
vollständig automatisierte Umgebung. Verschiedene Schritte – beispielsweise Migrations-
prozesse, Integrationslogiken oder sicherheitskritische Freigaben – erfordern weiterhin ma-
nuelle Entscheidungen. Die Architektur bleibt erweiterbar und bildet eine Grundlage, auf
der zukünftige Integrationen, etwa mit ITSM- oder Backup-Lösungen, aufbauen können,
ohne dass der Anspruch einer vollumfänglichen Automatisierung erhoben wird.

21

6 Fazit und Ausblick

6.1 Zusammenfassung der Ergebnisse

Die vorliegende Arbeit verfolgte das Ziel, ein detailliertes Infrastruktur- und Architek-
turkonzept für den Aufbau einer Configuration Management Database (CMDB) zu ent-
wickeln. Im Mittelpunkt standen insbesondere moderne Open-Source-Technologien wie
DataGerry, containerisierte Deployments auf Basis von Docker, Automatisierungsmetho-
den wie Ansible und Infrastructure as Code (IaC) sowie die Integration in bestehende
Monitoring-Systeme und CI/CD-Pipelines.

Im Rahmen der Analyse wurden zunächst funktionale und nicht-funktionale Anfor-
derungen sowie konkrete Use Cases erarbeitet, die als Grundlage für die konzeptionelle
Ausgestaltung der CMDB-Architektur dienten. Auf dieser Basis erfolgte ein Feasibility
Check, welcher die Eignung von DataGerry als Open-Source-Lösung für den Einsatz als
zentrale CMDB evaluierte und dokumentierte. Das Ergebnis bestätigte die technische und
funktionale Passfähigkeit der Plattform im Hinblick auf die ermittelten Anforderungen.

Anschließend wurde die konzeptionelle Architektur entwickelt. Hierzu entstand ein
UML-Datenflussdiagramm, das die Interaktionen der zentralen Systemkomponenten ab-
bildet. Die Architektur wurde in die Schichten Präsentationsschicht, Applikationsschicht
und Datenhaltungsschicht unterteilt. Darüber hinaus folgt das Design einem modularen
Aufbau, der eine flexible Erweiterbarkeit und Wartbarkeit des Gesamtsystems sicher-
stellt.Das vorgesehene Identity-Management basiert auf Keycloak, welches Rollen, Single-
Sign-On und Zugri!skontrolle bereitstellt.

Zur praktischen Umsetzung wurde ein Ansible-Playbook implementiert, das die au-
tomatisierte Installation und Konfiguration der Kernkomponenten DataGerry, RabbitMQ
und MongoDB ermöglicht. Diese Dienste wurden mithilfe einer Docker-Compose-Datei in
voneinander abhängigen Containern orchestriert, wodurch eine konsistente und wieder-
holbare Bereitstellung gewährleistet wird.

Im weiteren Verlauf konnten erste Configuration Items (CIs) erfolgreich importiert
werden. Hierzu wurde ein CSV-Export aus dem bestehenden Asset-Inventory-System er-
stellt und über die CSV-Import Funktion, welche vorab im Feasability überprüft wurde
(vgl. Abbildung 2), auf der Administrationsoberfläche von DataGerry eingespielt (vgl.
Abbildung 3).

Darüber hinaus wurde die geplante Integration der CMDB in die bestehende CI/CD-
Pipeline auf Basis von Jenkins konzipiert. Diese Integration kann über die von DataGerry
bereitgestellte REST-API realisiert werden, wodurch Konfigurationsdaten automatisiert
in Build- und Deployment-Prozesse eingebunden werden können. Ein analoges Vorgehen
ist für das Monitoring-System Prometheus vorgesehen, um Infrastrukturänderungen und
Servicezustände dynamisch zu erfassen und auszuwerten.Zusammenfassend lässt sich fest-
halten, dass die Arbeit ein vollständiges Konzept für eine skalierbare, modular aufgebaute

22

und datenschutzkonforme CMDB liefert, die sich in moderne DevOps-Prozesse integrieren
lässt.

6.2 Ausblick auf weiterführende Arbeiten

Obwohl das konzeptionelle Fundament gelegt ist, stehen für die praktische Umsetzung
noch weitere Arbeitsschritte an. Erste Priorität besitzt die vollständige Implementierung
und produktive Einführung der CMDB in die bestehende IT-Landschaft. Dabei müssen
insbesondere folgende Punkte weiterentwickelt werden:

• Automatisierte Discovery-Mechanismen: Entwicklung von Skripten oder Agen-
ten, die Infrastrukturkomponenten automatisch erkennen und in die CMDB einpfle-
gen.

• Change Management Workflow: Integration mit ITSM-Tools (z. B. ServiceNow)
zur automatisierten Erfassung von Changes und deren Auswirkungen.

• Monitoring- und Alarmierungskonzepte: Automatische Ableitung von Über-
wachungskonfigurationen aus der CMDB.

• Security & Compliance: Umsetzung von Privacy by Design, Zugri!srichtlinien
und DSGVO-Anforderungen im laufenden Betrieb.

• Test- und Abnahmeprozesse: Definition von Testplänen, Continuous Deploy-
ment Pipelines und Abnahmekriterien für neue CMDB-Funktionen.

• Dokumentation und Schulung: Erstellung von Nutzerhandbüchern sowie Schu-
lung von Administratoren und Endanwendern.

Langfristig kann die CMDB als Grundlage für weiterführende Technologien wie Ma-
chine Learning (z. B. Predictive Maintenance), automatisierte Impact-Analysen oder Self-
Healing-Infrastrukturen dienen. Ebenso bietet sich die Möglichkeit, Knowledge Graphs
oder Semantik-Technologien zur intelligenten Datenverknüpfung einzusetzen.

Die erarbeiteten Konzepte bilden somit nicht den Endpunkt, sondern vielmehr den
Startschuss für die technische Realisierung einer zukunftsfähigen, transparenten und resi-
lienten IT-Infrastruktur.

7 Anhang

23

Abbildung 1: Datenflussdiagramm des CMDB-Projekts.

24

Abbildung 2: Zusamenfassung des Feasability Check - Datagerry.

Abbildung 3: Weboberfläche von Datagerry

25

version: "3.0"

services:

nginx:

image: docker.io/becongmbh/nginx:latest

hostname: nginx

ports:

- "80:80"

- "443:443"

depends_on:

- datagerry

environment:

NGINX_SSL_CERT: "/data/cert/cert.pem"

NGINX_SSL_KEY: "/data/cert/key.pem"

NGINX_LOCATION_DEFAULT: "/;/; http :// datagerry :4000"

restart: unless -stopped

volumes:

- ./cert:/data/cert

datagerry:

image: docker.io/datagerry/datagerry:latest

hostname: datagerry

depends_on:

- db

- broker

environment:

DATAGERRY_Database_host: "db"

DATAGERRY_MessageQueueing_host: "broker"

restart: unless -stopped

db:

image: docker.io/mongo :4.4.29

hostname: db

restart: unless -stopped

volumes:

- mongodb -data:/data/db

- mongodb -config :/data/configdb

broker:

image: docker.io/rabbitmq :3.8

hostname: broker

restart: unless -stopped

volumes:

- rabbitmq -data:/var/lib/rabbitmq

volumes:

rabbitmq -data:

26

mongodb -data:

mongodb -config:

Listing 1: Docker-Compose.yml Datei zur Bereitstellung von DataGerry RabbitMQ und
MongoDB

27

- name: Git & Python vorbereiten

apt:

name:

- git

- python3

- python3 -venv

state: present

- name: Datagerry klonen

git:

repo: "{{ datagerry_repo_url }}"

dest: "{{ datagerry_install_path }}"

version: "{{ datagerry_repo_branch }}"

- name: Virtuelle Umgebung fuer DataGerry erstellen

command: python3 -m venv /opt/datagerry/venv

args:

creates: /opt/datagerry/venv

- name: Pip in der virtuellen Umgebung aktualisieren

command: /opt/datagerry/venv/bin/pip install --upgrade pip

- name: Python -Abhaengigkeiten in der virtuellen Umgebung installieren

command: /opt/datagerry/venv/bin/pip install -r /opt/datagerry/

requirements.txt

- name: Konfigurationsdatei bereitstellen

template:

src: datagerry.conf.j2

dest: /opt/datagerry/datagerry.conf

owner: root

group: root

mode: ’0644’

- name: Datagerry starten (einmalig)

shell: |

nohup /opt/datagerry/venv/bin/python /opt/datagerry/datagerry.py --

config /opt/datagerry/datagerry.conf &

args:

chdir: /opt/datagerry

creates: /tmp/datagerry_started

Listing 2: roles/datagerry/tasks/main.yml Ansible Playbook zur Installation von
Datagerry

28

Literatur

[1] becon GmbH, “Datagerry documentation,” 2024. O"zielle Dokumentation der Open-
Source-CMDB DataGerry.

[2] I. G. I. . U. of Göttingen, “State of the nation survey findings —
cms/cmdb.” https://www.uni-goettingen.de/de/document/download/
d895466597b111a39f3592cac5e93ddb-en.pdf/itil_state_of_the_nation_
survey.pdf, 2025. abgerufen am: 5.12.2025.

[3] AXELOS, ITIL Foundation: ITIL 4 Edition. London: The Stationery O"ce (TSO),
2019.

[4] M. Armbrust, A. Fox, R. Gri"th, A. D. Joseph, R. Katz, A. Konwinski, G. Lee,
D. Patterson, A. Rabkin, I. Stoica, and M. Zaharia, “A view of cloud computing,”
Communications of the ACM, vol. 53, no. 4, pp. 50–58, 2010.

[5] G. Inc., “Understanding and avoiding vendor lock-in in cloud computing,” 2023.

[6] I. Sommerville, Software Engineering. Harlow: Pearson Education Limited, 10th
edition ed., 2016.

[7] K. Wiegers and J. Beatty, Software Requirements. Redmond, WA: Microsoft Press,
4th edition ed., 2023.

[8] IEEE, “Ieee 830-1998: Recommended practice for software requirements specificati-
ons,” 1998. Institute of Electrical and Electronics Engineers.

[9] O. of Government Commerce, ITIL Service Transition. London: The Stationery
O"ce (TSO), 2007.

[10] R. S. Pressman and B. R. Maxim, Software Engineering: A Practitioner’s Approach.
McGraw-Hill Education, 9 ed., 2020.

[11] Red Hat, Inc., Red Hat Enterprise Linux 9 System Design Guide. 2024.

[12] P. A. Laplante, Requirements Engineering for Software and Systems. CRC Press,
3 ed., 2017.

[13] N. I. of Standards and T. (NIST), “Security and privacy controls for information
systems and organizations (nist sp 800-53, rev. 5),” tech. rep., U.S. Department of
Commerce, 2020.

[14] “Verordnung (eu) 2016/679 des europäischen parlaments und des rates vom 27.
april 2016 zum schutz natürlicher personen bei der verarbeitung personenbezogener

29

https://www.uni-goettingen.de/de/document/download/d895466597b111a39f3592cac5e93ddb-en.pdf/itil_state_of_the_nation_survey.pdf
https://www.uni-goettingen.de/de/document/download/d895466597b111a39f3592cac5e93ddb-en.pdf/itil_state_of_the_nation_survey.pdf
https://www.uni-goettingen.de/de/document/download/d895466597b111a39f3592cac5e93ddb-en.pdf/itil_state_of_the_nation_survey.pdf

daten (datenschutz-grundverordnung, dsgvo).” https://eur-lex.europa.eu/eli/
reg/2016/679/oj, 2016. Amtsblatt der Europäischen Union, L 119, 4.5.2016.

[15] B. Burns, Designing Distributed Systems: Patterns and Paradigms for Scalable, Re-
liable Services. O’Reilly Media, 2016.

[16] MongoDB Inc., MongoDB Documentation, Version 7.0, 2023.

[17] “It infrastructure management best practices.” https://www.gartner.com/en/
documents, 2022.

[18] G. Kim, J. Humble, P. Debois, and J. Willis, The DevOps Handbook: How to Crea-
te World-Class Agility, Reliability, and Security in Technology Organizations. IT
Revolution Press, 2017.

[19] L. Bass, P. Clements, and R. Kazman, Software Architecture in Practice. Boston:
Addison-Wesley, 4th ed., 2021.

[20] W. Stallings, Network Security Essentials: Applications and Standards. Boston: Pear-
son, 7th ed., 2021.

[21] D. Merkel, “Docker: Lightweight linux containers for consistent development and
deployment,” Linux Journal, vol. 239, 2014.

[22] Docker Inc., “Docker documentation.” https://docs.docker.com/, 2025.

[23] Red Hat Inc., “Ansible documentation.” https://docs.ansible.com/, 2025.

[24] M. Hüttermann, DevOps for Developers. Apress, 2012.

30

https://eur-lex.europa.eu/eli/reg/2016/679/oj
https://eur-lex.europa.eu/eli/reg/2016/679/oj
https://www.gartner.com/en/documents
https://www.gartner.com/en/documents
https://docs.docker.com/
https://docs.ansible.com/

	Einleitung
	Motivation und Relevanz des Themas
	Problemstellung: Fehlende Transparenz und Nachvollziehbarkeit in IT-Infrastrukturen
	Zielsetzung der Arbeit
	Abgrenzung und Vorgehensweise

	Theoretische und technische Grundlagen
	Begriff des Configuration Managements
	Rolle und Bedeutung einer CMDB im IT-Service-Management
	ITIL-Referenzmodell und Best Practices
	Open-Source-Ansätze im Configuration Management
	Einordnung und Architektur von DataGerry

	Anforderungsanalyse
	Methodik der Anforderungsanalyse
	Funktionale Anforderungen an eine CMDB
	Nicht-funktionale Anforderungen (Sicherheit, Skalierbarkeit, Wartbarkeit)
	Konkrete Use Cases für die CMDB-Implementierung

	Konzeptionelle Architektur einer CMDB
	Überblick über die Zielarchitektur
	Modularer Aufbau und Schnittstellen
	Datenflüsse und Kommunikation
	Integration und Sicherheit
	Bezug zum Feasibility Check
	Zusammenfassung

	Integration und Automatisierung
	Ziel und Bedeutung der Integration
	Technologische Grundlagen
	Umsetzung der Automatisierung
	Infrastructure as Code mit Ansible
	Containerisierung mit Docker Compose
	Integration mit CI/CD

	Integration der CMDB mit Monitoring-Systemen
	Zusammenfassung

	Fazit und Ausblick
	Zusammenfassung der Ergebnisse
	Ausblick auf weiterführende Arbeiten

	Anhang

