Fachhochschule Aachen
Campus Jiilich

Detailliertes Infrastrukturkonzept zur Entwicklung einer
Configuration Management Database (CMDB)

Seminararbeit
Luiz Post
Matr. No.: 3651388
Erstbetreuer:Prof. Dr. rer. nat. Alexander
Vofs
Zweitbetreuer: B.Sc Andre Kapp

Fachbereich 9
Medizintechnik und Technomathematik

Angewandte Mathematik und Informatik B.Sc.

Aachen, Dezember 2025

UNIVERSITY OF APPLIED SCIENCES

FH AACHEN

Eidesstattliche Erklarung

Hiermit versichere ich, dass ich die Seminararbeit mit dem Thema ,Detailliertes
Infrastrukturkonzept zur Entwicklung einer Configuration Management Da-
tabase (CMDB)“ selbststiandig verfasst und keine anderen als die angegebenen Quellen
und Hilfsmittel benutzt habe. Alle Ausfiilhrungen, die anderen Schriften wortlich oder
sinngeméfs entnommen wurden, sind kenntlich gemacht. Die Arbeit wurde in gleicher
oder dhnlicher Form noch nicht als Studien- oder Priifungsleistung eingereicht.

Im Rahmen der Erstellung dieser Arbeit wurde das KI-System ,GPT-5.1¢ unterstiitzend
zur sprachlichen Uberarbeitung sowie zur fachlichen Reflexion und Prézisierung eigen-
stindig entwickelter Argumente genutzt. Eine Ubernahme von KI-generierten Texten oder
inhaltlichen Losungsvorschlégen erfolgte nicht. Samtliche fachlichen Aussagen, Bewertun-
gen und Schlussfolgerungen wurden eigenstdndig erarbeitet und verantwortet. Die Nut-
zung erfolgte im Einklang mit der Zweckbestimmung des Systems sowie unter Beachtung

datenschutz- und urheberrechtlicher Vorgaben.

Ich verpflichte mich, ein Exemplar der Seminararbeit fiinf Jahre aufzubewahren und es
auf Verlangen dem Priifungsamt des Fachbereichs Medizintechnik und Technomathematik

auszuhandigen.

Ort, Datum: _Aachen, den 15.12.2025 Unterschrift: O/ 1 D(

Mobile User
Aachen, den 15.12.2025

Zusammenfassung

Die vorliegende Arbeit befasst sich mit der Konzeption eines technischen Gesamt-
architekturmodells einschlieflich der zugrunde liegenden Infrastruktur einer Confi-
guration Management Database (CMDB) auf Basis einer modernen Open-Source-
Technologie namens Datagerry. Ziel der Untersuchung war es, eine skalierbare und
modular erweiterbare Architektur zu entwickeln, die den Anforderungen an Trans-
parenz, Automatisierung und Integrationsfahigkeit in bestehende IT-Umgebungen
gerecht wird. Als zentrale Plattform wurde das Open-Source-Tool DataGerry aus-
gewahlt und einem systematischen Feasibility-Check unterzogen, um seine Eignung
als CMDB zu bewerten. Darauf aufbauend entstand ein Architekturkonzept, das
die fiir eine CMDB erforderlichen Kernkomponenten — Datenmodellierung, API-
Zugriffsschicht und Verwaltungsoberfliche — strukturiert beschreibt und ihre Rolle
innerhalb der Systemlandschaft definiert. Die Implementierung der automatisierten
Bereitstellung erfolgte mittels Infrastructure as Code unter Verwendung von Ansible
und containerisierten Deployments tiber Docker Compose. Zudem wurde die Integra-
tion in CI/CD-Pipelines und Monitoring-Systeme konzeptionell beriicksichtigt, um
nach der Entwicklung einen durchgingigen Automatisierungsprozess sicherzustellen.
Die Ergebnisse zeigen, dass die untersuchten Technologien grundsétzlich das Potenzi-
al bieten, eine flexible, wartbare und erweiterbare Grundlage fiir ein CMDB-System
zu bilden. Die Arbeit liefert hierfiir erste konzeptionelle Ansétze, die in zukiinftigen
Projekten weiter ausgearbeitet und praktisch validiert werden miissen. Perspekti-
visch ergeben sich insbesondere Ansatzpunkte fiir technische Implementierungen,

Security-Héartung sowie den Ausbau automatisierter Schnittstellen.

i

Inhaltsverzeichnis

1 Einleitung 1
1.1 Motivation und Relevanz des Themas 1

1.2 Problemstellung: Fehlende Transparenz und Nachvollziehbarkeit in IT-Infrastrukturen 1

1.3 Zielsetzung der Arbeito 2
1.4 Abgrenzung und Vorgehensweise L. 3

2 Theoretische und technische Grundlagen 4
2.1 Begriff des Configuration Managements 4
2.2 Rolle und Bedeutung einer CMDB im IT-Service-Management 4
2.3 ITIL-Referenzmodell und Best Practices 5
2.4 Open-Source-Ansétze im Configuration Management 5
2.5 Einordnung und Architektur von DataGerry 6

3 Anforderungsanalyse 7
3.1 Methodik der Anforderungsanalyse 7
3.2 Funktionale Anforderungen an eine CMDB 8
3.3 Nicht-funktionale Anforderungen (Sicherheit, Skalierbarkeit, Wartbarkeit) . 10
3.4 Konkrete Use Cases fiir die CMDB-Implementierung 12

4 Konzeptionelle Architektur einer CMDB 14
4.1 Uberblick iiber die Zielarchitektur 14
4.2 Modularer Aufbau und Schnittstellen 15
4.3 Datenfliisse und Kommunikation 0. 16
4.4 Integration und Sicherheit 0oL 17
4.5 Bezug zum Feasibility Checko 18
4.6 Zusammenfassung Lo 18

5 Integration und Automatisierung 19
5.1 Ziel und Bedeutung der Integration 19
5.2 Technologische Grundlagen 19
5.3 Umsetzung der Automatisierung L. 19
5.3.1 Infrastructure as Code mit Ansible 19

5.3.2 Containerisierung mit Docker Compose 20

5.3.3 Integration mit CI/CD 20

5.4 Integration der CMDB mit Monitoring-Systemen 21

5.5 Zusammenfassung Lo 21

1l

Fazit und Ausblick 22

6.1 Zusammenfassung der Ergebnisseo 22
6.2 Ausblick auf weiterfithrende Arbeiten 23
Anhang 23

v

1 Einleitung

1.1 Motivation und Relevanz des Themas

In modernen Unternehmensumgebungen gewinnt die effiziente Verwaltung von I'T-Infrastrukturen
zunehmend an Bedeutung. Mit der stetig wachsenden Anzahl an Servern, Containern,
Cloud-Diensten und Applikationen nimmt die Komplexitdt der Systemlandschaft deut-

lich zu. Unternehmen stehen dabei vor der Herausforderung, ihre Systeme nicht nur zu
betreiben, sondern auch deren Konfigurationen, Abhéngigkeiten und Zusténde transpa-

rent zu dokumentieren und nachzuvollziehen.

Eine Configuration Management Database (CMDB) stellt in diesem Zusammenhang
ein zentrales Werkzeug dar, um sémtliche Konfigurationsobjekte (Configuration Items,
CIs) einer IT-Landschaft systematisch zu erfassen und deren Beziehungen zueinander
zu modellieren. Sie bildet damit die Grundlage fiir Prozesse wie Change Management,
Incident Management und Problem Management im Sinne des ITIL-Frameworks!.

Gleichzeitig gewinnen Open-Source-Technologien an Bedeutung, da sie neben der Kos-
tenersparnis vor allem durch ihre Anpassbarkeit und Transparenz {iberzeugen. Durch frei
zugangliche Quelltexte lassen sich Sicherheitsaspekte nachvollziehbar priifen, Integratio-
nen iiber offene Schnittstellen leichter realisieren und individuelle Erweiterungen ohne
Bindung an proprietdre Anbieter umsetzen. Werkzeuge wie DataGerry zeigen, dass ein
transparenter und erweiterbarer Ansatz zur Verwaltung von Infrastrukturkonfigurationen
auch ohne kommerzielle Lizenzmodelle realisierbar ist. Neben DataGerry existieren auch
etablierte Open-Source-CMDBs wie i-doit oder iTop sowie Asset-Tools wie Snipe-IT. Die
Walhl fiel bewusst auf DataGerry, da dessen generisches Datenmodell eine besonders flexi-
ble Objektdefinition ermdglicht[1]. Die Integration solcher Losungen kann wesentlich zur

Effizienzsteigerung und Standardisierung von I'T-Prozessen beitragen.

1.2 Problemstellung: Fehlende Transparenz und Nachvollziehbar-

keit in IT-Infrastrukturen

Laut der ,State of the Nation Survey Findings - CMS/CMDB* der Georg-August-Universitat
Gottingen besitzen lediglich etwa 42% der befragten Unternehmen eine implementier-
te CMDB; rund 24% befinden sich noch in der Entwicklung, 18% haben keine CMDB
oder planen derzeit keine [2|. Es fehlt also trotz der Verfiigharkeit moderner Tools und
DevOps-Ansétze wie Infrastructure as Code, Continous Delivery oder automatisierter

Service Discovery, in vielen Organisationen an einer klar strukturierten und einheitlichen

HTIL (Information Technology Infrastructure Library) ist ein weltweit anerkanntes Rahmenwerk fiir
das IT-Service-Management (ITSM). Es bietet eine Sammlung von Best Practices, Prozessen und Kon-
zepten zur Planung, Bereitstellung und Unterstiitzung von IT-Services mit dem Ziel, Effizienz, Qualitat
und Kundenzufriedenheit zu verbessern.

Dokumentation der I'T-Komponenten. Informationen iiber Systeme, Dienste, Abhéngig-
keiten und Verantwortlichkeiten liegen oft verteilt in verschiedenen Abteilungen, Tools
oder gar nur in individueller Kenntnis einzelner Mitarbeiter vor.

Diese Fragmentierung fithrt zu Intransparenz, erschwert Fehleranalysen und verzo-
gert Entscheidungen bei Anderungen oder Stérungen im IT-Betrieb. Besonders in Umge-
bungen, in denen DevOps- und Automatisierungsstrategien eingesetzt werden, kann das
Fehlen einer zentralen und aktuellen Konfigurationsdatenbasis zu erheblichen betriebli-
chen Risiken fithren — etwa durch falsche oder veraltete Konfigurationsobjekte, fehlerhafte
Abhéngigkeitsmodelle oder Relationen zwischen Systemen. Solche Inkonsistenzen kénnen
wiederum zu langeren Ausfallzeiten, Fehlentscheidungen im Change-Management und un-
erwarteten Storungen im Produktivbetrieb fiihren.

Vor diesem Hintergrund besteht die Notwendigkeit, ein ganzheitliches Konzept zu
entwickeln, das sowohl die technische Architektur als auch die organisatorischen Anfor-
derungen einer modernen CMDB abbildet. Dieses Konzept muss auf offenen Standards
beruhen und Integrationsmoglichkeiten in bestehende Systeme wie CI/CD-Pipelines oder

Monitoring-Umgebungen beriticksichtigen.

1.3 Zielsetzung der Arbeit

Ziel dieser Arbeit ist die Entwicklung eines detaillierten Infrastrukturkonzepts fiir den
Aufbau einer Configuration Management Database (CMDB). Dieses Konzept soll die
funktionalen und nicht-funktionalen Anforderungen an eine CMDB erfassen, eine geeig-
nete Systemarchitektur vorschlagen und mogliche Technologien sowie Integrationspunkte
aufzeigen.

Besonderes Augenmerk liegt dabei auf der Modularitiat der Architektur sowie der
Moglichkeit, diese durch offene Schnittstellen, erweiterbare Datenmodelle und flexible In-
tegrationsmechanismen problemlos an bestehende IT-Landschaften anzubinden und bei
Bedarf um zusétzliche Funktionen zu erweitern. Zudem soll das Konzept anhand existie-
render Open-Source-Losungen — insbesondere DataGerry — untersucht werden, um pra-
xisnahe Ansétze sowie mogliche Verbesserungspotenziale zu identifizieren. Die Analyse
umfasst dabei insbesondere das Datenmodell, die verfiigharen APIs, Import- und Export-
mechanismen, Aspekte der Skalierbarkeit, Authentifizierungsverfahren sowie die vorhan-
dene Historisierung2.

Durch die konzeptionelle Ausarbeitung soll aufgezeigt werden, wie eine strukturierte
und gut integrierbare CMDB-Architektur grundsétzlich zur Erhéhung von Transparenz

und Effizienz in der IT-Infrastrukturverwaltung beitragen kann.

1.4 Abgrenzung und Vorgehensweise

Die vorliegende Arbeit konzentriert sich auf die konzeptionelle Ausarbeitung der fiir ei-
ne CMDB relevanten infrastrukturellen Komponenten. Dazu gehoren insbesondere Uber-
legungen zur Containerisierung, Netzwerk- und Service-Architektur, Datenhaltung, Au-
thentifizierungsmechanismen sowie mdglichen Monitoring-Integrationen. Es werden keine
vollstéandigen Implementierungen oder produktiven Deployments durchgefiihrt; vielmehr
werden die technischen und methodischen Grundlagen beschrieben, die als Basis fiir ei-
ne spatere praktische Umsetzung dienen kénnen. Anschlieffend erfolgt eine detaillierte
Anforderungsanalyse, in der konkrete Use-cases erarbeitet werden, die als Basis fiir das
Architekturdesign dient. Darauf aufbauend wird ein Infrastrukturkonzept vorgestellt, das
den Aufbau und Betrieb einer modularen, containerisierten CMDB beschreibt.

Abschliefsend werden Integrationsmoglichkeiten und Automatisierungsstrategien mit
gangigen CI/CD- und Monitoring-Tools diskutiert. Die Arbeit schlieft mit einer Zusam-
menfassung der Ergebnisse und einem Ausblick auf die weiterfithrende Entwicklung der
CMDB.

2 Theoretische und technische Grundlagen

2.1 Begriff des Configuration Managements

Configuration Management (CM) beschreibt den systematischen Prozess zur Erfassung,
Dokumentation und Steuerung der Konfigurationselemente (Configuration Items, Cls)
einer I'T-Infrastruktur iiber deren gesamten Lebenszyklus hinweg. Ziel des Configurati-
on Managements ist es, sicherzustellen, dass die Integritdt und Nachvollziehbarkeit der
Systemkonfigurationen zu jedem Zeitpunkt gewéhrleistet ist. Moderne CMDBs kénnen
prinzipiell {iber APIs automatisch aktualisiert werden, sofern entsprechende Discovery-
oder Integrationsprozesse vorhanden sind.

Nach ITIL[3] umfasst das Configuration Management die Identifikation, Kontrolle,
Statusiiberwachung und Verifizierung aller Cls, die zur Erbringung von IT-Services bei-
tragen. Zu den typischen Configuration Items zéhlen Hardwarekomponenten, Softwarever-
sionen, Netzwerkelemente, virtuelle Maschinen, Container und sogar Dokumentationen.
Diese werden in einer zentralen Datenbank — der sogenannten Configuration Management
Database (CMDB) — verwaltet, um den aktuellen Zustand der IT-Landschaft konsistent
und transparent abzubilden.

Durch die Einfiithrung eines strukturierten Configuration Managements kénnen Fehler-
quellen reduziert, Anderungen besser nachvollzogen und Risiken im IT-Betrieb minimiert
werden. Insbesondere in dynamischen Infrastrukturen, in denen Cloud- und Container-
Technologien eingesetzt werden, gewinnt ein automatisiertes und skalierbares Configura-

tion Management zunehmend an Bedeutung.

2.2 Rolle und Bedeutung einer CMDB im IT-Service-Management

Die CMDB stellt das zentrale Informationssystem im IT-Service-Management (ITSM)
dar. Sie dient als Datenquelle fiir zahlreiche operative und strategische Prozesse, darunter
Change Management, Incident Management, Problem Management, Asset Management
und Service Level Management.

Ihre Hauptaufgabe besteht darin, die Beziehungen und Abhéngigkeiten zwischen den
verschiedenen Configuration Items abzubilden. Diese Beziehungen erméglichen eine geziel-
te Analyse von Auswirkungen bei Systeménderungen oder Storungen. Beispielsweise kann
bei einem Ausfall eines Servers sofort ermittelt werden, welche Applikationen, Benutzer
oder Geschéftsprozesse davon betroffen sind.

Dariiber hinaus unterstiitzt eine CMDB die Einhaltung regulatorischer Anforderungen
und interner Compliance-Vorgaben, indem sie eine nachvollziehbare Historie von Anderun-
gen und Zusténden bereitstellt. In grofseren Organisationen dient sie zudem als Grundlage
fiir Audits und Sicherheitspriifungen.

In einem modernen ITSM-Kontext wird die CMDB zunehmend in automatisierte Pro-

zesse integriert. Uber Schnittstellen zu Monitoring-, Deployment- und Orchestrierungs-
werkzeugen kann sie aktuelle Konfigurationsdaten automatisch erfassen und aktualisieren.
Dadurch entwickelt sich die CMDB von einem rein dokumentarischen System zu einem

aktiven Bestandteil der operativen I'T-Steuerung.

2.3 ITIL-Referenzmodell und Best Practices

Das Information Technology Infrastructure Library (ITIL 4)-Framework definiert Best
Practices fiir das moderne I'T-Service-Management und beschreibt anhand seiner Practices

2 wie Organisationen ihre Services ganzheitlich planen, bereitstellen

und Value Streams
und kontinuierlich verbessern kénnen. Innerhalb dieses Frameworks nimmt das Service
Configuration Management eine zentrale Rolle ein.

In ITIL 4 bildet die Configuration Management Database (CMDB) einen wesentlichen
Bestandteil dieser Practice. Sie stellt sicher, dass Informationen iiber Konfigurationsele-
mente (CIs) und deren Beziehungen konsistent verwaltet werden. Die CMDB unterstiitzt
dabei andere ITIL-4-Practices wie Change Enablement, indem sie die Bewertung poten-
zieller Auswirkungen geplanter Anderungen erleichtert, sowie das Incident Management,
das durch aktuelle CI-Daten Stérungen schneller analysieren und beheben kann.

ITIL 4 empfiehlt, den Aufbau einer CMDB schrittweise und bedarfsgerecht vorzu-
nehmen. Ein iiberdimensioniertes oder zu detailliertes Modell erhcht das Risiko hoher
Pflegekosten, mangelnder Datenqualitdt und uniibersichtlicher Strukturen. Stattdessen
wird ein pragmatischer Ansatz empfohlen, bei dem zunéchst die wichtigsten Services, Cls
und Abhéngigkeiten modelliert und anschliefend sukzessive erweitert werden.

Neben ITIL 4 existieren weitere Frameworks wie COBIT oder ISO/IEC 20000, die
ebenfalls Leitlinien fiir das Configuration Management bereitstellen. Diese Standards be-
tonen die Bedeutung einer konsistenten, nachvollziehbaren und transparenten Konfigura-

tionsverwaltung als Grundlage fiir ein effektives I'T-Service-Management.

2.4 Open-Source-Ansatze im Configuration Management

Mit dem zunehmenden Einsatz von Open-Source-Software in Unternehmensumgebungen
haben sich auch im Bereich des Configuration Managements zahlreiche quelloffene Werk-
zeuge etabliert. Bekannte Vertreter sind etwa Ansible, Puppet, Chef und SaltStack, die
primér auf die Automatisierung von Infrastrukturkonfigurationen ausgerichtet sind.

Im Gegensatz zu diesen Tools, die operative Konfigurationsidnderungen durchfiihren,
fokussieren sich Open-Source-CMDB-Systeme wie i-doit, OCS Inventory NG oder Data-

Gerry auf die zentrale Erfassung und Verwaltung von Konfigurationsdaten. Diese Systeme

2In ITIL4 bezeichnet ein Value Stream die Gesamtheit aller Schritte und Aktivititen, die notwendig
sind, um einen Service oder ein Produkt von der Anforderung bis zur Wertschépfung fiir den Kunden
bereitzustellen.

bieten eine flexible Datenstruktur, um individuelle Objekttypen und Abhéngigkeiten zu
modellieren.

Der Einsatz von Open-Source-Losungen bringt dabei mehrere Vorteile mit sich: Un-
ternehmen vermeiden Vendor Lock-ins® , konnen Anpassungen an eigene Anforderun-
gen vornehmen und profitieren von einer aktiven Entwickler-Community. Dariiber hinaus
ermoglichen offene Schnittstellen (REST-APIs) eine einfache Integration in bestehende
DevOps- und I'TSM-Umgebungen.

Die Kombination von Automatisierungswerkzeugen und Open-Source-CMDBs bietet
somit eine leistungsfiahige Basis fiir moderne, dynamische IT-Infrastrukturen, in denen

Transparenz, Skalierbarkeit und Nachvollziehbarkeit zentrale Anforderungen darstellen.

2.5 Einordnung und Architektur von DataGerry

DataGerry ist ein Open-Source-CMDB-System, das speziell darauf ausgelegt ist, eine fle-
xible und anpassbare Verwaltung von Configuration Items zu ermdglichen. Im Gegensatz
zu klassischen CMDB-Losungen, die haufig starre Datenmodelle verwenden, verfolgt Da-
taGerry einen generischen Ansatz, bei dem Benutzer eigene Objekttypen, Attribute und
Relationen definieren koénnen.

Die Architektur von DataGerry basiert auf einem modularen Auftbau. Es wird Rab-
bitM() als Mesagging-System benutzt und im Backend werden die Daten in einer Mon-
goDB-NoSQL-Datenbank gespeichert, die eine hohe Flexibilitdt und Skalierbarkeit bei
der Verwaltung unstrukturierter Daten erméglicht. Uber eine REST-API konnen externe
Systeme auf die gespeicherten Konfigurationsdaten zugreifen, was eine Integration mit
Monitoring-Systemen, CI/CD-Pipelines oder Inventarisierungstools erleichtert.

Das Frontend von DataGerry ist webbasiert und ermoglicht eine intuitive Verwaltung
der Datenmodelle, Konfigurationsobjekte und Beziehungen. Die Anwendung ist in Python
implementiert und lasst sich durch containerisierte Bereitstellung (z. B. via Docker oder
Podman) leicht in bestehende Infrastrukturen integrieren.

Im Kontext dieser Arbeit dient DataGerry als Referenzsystem, um die konzeptionellen
Uberlegungen einer modernen, offenen CMDB zu konkretisieren. Dabei wird insbesondere
untersucht, wie sich eine skalierbare Architektur, offene Schnittstellen und Automatisie-

rungskonzepte in ein integriertes Infrastrukturdesign einfiigen lassen|1].

3Der Begriff Vendor Lock-in bezeichnet die Abhiingigkeit eines Unternehmens von einem bestimmten
Anbieter (Vendor) aufgrund proprietéirer Technologien, Formate oder Schnittstellen. Diese Bindung er-
schwert oder verhindert den Wechsel zu alternativen Produkten oder Anbietern, da hohe Umstellungs-
und Integrationskosten entstehen kénnen. Im Kontext von IT-Infrastrukturen bedeutet ein Vendor Lock-
in, dass Organisationen bei Software, Cloud-Diensten oder Hardware an einen Hersteller gebunden sind,
was Flexibilitdt und Innovationsfihigkeit einschrianken kann [4, 5].

3 Anforderungsanalyse

3.1 Methodik der Anforderungsanalyse

Die Anforderungsanalyse stellt einen zentralen Bestandteil bei der Konzeption und Ent-
wicklung von Softwaresystemen dar. Sie dient der systematischen Erhebung, Strukturie-
rung und Dokumentation aller Anforderungen, die an das zu entwickelnde System gestellt
werden . Im Kontext dieser Arbeit bildet die Anforderungsanalyse die Grundlage fiir
die spétere Konzeption einer Configuration Management Database (CMDB). Dabei wer-
den die methodischen Schritte beschrieben, die typischerweise bei der Ermittlung von
Anforderungen zum Einsatz kommen, ohne dass eine vollstdndige empirische Erhebung

durchgefiihrt wird.

Vorgehensweise bei der Anforderungserhebung

Zur Ermittlung von Anforderungen existieren verschiedene bewdhrte Methoden, die je
nach Projektumfang und Zielsetzung kombiniert werden kénnen. Zu den klassischen An-

satzen zahlen insbesondere:

e Interviews: Gespriche mit relevanten Stakeholdern — wie I'T-Administratoren, DevOps-
Ingenieuren oder I'T-Service-Managern — dienen dazu, ein Verstandnis fiir bestehen-
de Prozesse, Probleme und Erwartungen zu entwickeln. Durch halbstrukturierte
Interviews lassen sich sowohl explizite Anforderungen als auch implizite Bediirfnisse

erfassen [6].

e Dokumentenanalyse: Die Untersuchung vorhandener Dokumentationen (z. B.
Systemhandbiicher, Netzwerkpléne, ITIL-Prozessbeschreibungen) ermoglicht es, be-
stehende Strukturen und Schnittstellen zu identifizieren. Fiir eine CMDB sind ins-
besondere Informationen iiber vorhandene Konfigurationsobjekte und ihre Abhén-

gigkeiten von Bedeutung.

e Workshops und Use-Case-Analysen: In gemeinsamen Workshops mit Stakehol-
dern kénnen Anforderungen konsolidiert und priorisiert werden. Die Modellierung
von Use Cases hilft, Systemfunktionen aus Anwendersicht zu verstehen und konkrete

Nutzungsszenarien zu definieren [7].

Fiir das vorliegende konzeptionelle Projekt wird ein hypothetisches Vorgehen ange-
nommen, das sich an diesen Methoden orientiert. Ziel ist es, eine konsistente und nach-
vollziehbare Sammlung von Anforderungen zu erstellen, die als Grundlage fiir das Sys-

temdesign dienen kann.

Klassifizierung der Anforderungen

Die ermittelten Anforderungen werden iiblicherweise in funktionale und nicht-funktionale

Anforderungen unterteilt [8]:

e Funktionale Anforderungen beschreiben, was das System leisten soll — also kon-
krete Funktionen, Prozesse oder Verhaltensweisen. Im Falle einer CMDB betrifft dies
etwa die Verwaltung von Configuration Items (CIs), die Darstellung von Abhéngig-

keiten, Such- und Filterfunktionen oder Schnittstellen zu anderen I'T-Systemen.

e Nicht-funktionale Anforderungen legen fest, wie das System seine Aufgaben
erfiillen soll. Dazu zdhlen unter anderem Anforderungen an Sicherheit, Verfiigbar-
keit, Skalierbarkeit, Performance und Wartbarkeit. Fiir eine CMDB ist beispielsweise
sicherzustellen, dass die Datenintegritit gewédhrleistet ist, sensible Systeminforma-
tionen geschiitzt werden und die Losung in wachsenden I'T-Umgebungen performant
bleibt.

Zusammenfassung und Ausblick

Die in diesem Abschnitt beschriebenen methodischen Schritte bilden die Grundlage fiir
die nachfolgende Spezifikation der Anforderungen. Wéhrend hier der Fokus auf der all-
gemeinen Methodik der Anforderungserhebung und -klassifizierung lag, werden in den
folgenden Abschnitten (3.2 und 3.3) die konkreten funktionalen und nicht-funktionalen

Anforderungen an die zu konzipierende CMDB im Detail beschrieben.

3.2 Funktionale Anforderungen an eine CMDB

Die funktionalen Anforderungen definieren die zentralen Aufgaben und Eigenschaften, die
eine Configuration Management Database (CMDB) erfiillen muss, um ihre Kernfunktio-
nen im Rahmen des I'T-Service-Managements (ITSM) nach ITIL effektiv zu unterstiitzen.
Diese Anforderungen ergeben sich aus der Analyse der ITIL-Prozesse, den betrieblichen

Zielsetzungen sowie den typischen Herausforderungen moderner I'T-Infrastrukturen.

Erfassung und Verwaltung von Configuration Items (CIs)

Eine der priméren Funktionen einer CMDB besteht in der strukturierten Erfassung und
Verwaltung von Configuration Items (Cls). Hierbei handelt es sich um sdmtliche Kom-
ponenten einer I'T-Umgebung, die fiir den Betrieb und die Verwaltung relevant sind —
beispielsweise Server, virtuelle Maschinen, Container, Netzwerkelemente, Softwarepakete
oder Cloud-Ressourcen [3, 9]. Jedes CI muss eindeutig identifizierbar sein und tiber At-
tribute wie Name, Typ, Status, Verantwortlicher und Version verfiigen. Die CMDB sollte
dabei die Moglichkeit bieten, unterschiedliche CI-Typen zu modellieren und benutzerde-

finierte Attribute zu ergénzen, um anwendungsspezifische Informationen abzubilden.

8

Beziehungsmanagement und Abhingigkeitsmodellierung

Neben der isolierten Erfassung einzelner Objekte ist die Abbildung von Beziehungen zwi-
schen den CIs ein zentraler Bestandteil einer CMDB. Diese Beziehungen ermoglichen eine
ganzheitliche Sicht auf die IT-Landschaft und bilden die Grundlage fiir Impact-Analysen
im Change- und Incident-Management. Ein funktionales CMDB-System muss daher Rela-
tionstypen wie ,lauft auf”, jabhangig von“ oder ,,gehort zu* unterstiitzen. Dies erlaubt die
Visualisierung von Infrastrukturabhingigkeiten und fordert das Verstidndnis komplexer

Systemzusammenhénge |3, 1].

Anderungs- und Versionshistorie

Zur Sicherstellung der Nachvollziehbarkeit ist die Versionierung von Konfigurationen und
Anderungen unerlisslich. Eine CMDB soll in der Lage sein, Veréinderungen an Cls au-
tomatisch oder manuell zu protokollieren und frithere Zustéinde wiederherstellbar zu ma-
chen. Dies bildet die Grundlage fiir eine revisionssichere Dokumentation und unterstiitzt
das Problem- und Change-Management bei der Ursachenanalyse von Storungen. Open-
Source-Systeme wie DataGerry bieten hierfiir bereits modulare Audit-Mechanismen, die
auf bestehenden Datenbankstrukturen (z. B. MongoDB) aufbauen [1].

Schnittstellen und Integrationen

Da die CMDB haufig als zentrales Informationssystem in einer heterogenen I'T-Landschaft
fungiert, sind offene Schnittstellen (z. B. REST- oder GraphQL-APIs) eine zentrale funk-
tionale Anforderung. Diese erméglichen die Integration mit Monitoring-Tools (z. B. Pro-
metheus, Zabbix), ITSM-Systemen (z. B. OTRS, ServiceNow) oder CI/CD-Pipelines (Jen-
kins). Dadurch kénnen Konfigurationsdaten automatisiert aktualisiert, neue Cls erkannt

und Anderungen in Echtzeit bzw. "near real-time" synchronisiert werden [10, 11].

Such-, Filter- und Reporting-Funktionalitat

Eine CMDB muss leistungsfihige Mechanismen zur Suche, Filterung und Auswertung der
gespeicherten Daten bereitstellen. Hierzu zdhlen einfache Textsuchen, Attribut-basierte
Filter sowie erweiterte Query-Funktionen, die beispielsweise alle Cls eines bestimmten
Typs oder Status ausgeben kénnen. Zusétzlich sind Funktionen zur Erstellung von Re-
ports oder Dashboards erforderlich, um Management-Entscheidungen datenbasiert zu un-
terstiitzen [12].

Benutzer- und Rechtemanagement

Fiir den produktiven Einsatz in groferen Organisationen ist ein fein granuliertes Benutzer-

und Rechtemanagement notwendig. Dabei miissen unterschiedliche Rollen (z. B. Adminis-

trator, Operator, Auditor) mit jeweils spezifischen Berechtigungen ausgestattet werden
konnen. Diese Zugriffskontrollen gewéhrleisten sowohl die Informationssicherheit als auch

die Einhaltung von Compliance-Richtlinien [3].

Zusammenfassung

Die funktionalen Anforderungen einer CMDB lassen sich somit in fiinf Kernbereiche un-

terteilen:
1. Erfassung und Verwaltung von Cls
2. Modellierung von Beziehungen und Abhéngigkeiten
3. Anderungs- und Versionsmanagement
4. Schnittstellenintegration und Automatisierung
5. Benutzer- und Zugriffskontrolle

Diese Anforderungen bilden die Grundlage fiir das in Kapitel 4 vorgestellte Architektur-

konzept und dienen als Basis fiir die spétere Evaluierung der Losung.

3.3 Nicht-funktionale Anforderungen (Sicherheit, Skalierbarkeit,
Wartbarkeit)

Neben den funktionalen Anforderungen spielen nicht-funktionale Anforderungen eine zen-
trale Rolle bei der Konzeption einer Configuration Management Database (CMDB). Sie
definieren die Qualitdtsmerkmale des Systems und bestimmen, in welchem Mafe die funk-
tionalen Anforderungen unter realen Betriebsbedingungen erfiillt werden kénnen. Zu den
wichtigsten nicht-funktionalen Aspekten zdhlen Sicherheit, Skalierbarkeit, Wartbarkeit,

Verfiigbarkeit und Performance.

Sicherheitsanforderungen

Die CMDB enthélt zentrale Informationen iiber die gesamte I'T-Infrastruktur und stellt
somit ein besonders schiitzenswertes System dar. Sicherheitsanforderungen umfassen da-
her sowohl technische als auch organisatorische Mafsnahmen. Zu den technischen Anfor-
derungen zahlen Authentifizierungs- und Autorisierungsmechanismen, verschliisselte Da-
teniibertragung (z. B. HT'TPS/TLS), rollenbasiertes Zugriffskonzept und Audit-Logging
[13, 11]. Dariiber hinaus miissen Datenschutzanforderungen nach geltenden Normen (z. B.

DSGVO*) beriicksichtigt werden, insbesondere wenn personenbezogene Daten oder Zu-

4Die Datenschutz-Grundverordnung (DSGVO) ist eine EU-Verordnung, die seit dem 25. Mai 2018
gilt und den Schutz personenbezogener Daten sowie den freien Datenverkehr innerhalb der Européischen
Union regelt [14].

10

ordnungen zu Benutzern gespeichert werden. Eine sichere CMDB implementiert daher

,Privacy by Design und ,Least Privilege-Prinzipien.

Skalierbarkeit und Performance

Da moderne IT-Landschaften stark dynamisch und oft hybrid aufgebaut sind, muss eine
CMDB in der Lage sein, grofse Datenmengen effizient zu verarbeiten und bei Bedarf ho-
rizontal oder vertikal zu skalieren. Eine containerisierte Architektur — etwa basierend auf
Podman oder Kubernetes — ermdglicht eine flexible Skalierung von Services wie Daten-
bank, APT und Frontend [15]. Auch das zugrunde liegende Datenmodell muss so gestaltet
sein, dass Lese- und Schreiboperationen performant bleiben, selbst bei mehreren zehntau-
send Configuration Items (CIs). NoSQL-Datenbanken wie MongoDB eignen sich hierfiir
besonders gut, da sie durch horizontale Skalierung und flexible Schemata eine hohe An-

passungsfahigkeit bieten [16].

Wartbarkeit und Erweiterbarkeit

Eine CMDB ist ein langfristiges Kernsystem im I'T-Betrieb. Thre Architektur muss daher
so ausgelegt sein, dass sie auch tiber Jahre hinweg wartbar und erweiterbar bleibt. Hierzu
ziahlen eine saubere Code- und API-Struktur, modularer Aufbau der Komponenten sowie
automatisierte Tests und Deployment-Prozesse (z.B. via CI/CD-Pipelines) [10]. Durch
die Nutzung von Open-Source-Frameworks und Containerisierung kann die CMDB zudem
einfacher aktualisiert und erweitert werden, ohne dass der laufende Betrieb gestort wird.
Dies fordert die Nachhaltigkeit der IT-Systemlandschaft.

Verfiigbarkeit und Zuverlassigkeit

Da die CMDB ein zentrales Informationssystem ist, sollte sie eine hohe Verfiigharkeit ge-
wihrleisten. Dies kann durch den Einsatz von Redundanzmechanismen (z. B. Replikation
der Datenbank), Load-Balancing und Monitoring realisiert werden. Eine Integration mit
Uberwachungssystemen wie Prometheus oder Zabbix ermdglicht frithzeitige Erkennung
von Anomalien und trégt zur Stabilitdt des Betriebs bei [12|. Dariiber hinaus sollten
Backup- und Wiederherstellungsstrategien fester Bestandteil des Betriebskonzepts sein,

um Datenverlust und Ausfallzeiten zu minimieren.

Benutzerfreundlichkeit und Transparenz

Ein weiterer Qualitatsaspekt betrifft die Benutzerfreundlichkeit der CMDB. Nur wenn die
Benutzeroberfliche intuitiv gestaltet und die Daten klar strukturiert dargestellt sind, kann
das System im Alltag effektiv genutzt werden. Ziel ist eine transparente Informationsdar-

stellung, die sowohl technischen als auch organisatorischen Stakeholdern den Zugrift auf

11

relevante Daten ermdglicht. Dashboards, visuelle Beziehungsdarstellungen und kontext-

basierte Filter tragen wesentlich zur Effizienz im Betrieb bei [1].

Zusammenfassung

Nicht-funktionale Anforderungen bilden die Grundlage fiir die langfristige Stabilitat, Si-
cherheit und Leistungsfihigkeit einer CMDB. Sie ergénzen die funktionalen Anforderun-
gen und definieren die qualitativen Rahmenbedingungen, unter denen die in Kapitel 4 vor-
gestellte Architektur betrieben werden soll.Eine erfolgreiche Implementierung beriicksich-
tigt daher sowohl technische als auch organisatorische Aspekte, um eine nachhaltige, siche-
re und erweiterbare Losung zu gewéhrleisten. Auferdem bilden alle Anforderungen(sowohl
Funktionale als auch nicht-Funktionale) die Grundlage fiir den Feasability-Check auf den
sich in Kapitel 4.5 bezogen wird. Dieser soll priifen ob das Open Source-Tool Datagerry
allen Anforderungen die wir in Kapitel 3.2 und 3.3 erarbeitet haben standhalt.

3.4 Konkrete Use Cases fiir die CMDB-Implementierung

Um die im Rahmen der Anforderungsanalyse ermittelten funktionalen und nicht-funktionalen
Anforderungen praxisnah zu validieren, werden in diesem Abschnitt konkrete Use Cases
definiert. Diese dienen als exemplarische Szenarien, anhand derer das spéitere Architek-
turkonzept (vgl. Kapitel 4) entwickelt werden kann.

Die ausgewihlten Use Cases orientieren sich an typischen Herausforderungen im IT-
Infrastrukturmanagement und spiegeln die Kernprozesse einer Configuration Management
Database (CMDB) wieder. Dabei wird ein besonderer Fokus auf Aspekte wie Dateninte-

gration, Automatisierung und Transparenz gelegt.

Use Case 1: Automatisierte Erfassung von Infrastrukturkomponenten

Ein zentraler Anwendungsfall einer CMDB besteht in der automatisierten Erfassung von
physischen und virtuellen Infrastrukturkomponenten. In modernen, containerisierten Um-
gebungen werden Systeme héufig dynamisch bereitgestellt und wieder entfernt. Der Use
Case beschreibt die automatische Erkennung und Synchronisation von neuen Servern,
Containern oder Netzwerkgerdten mit der CMDB.

Ziel: Sicherstellung, dass die CMDB jederzeit den aktuellen Zustand der Infrastruk-
tur abbildet. Akteure: Systemadministrator, Monitoring-System, Discovery-Agent. Der
Discovery-Prozess erfolgt nicht nativ. Er miisste iber Skripte oder externe Tools wie OCS

Inventory NG implementiert werden. Ablauf:
1. Ein neues System wird in einer Cloud- oder Containerumgebung bereitgestellt.

2. Ein Discovery-Agent erfasst relevante Metadaten (z. B. Hostname, IP-Adresse, Be-

triebssystemversion).

12

3. Die Daten werden tiber eine API an die CMDB (DataGerry) iibermittelt und dort
als Configuration Item (CI) gespeichert.

4. Anderungen werden versioniert, um historische Zustédnde nachvollziehbar zu ma-

chen.

Erwartetes Ergebnis: Eine konsistente und stets aktuelle Datenbasis, die als Grund-

lage fiir Monitoring, Incident- und Change-Management dient [17].

Use Case 2: Integration mit Monitoring- und CI/CD-Systemen

Dieser Use Case beschreibt ein mogliches Integrationsszenario, in dem die CMDB in be-
stehende IT-Operations-Prozesse eingebunden wird. Da fiir gingige Monitoring-Lésungen
wie Prometheus oder Zabbix sowie fiir CI/CD-Systeme wie Jenkins oder GitLab CI kei-
ne offiziellen oder vorkonfigurierten Integrationen existieren, erfolgt der Datenaustausch
ausschlieflich tiber individuell entwickelte Skripte oder API-Aufrufe.

Ziel: Verbesserung der Transparenz und Automatisierung, indem Konfigurationsdaten
fiir Build-, Deployment- und Uberwachungsprozesse zentral verfiighar sind.

Akteure: DevOps-Engineer, CI/CD-System, Monitoring-System. Ablauf:

1. Die CMDB stellt Informationen zu Services und Abhéngigkeiten tiber eine REST-
API bereit.

2. CI/CD-Jobs konnen diese Daten abrufen, um Deployment-Umgebungen dynamisch

zu konfigurieren.

3. Monitoring-Systeme nutzen dieselben Daten, um automatisch neue Services zu er-

fassen oder Alarme zu konfigurieren.

Erwartetes Ergebnis: Reduzierter manueller Aufwand bei der Systemintegration

sowie verbesserte Nachvollziehbarkeit von Anderungen in der Produktionsumgebung [18].

Use Case 3: Anderungsmanagement und Nachvollziehbarkeit

Ein wesentlicher Aspekt jeder CMDB ist die Unterstiitzung des Change Managements
im Sinne des ITIL-Frameworks. Dieser Use Case beschreibt die Nachvollziehbarkeit von
Konfigurationsinderungen und deren Auswirkungen auf abhéngige Systeme.

Ziel: Minimierung von Risiken bei Anderungen durch eine klare Versionshistorie und
Abhéngigkeitsanalyse.

Akteure: Change Manager, I'T-Service-Desk, CMDB-System. Ablauf:

1. Ein geplanter Change wird im ITSM-System (z. B. ServiceNow) erfasst.

2. Das CMDB-System identifiziert alle betroffenen Cls und zeigt deren Beziehungen

all.

13

3. Nach Durchfiihrung des Changes wird der neue Zustand automatisch dokumentiert.

Erwartetes Ergebnis: Erhohte Transparenz und verbesserte Entscheidungsgrundla-
ge bei geplanten Anderungen.

Zusammenfassung der Use Cases Die drei beschriebenen Use Cases bilden die
Basis fiir die konzeptionelle und technologische Ausarbeitung der CMDB in Kapitel 4. Sie

decken zentrale Funktionsbereiche ab:
e Erfassung und Pflege von Configuration Items(Cls) (Use Case 1),
e Integration in bestchende Betriebsprozesse (Use Case 2),

e Transparenz und Kontrolle im Anderungsmanagement (Use Case 3).

4 Konzeptionelle Architektur einer CMDB

Die konzeptionelle Architektur bildet das zentrale Ergebnis der vorliegenden Arbeit. Sie
beschreibt die grundlegenden Systemkomponenten, deren logische Zusammenhénge sowie
die Kommunikationsfliisse innerhalb der geplanten Configuration Management Database
(CMDB). Ziel ist es, eine skalierbare, modular aufgebaute und erweiterbare Systemland-

schaft zu entwerfen, die auf offenen Standards und Open-Source-Technologien basiert.

4.1 Uberblick iiber die Zielarchitektur

Die in dieser Arbeit konzipierte Architektur folgt einem modularen Aufbau, bei dem ein-
zelne Funktionsbereiche in klar abgegrenzten Systemkomponenten realisiert sind. Diese
Modularitat erlaubt es, Komponenten unabhéngig voneinander zu entwickeln, zu warten
und bei Bedarf zu erweitern. Die logische Struktur der Architektur ist in Abbildung 1
im Anhang dargestellt. Sie zeigt die wesentlichen Systemelemente und in welchen Netz-
werken sie deployt werden sollen. Datenfliisse und Integrationspunkte zu bestehenden
IT-Systemen sind ebenfalls abgebildet.

Das Gesamtsystem gliedert sich in drei Hauptschichten:

e Prisentationsschicht: Verantwortlich fiir die Benutzerinteraktion iiber Webober-
flichen und APIs. Dazu gehoren das Frontend (Svelte-basiert) und die DataGerry
Admin UL

e Applikations- und Logikschicht: In dieser Schicht befinden sich zentrale Dienste
wie das BFF - Backend For Frontend (Java/Quarkus) sowie die DataGerry-API, die

als Schnittstelle zur Datenhaltung fungiert.

14

e Datenhaltungsschicht: Besondere Aufmerksamkeit erfordert dabei die Sicherstel-
lung der Datenkonsistenz sowie der referenziellen Beziehungen zwischen den gespei-
cherten Konfigurationsobjekten, insbesondere im Hinblick auf Hochverfiigbarkeitss-
zenarien. Obwohl Docker Compose benutzt wurde vgl. Unterkapitel 5.3.2, miissen
Mechanismen zur Replikation und Konsistenzwahrung der MongoDB-Datenbank ge-
sondert beriicksichtigt werden, da Docker Compose keine native HA-Unterstiitzung
bietet

Ergéinzt wird die Architektur durch unterstiitzende Komponenten, wie den Keycloak-
Cluster zur Authentifizierung und Autorisierung, sowie externe Systeme (z. B. Confluence,
GitHub, CyberArk, Jenkins, Prometheus), die iiber standardisierte Schnittstellen einge-
bunden werden; fiir sicherheitskritische Anwendungen wie die Secret-Verwaltung durch
CyberArk wire jedoch ein klar definiertes, abgesichertes Integrationskonzept erforderlich,
etwa iiber rollenbasierte Zugriffskontrollen, Token-Verwaltung und den Einsatz kurzlebi-

ger Anmeldeinformationen.|19]

4.2 Modularer Aufbau und Schnittstellen

Der modulare Aufbau gewéhrleistet eine klare Trennung der Verantwortlichkeiten und
minimiert Abhéngigkeiten zwischen den Komponenten. Die Hauptmodule der Architektur

lassen sich wie folgt beschreiben:

1. DataGerry Core: Stellt die zentrale Plattform zur Verwaltung und Strukturie-
rung von Konfigurationsdaten bereit. Uber die REST-API werden alle Operationen
(CRUD) auf den Configuration Items ausgefiihrt.

2. BFF — Backend For Frontend: Realisiert in Java/Quarkus und fungiert als Ver-
mittler zwischen Frontend, DataGerry und externen Systemen wie Confluence (Do-
kumentation), GitHub (Quellcode-Verwaltung), CyberArk (Secret Management),
Jenkins (CI/CD-Pipeline) und Prometheus (monitoring-Tool).

3. Frontend: Eine Svelte-basierte Benutzeroberfliche, die Nutzern einen intuitiven

Zugriff auf die CMDB-Daten ermoglicht.

4. Authentifizierung und Zugriffskontrolle: Der Keycloak-Cluster (RHBK) iiber-

nimmt zentrale Funktionen der Benutzerverwaltung und Single-Sign-On-Integration.

5. Persistenzschicht: basiert auf einer MongoDB-Instanz, in der DataGerry die CMDB-
Objekte sowie die zugehorigen Metadaten ablegt. Beziehungen zwischen Konfigura-
tionselementen und Anderungsinformationen werden durch die Anwendung selbst
verwaltet und als strukturierte Dokumente in MongoDB gespeichert, da MongoDB

keine native referentielle Integritét oder Versionierung bereitstellt.

15

Durch diesen modularen Aufbau ist die Architektur flexibel erweiterbar und kann zu-
kiinftig um zuséatzliche Module, wie etwa ein automatisiertes Discovery- oder Monitoring-

Modul, erginzt werden.

Begriindung des BFFs und des Frontends

Fiir die Zielarchitektur wird ein Backend-for-Frontend (BFF) eingesetzt, um Funktionen
bereitzustellen, die {iber die Moglichkeiten der reinen DataGerry-API hinausgehen. Da
DataGerry architekturbedingt dem Repo-first-Ansatz folgt — das heifst, das Datenmodell
wird primér in der MongoDB definiert und die REST-API anschliefend als Zugriffsschicht
dartiibergelegt — fehlt ein vorab spezifizierter, stabiler Integrationsvertrag, wie er in einem
API-first-Ansatz iiblich wére. Dies erschwert insbesondere Integrationen mit Monitoring-
Systemen, CI/CD-Pipelines oder externen Automatisierungsprozessen.

Das BFF schlieftt diese Liicke, indem es als Vermittlungsschicht zwischen Frontend,
CMDB und weiteren Systemen fungiert. Es aggregiert und transformiert Daten aus ver-
schiedenen Quellen, validiert Eingaben, setzt Sicherheits- und Zugriffskontrollen durch
und stellt eine konsolidierte, integrations- und frontendgerechte API bereit. Zudem ermog-
licht es Mechanismen wie Caching und die Entkopplung der Frontend-Kommunikation von
internen Systemen. Dadurch kann sowohl Performance als auch Sicherheit erhoht und eine
konsistente sowie erweiterbare Bereitstellung der CMDB-Daten gewéhrleistet werden.

Obwohl DataGerry bereits iiber eine eigene Benutzeroberfliche verfiigt, wird im Ar-
chitekturkonzept ein zusétzliches Frontend vorgesehen. Die vorhandene UT ist primér auf
administrative Aufgaben und die generische Verwaltung von Konfigurationsobjekten aus-
gelegt, bietet jedoch nur eingeschrankte Moglichkeiten fiir organisationsspezifische Work-
flows, eigene Visualisierungen oder doménenspezifische Interaktionen. Durch ein dediziert
entwickeltes Frontend konnen gezielte Nutzungsprozesse vereinfacht, komplexe Datenbe-
ziehungen tibersichtlich dargestellt und zuséatzliche Funktionen implementiert werden, die
iiber den Standardumfang von DataGerry hinausgehen. Das Frontend nutzt dabei exklusiv
die abstrahierte API des BFF, wodurch eine klare Trennung zwischen Prasentation, Lo-
gik und Datenhaltung gewéhrleistet bleibt und die Anpassbarkeit des Systems langfristig

sichergestellt wird.

4.3 Datenfliisse und Kommunikation

Alle Komponenten — einschlieflich des Backend-for-Frontend (BFF) — kommunizieren {iber
standardisierte REST-Schnittstellen und tauschen Daten ausschliefslich iiber etablierte
Protokolle (z. B. HTTPS, JSON) aus. Dies gewihrleistet Interoperabilitéit® und erleichtert

5Der Begriff Interoperabilitit beschreibt die Fihigkeit unterschiedlicher Systeme, Anwendungen oder
Komponenten, miteinander zu kommunizieren, Daten auszutauschen und diese Informationen effizient
weiterzuverarbeiten, ohne dass eine Anpassung der beteiligten Systeme erforderlich ist. Vgl. ISO/IEC
2382:2015, Information technology — Vocabulary.

16

zukiinftige Integrationen.

e Der Developer interagiert iiber das Cockpit-Frontend mit der CMDB. Anderungen
oder Abfragen werden iiber das Cockpit-BFF an die DataGerry-API weitergeleitet.

e Die DataGerry-API dient als zentrales Gateway zur Datenhaltung. Sie fiihrt

Schreib- und Leseoperationen auf der MongoDB aus.

e Das Authentifizierungssystem (Keycloak) validiert Benutzerzugriffe und gibt
Access Tokens an die Kommunikationspartner zuriick. Dabei wird OAuth2 ein-
gesetzt. Eine vollstandige OIDC-Kompatibilitdt besteht seitens DataGerry jedoch
nicht, da lediglich der Token-basierte Zugriff unterstiitzt wird und keine vollstan-
dige Umsetzung der OIDC-Sperzifikation (z. B. standardisierte Claims, UserInfo-

Endpoint oder automatisiertes Rollenmapping) erfolgt.

e Uber den Datenmigrationsprozess werden Informationen aus dem bestehenden
Asset Inventory (Microsoft Access) in eine CSV exportiert und andschliefend per
CSV Import Funktion, welche die Datagerry UI bietet, in die CMDB iiberfiihrt.

Die vollstéandige Darstellung der Datenfliisse, einschlieflich der Netzwerkschichten und
Clusterebenen, findet sich in Abbildung 1.

4.4 Integration und Sicherheit

Ein wesentliches Ziel des Architekturkonzepts besteht darin, die CMDB sicher in beste-
hende Unternehmenssysteme zu integrieren, ohne gegen vorhandene Sicherheitsrichtlinien
zu verstofen. Die einzelnen Komponenten werden zwar in Containern betrieben, jedoch
stellt die Containerisierung allein keinen Sicherheitsgewinn dar. Sicherheit entsteht erst
durch zusitzliche Mafnahmen wie Image-Hardening ©, regelméfige Updates, kontrollierte
Netzsegmentierung und das Prinzip der minimalen Berechtigungen.

Die Kommunikation zwischen den Modulen erfolgt iiber verschliisselte HT TPS-Verbindungen,
wobei die TLS-Terminierung typischerweise nicht in den einzelnen Containern, sondern
an zentralen Infrastrukturkomponenten wie einem Reverse Proxy stattfindet. Dadurch
konnen Zertifikate konsistent verwaltet und Verbindungen kontrolliert {iberwacht werden.

Fiir die Authentifizierung und Autorisierung kommt Keycloak zum Einsatz, das rollen-
und gruppenbasierte Zugriffskontrollen bereitstellt. Sensible Anmeldeinformationen wer-
den nicht in der CMDB selbst gespeichert. Der Einsatz von CyberArk kann hierbei sinnvoll
sein, sofern er auf die Verwaltung kurzlebiger API-Tokens, Service-Accounts oder ande-

rer betriebskritischer Zugangsdaten beschrinkt bleibt. Eine direkte Kopplung zwischen

SImage-Hardening umfasst alle Mafnahmen zur Absicherung von Container- oder VM-Images, indem
unnotige Komponenten entfernt, sichere Konfigurationen umgesetzt und Integritdtskontrollen etabliert
werden. Ziel ist es, die Angriffsfliche zu minimieren und die Images nahtlos in bestehende Sicherheits-
und Integrationsprozesse einzubetten.

17

CMDB und CyberArk im Sinne eines automatischen Credential-Austauschs wére hinge-

gen sicherheitstechnisch kritisch und ist nicht vorgesehen.[20].

4.5 Bezug zum Feasibility Check

Der in Abbildung 2 dokumentierte Feasibility Check dient als Grundlage fiir die Bewertung
der Umsetzbarkeit der vorgeschlagenen Architektur. Er iiberpriift die technische Eignung
der eingesetzten Open-Source-Komponente Datagerry, hinsichtlich der Anforderungen die
in Kapitel 3.2 und 3.3 erarbeitet wurden.

Gleichzeitig zeigt der Feasibility Check eine klare Trennung zwischen funktionalen
und nicht-funktionalen Anforderungen: Wéhrend DataGerry die funktionalen Anforde-
rungen — insbesondere hinsichtlich Flexibilitat, Modellierbarkeit und Erweiterbarkeit der
Konfigurationsobjekte — erfiillt, wird deutlich, dass die Losung bei den nicht-funktionalen
Anforderungen an ihre Grenzen stoft. Dies betrifft insbesondere Aspekte wie Verfiig-
barkeit, Performance bei grofsen Datenmengen, Skalierbarkeit sowie die Fahigkeit, defi-
nierte SLA-Vorgaben einzuhalten. DataGerry bietet keine native HA-Unterstiitzung, was
fiir produktive CMDB-Systeme ein zentrales Kriterium darstellt. DataGerry selbst ist
nicht HA-fahig. Die Verfiigbarkeit muss iiber Infrastrukturkomponenten wie Container-
Orchestrierung (z. B. Kubernetes), Load Balancer und MongoDB-Replica-Sets hergestellt
werden. Diese Abhéngigkeit von externer Infrastruktur bedeutet, dass hohe Verfiighar-
keit, horizontale Skalierung oder Lastverteilung nicht durch die CMDB-Anwendung selbst,
sondern ausschlieflich durch zusétzliche Plattformkomponenten gewéhrleistet werden kon-
nen. Insgesamt zeigt der Feasibility Check, dass DataGerry zwar als funktionale Grundlage
und prototypische Implementierungsbasis geeignet ist, die Anforderungen an einen ska-
lierbaren, SLA-konformen und hochverfiigharen Produktivbetrieb jedoch nicht vollstandig
erfiillt.[21].

4.6 Zusammenfassung

Das vorgestellte Architekturkonzept bietet eine skalierbare, modulare und sichere Grund-
lage fiir den Aufbau einer modernen CMDB. Durch den Einsatz von Open-Source-Technologien
und standardisierten Schnittstellen wird die Interoperabilitét mit bestehenden I'T-Systemen
gewéhrleistet. Der modulare Aufbau fordert dabei die langfristige Wartbarkeit und An-
passungsfahigkeit des Systems.

18

5 Integration und Automatisierung

5.1 Ziel und Bedeutung der Integration

Die Integration einer Configuration Management Database (CMDB) in bestehende IT-
Prozesse bildet die Grundlage fiir eine effiziente, automatisierte und nachvollziehbare In-
frastrukturverwaltung. Eine moderne CMDB wie DataGerry fungiert nicht als isoliertes
System, sondern als zentrales Bindeglied zwischen Monitoring, Deployment und Change-
Management-Prozessen. Im Sinne der DevOps-Philosophie wird dabei die enge Verzah-

nung zwischen Entwicklung, Betrieb und Automatisierung angestrebt [18].

5.2 Technologische Grundlagen

Zur Umsetzung der Integrations- und Automatisierungsstrategie werden Containerisie-
rung, Infrastructure as Code (IaC)” sowie kontinuierliche Integrations- und Deployment-
prozesse (CI/CD) genutzt. Die Containerisierung erfolgt mittels Podman, wodurch die
CMDB und ihre Abhéngigkeiten in standardisierte, portable Umgebungen verpackt wer-
den konnen [22|. Ansible dient als Orchestrierungs- und Automatisierungs-Tool fiir die
Bereitstellung der Systemkomponenten (DataGerry, RabbitMQ, MongoDB) [23]. Die Ver-

sionskontrolle und Integration in CI/CD-Pipelines wird iiber Jenkins sichergestellt.

5.3 Umsetzung der Automatisierung
5.3.1 Infrastructure as Code mit Ansible

Das Ansible-Playbook automatisiert die Bereitstellung der zentralen CMDB-Komponenten.

Dabei werden folgende Hauptaufgaben realisiert:
e Installation und Konfiguration von DataGerry, RabbitM(@) und MongoDB,
e Sicherstellung der Serviceabhéngigkeiten (Startreihenfolge),
e Integration in das Netzwerkumfeld (Ports, Volumes, Security),

e Implementierung eines idempotenten Deployments, d. h. wiederholte Ausfithrungen

fiihren zu keinem fehlerhaften Zustand.

Der modulare Aufbau des Playbooks erlaubt eine Wiederverwendung einzelner Rollen
und Tasks fiir zukiinftige Erweiterungen. Das Vorgehen folgt den Best Practices der 1aC-

Methodik, wonach Infrastrukturdnderungen versioniert, dokumentiert und reproduzierbar

"Infrastructure as Code (IaC) bezeichnet den Ansatz, IT-Infrastruktur iiber Code zu definieren, zu
verwalten und automatisiert bereitzustellen, anstatt sie manuell zu konfigurieren. Dadurch wird eine
reproduzierbare, versionierbare und skalierbare Bereitstellung von Systemen erméglicht. Vgl. Hiittermann,
M. (2012): DevOps for Developers. Apress.

19

bereitgestellt werden sollen. Das im Listing 2 dokumentierte Ansible Playbook beschreibt
folgenden Automatisierungsprozess: Ladt den DataGerry-Quellcode herunter, installiert
notwendige Abhéngigkeiten, kopiert Konfigurationsdateien (cmdb.conf, datagerry.conf)

und richtet den Service (datagerry.service) ein [24].

5.3.2 Containerisierung mit Docker Compose

Die Containerisierung erfolgt iiber ein docker-compose.yml-File (vgl. Listing 1). Hier
werden die Dienste datagerry, rabbitmg und mongodb als voneinander abhingige Con-
tainer beschrieben. Docker Compose ermdglicht die einfache Verwaltung der Dienste tiber

Befehle wie:

docker-compose up -d

docker-compose down

Diese Methode bietet Vorteile hinsichtlich Portabilitdt und Wiederholbarkeit, insbesonde-
re bei Deployments auf Red Hat Enterprise Linux (RHEL 9) oder vergleichbaren Systemen
[21].

5.3.3 Integration mit CI/CD

Die Integration der CMDB in bestehende CI/CD-Pipelines (Continuous Integration/Con-
tinuous Deployment) stellt einen wesentlichen Schritt dar, um Infrastruktur- und Anwen-
dungsbereitstellungen automatisiert, konsistent und nachvollziehbar zu gestalten. Ziel ist
es, Konfigurationsdaten aus der CMDB automatisiert in Build-, Test- und Deployment-
Prozesse einzubinden, sodass Deployments stets auf aktuellen und verifizierten Systemin-

formationen basieren.

Automatisierte Bereitstellung von Konfigurationsdaten

CI/CD-Systeme wie Jenkins greifen nicht direkt auf die CMDB zu, sondern beziehen die
benotigten Infrastruktur- und Servicedaten iiber das Backend-for-Frontend (BFF), das
als vermittelnde Schicht dient. Das BFF ruft die Informationen iiber die REST-API von
DataGerry ab, bereitet sie fiir Integrationsprozesse auf und stellt sie CI/CD-Pipelines in

konsolidierter Form bereit. Typische Anwendungsfélle sind unter anderem:

e Dynamisches Abrufen von Server-, Cluster- oder Containerinformationen zur Lauf-

zeit von Pipeline-Jobs,

e bereitstellung strukturierter Konfigurationsparameter — etwa IP-Adressen, Zielum-
gebungen oder Abhéngigkeitsinformationen — die durch das BFF aus der CMDB
abgefragt und CI/CD-Jobs als Variablen oder Artefakt-Dateien zur Verfiigung ge-
stellt werden. Die eigentliche Einbindung in Deployment-Skripte erfolgt anschliefend
durch die Pipeline selbst,

20

e Sicherstellung, dass Deployments nur auf Systeme durchgefiihrt werden, die in der

CMDB als “bereit” oder “freigegeben” markiert sind.

5.4 Integration der CMDB mit Monitoring-Systemen

Zur Schaffung einer geschlossenen Systemlandschaft wird die CMDB iiber das BFF mit
Monitoring-Systemen wie Prometheus integriert. Diese Systeme konnen automatisch Da-
ten aus der CMDB abrufen, um beispielsweise neue Services oder Hosts zu iiberwachen.
Durch diese Integration wird die Transparenz erhoht und eine automatische Synchroni-
sierung zwischen Inventar und Uberwachung erreicht (vgl. Use Case 2 in Kapitel 3.4).
DataGerry bietet hierfiir eine gut dokumentierte REST-API, die Abfragen, Filterungen
und CRUD-Operationen auf Objekten erlaubt [1].

5.5 Zusammenfassung

Die prototypische Integration zeigt, dass sich durch den Einsatz von Automatisierungs-
werkzeugen wie Ansible und CI/CD-Pipelines einzelne Arbeitsschritte reproduzierbar und
teilweise automatisiert ausfiihren lassen. Fine quantitative Bewertung der Verbesserungen
— etwa in Form konkreter Messwerte zu Stabilitéit, Ausfiihrungszeiten oder Fehlerreduk-
tion — wurde im Rahmen dieser Arbeit jedoch nicht durchgefiihrt, sodass die Ergebnisse
qualitativ zu interpretieren sind.

Die Umsetzung des Deployments mit Docker Compose ermoglicht eine vereinfachte
Bereitstellung der bendtigten Komponenten, stellt jedoch keine skalierbare oder hochver-
fiigbare Umgebung bereit. Vielmehr dient Compose in diesem Kontext als leichtgewichti-
ge Laufzeitumgebung fiir Entwicklungs- und Testzwecke. Fiir produktive Szenarien wéren
Orchestrierungswerkzeuge wie Kubernetes erforderlich, um Skalierung, Self-Healing oder
Rolling Updates sicherzustellen.

Durch die Verwendung von Infrastructure-as-Code-Ansétzen werden Transparenz und
Nachvollziehbarkeit der Konfiguration verbessert, dennoch handelt es sich nicht um eine
vollstéandig automatisierte Umgebung. Verschiedene Schritte — beispielsweise Migrations-
prozesse, Integrationslogiken oder sicherheitskritische Freigaben — erfordern weiterhin ma-
nuelle Entscheidungen. Die Architektur bleibt erweiterbar und bildet eine Grundlage, auf
der zukiinftige Integrationen, etwa mit I'TSM- oder Backup-Losungen, aufbauen kénnen,

ohne dass der Anspruch einer vollumfianglichen Automatisierung erhoben wird.

21

6 Fazit und Ausblick

6.1 Zusammenfassung der Ergebnisse

Die vorliegende Arbeit verfolgte das Ziel, ein detailliertes Infrastruktur- und Architek-
turkonzept fiir den Aufbau einer Configuration Management Database (CMDB) zu ent-
wickeln. Im Mittelpunkt standen insbesondere moderne Open-Source-Technologien wie
DataGerry, containerisierte Deployments auf Basis von Docker, Automatisierungsmetho-
den wie Ansible und Infrastructure as Code (IaC) sowie die Integration in bestehende
Monitoring-Systeme und CI/CD-Pipelines.

Im Rahmen der Analyse wurden zunéchst funktionale und nicht-funktionale Anfor-
derungen sowie konkrete Use Cases erarbeitet, die als Grundlage fiir die konzeptionelle
Ausgestaltung der CMDB-Architektur dienten. Auf dieser Basis erfolgte ein Feasibility
Check, welcher die Eignung von DataGerry als Open-Source-Losung fiir den Einsatz als
zentrale CMDB evaluierte und dokumentierte. Das Ergebnis bestétigte die technische und
funktionale Passfahigkeit der Plattform im Hinblick auf die ermittelten Anforderungen.

Anschliefend wurde die konzeptionelle Architektur entwickelt. Hierzu entstand ein
UML-Datenflussdiagramm, das die Interaktionen der zentralen Systemkomponenten ab-
bildet. Die Architektur wurde in die Schichten Prdisentationsschicht, Applikationsschicht
und Datenhaltungsschicht unterteilt. Dariiber hinaus folgt das Design einem modularen
Aufbau, der eine flexible Erweiterbarkeit und Wartbarkeit des Gesamtsystems sicher-
stellt.Das vorgesehene Identity-Management basiert auf Keycloak, welches Rollen, Single-
Sign-On und Zugriffskontrolle bereitstellt.

Zur praktischen Umsetzung wurde ein Ansible-Playbook implementiert, das die au-
tomatisierte Installation und Konfiguration der Kernkomponenten DataGerry, RabbitM@)
und MongoDB ermoglicht. Diese Dienste wurden mithilfe einer Docker-Compose-Datei in
voneinander abhédngigen Containern orchestriert, wodurch eine konsistente und wieder-
holbare Bereitstellung gewahrleistet wird.

Im weiteren Verlauf konnten erste Configuration Items (ClIs) erfolgreich importiert
werden. Hierzu wurde ein CSV-Export aus dem bestehenden Asset-Inventory-System er-
stellt und tiber die CSV-Import Funktion, welche vorab im Feasability tiberpriift wurde
(vgl. Abbildung 2), auf der Administrationsoberfliche von DataGerry eingespielt (vgl.
Abbildung 3).

Dariiber hinaus wurde die geplante Integration der CMDB in die bestehende CI/CD-
Pipeline auf Basis von Jenkins konzipiert. Diese Integration kann iiber die von DataGerry
bereitgestellte REST-API realisiert werden, wodurch Konfigurationsdaten automatisiert
in Build- und Deployment-Prozesse eingebunden werden kénnen. Ein analoges Vorgehen
ist fiir das Monitoring-System Prometheus vorgesehen, um Infrastrukturdnderungen und
Servicezustande dynamisch zu erfassen und auszuwerten.Zusammenfassend lésst sich fest-

halten, dass die Arbeit ein vollstindiges Konzept fiir eine skalierbare, modular aufgebaute

22

und datenschutzkonforme CMDB liefert, die sich in moderne DevOps-Prozesse integrieren

lasst.

6.2 Ausblick auf weiterfithrende Arbeiten

Obwohl das konzeptionelle Fundament gelegt ist, stehen fiir die praktische Umsetzung
noch weitere Arbeitsschritte an. Erste Prioritdt besitzt die vollstdndige Implementierung
und produktive Einfithrung der CMDB in die bestehende IT-Landschaft. Dabei miissen

insbesondere folgende Punkte weiterentwickelt werden:

¢ Automatisierte Discovery-Mechanismen: Entwicklung von Skripten oder Agen-
ten, die Infrastrukturkomponenten automatisch erkennen und in die CMDB einpfle-

gen.

e Change Management Workflow: Integration mit ITSM-Tools (z. B. ServiceNow)

zur automatisierten Erfassung von Changes und deren Auswirkungen.

e Monitoring- und Alarmierungskonzepte: Automatische Ableitung von Uber-

wachungskonfigurationen aus der CMDB.

e Security & Compliance: Umsetzung von Privacy by Design, Zugriffsrichtlinien
und DSGVO-Anforderungen im laufenden Betrieb.

e Test- und Abnahmeprozesse: Definition von Testplénen, Continuous Deploy-

ment Pipelines und Abnahmekriterien fiir neue CMDB-Funktionen.

e Dokumentation und Schulung: Erstellung von Nutzerhandbiichern sowie Schu-

lung von Administratoren und Endanwendern.

Langfristig kann die CMDB als Grundlage fiir weiterfiihrende Technologien wie Ma-
chine Learning (z. B. Predictive Maintenance), automatisierte Impact-Analysen oder Self-
Healing-Infrastrukturen dienen. Ebenso bietet sich die Moglichkeit, Knowledge Graphs
oder Semantik-Technologien zur intelligenten Datenverkniipfung einzusetzen.

Die erarbeiteten Konzepte bilden somit nicht den Endpunkt, sondern vielmehr den
Startschuss fiir die technische Realisierung einer zukunftsfahigen, transparenten und resi-

lienten IT-Infrastruktur.

7 Anhang

23

IGAD 1ANETWORKS
Agsetinven!
(Accoess)
v
data migration script
L

Devuh:per » Prometheus

IAKB DEV Agplication CLUSTER)1/d02.0s.2ah 1s.nef) KB DEV RHBK CLUSTER
kevy d01/d02, ox.aah
—> Jenkins
cockpit-frontend N
(Svelte) » RHBK/Keyclak
Canth
cockpit-bff ;
(JavalQuarkus) [© Gt
r
gerry admin
ul
l Cyberark
> gerry AP

IAKB DEV DB (devdbserverd0 1.os_aah amadeus.net)

mongodb

Abbildung 1: Datenflussdiagramm des CMDB-Projekts.

24

Feasibility Check - DataGerry

1. Grundfunktionen - Datenmodell & CRUD
[Typen erstellen, Felder definieren, Daten einfligen, lesen, updaten, I6schen - vollstandig Gber Ul & APl méglich.

2. Relationen & Referenzen
0 1:n und n:m Beziehungen, Objektverknlipfungen, verschachtelte Relationen - solide umgesetzt.

3. Filter & Abfragen
[Volltextsuche, Attribut- und Relationsfilter, Sortierung, Pagination - vorhanden.

4. Import / Export
[J CSV/JSON Import & Export, Backups tiber MongoDB, kein direkter DB-Import.

5. API-Zugriff
[0 REST API mit Token-Auth, CRUD & Filterung, Swagger-Docs verfligbar.

6. Benutzer, Rollen & Sicherheit
[] Benutzerverwaltung, ACL, LDAP/SSO Unterstiitzung, Rechte auf Typ-/Feldebene.

7. Benutzeroberflache & Usability
[Modernes Web-Ul, Audit-Logs, visuelle Differenzierung von Typen & Objekten.

8. Erweiterbarkeit & Wartbarkeit
[Templates, MDS, flexible Felder, Backups, dokumentierte Architektur.

9. Sonderfunktionen
0 Versionierung, Bulk-Anderungen, Reporting, Webhooks, Cl Explorer.

Fazit: DataGerry erfillt alle Kernanforderungen einer CMDB und ist fur produktive Nutzung geeignet.

Abbildung 2: Zusamenfassung des Feasability Check - Datagerry.

| Y n o
DATA"GERRY

— Type List

CATEGORES | LoCATIONS - YN oo e conn

x

Actve & PblD & Type Aathor CreationTime Last ector Modfcation Tme Actions Cloan
-] © ®o8
UNCATRGORZED
o #9o8

o
g o = - ¢os
" ° [+] 1 °1ex]
e O Satected o Show- s Totat 4 4]

g s Session tmeout b a0n

Abbildung 3: Weboberfliche von Datagerry

25

version:

services:

nginx:
image: docker.io/becongmbh/nginx:latest
hostname: nginx

ports:

depends_on:
- datagerry
environment:
NGINX_SSL_CERT:
NGINX_SSL_KEY:
NGINX_LOCATION_DEFAULT:
restart: unless-stopped
volumes:
- ./cert:/data/cert

datagerry:
image: docker.io/datagerry/datagerry:latest
hostname: datagerry
depends_on:
- db
- broker
environment:
DATAGERRY_Database_host:
DATAGERRY_MessageQueueing_host:

restart: unless-stopped

db:
image: docker.io/mongo:4.4.29
hostname: db
restart: unless-stopped
volumes:
- mongodb-data:/data/db
- mongodb-config:/data/configdb

broker:
image: docker.io/rabbitmqg:3.8
hostname: broker
restart: unless-stopped
volumes:
- rabbitmqg-data:/var/lib/rabbitmq

volumes:

rabbitmq-data:

26

mongodb -data:

mongodb-config:

Listing 1: Docker-Compose.yml Datei zur Bereitstellung von DataGerry RabbitMQ und
MongoDB

27

- name: Git & Python vorbereiten
apt:
name :
- git
- python3
- python3-venv

state: present

- name: Datagerry klomnen
git:
repo:
dest:

version:

- name: Virtuelle Umgebung fuer DataGerry erstellen
command: python3 -m venv /opt/datagerry/venv
args:

creates: /opt/datagerry/venv

- name: Pip in der virtuellen Umgebung aktualisieren

command: /opt/datagerry/venv/bin/pip install --upgrade pip

- name: Python-Abhaengigkeiten in der virtuellen Umgebung installieren
command: /opt/datagerry/venv/bin/pip install -r /opt/datagerry/

requirements.txt

- name: Konfigurationsdatei bereitstellen
template:
src: datagerry.conf. j2
dest: /opt/datagerry/datagerry.conf
owner: root
group: root

mode :

- name: Datagerry starten (einmalig)
shell: |
nohup /opt/datagerry/venv/bin/python /opt/datagerry/datagerry.py --
config /opt/datagerry/datagerry.conf &
args:
chdir: /opt/datagerry
creates: /tmp/datagerry_started

Listing 2: roles/datagerry/tasks/main.yml Ansible Playbook zur Installation von
Datagerry

28

Literatur

1

2|

3]

4]

[5]

6]

7]

8]

9]

[10]

[11]

[12]

[13]

[14]

becon GmbH, “Datagerry documentation,” 2024. Offizielle Dokumentation der Open-
Source-CMDB DataGerry.

I. G. I. . U. of Gottingen, “State of the nation survey findings —
cms/cmdb.” https://www.uni-goettingen.de/de/document/download/
d895466597b111a39f3592cacbe93ddb-en.pdf/itil_state_of_the_nation_
survey.pdf, 2025. abgerufen am: 5.12.2025.

AXELOS, ITIL Foundation: ITIL 4 Edition. London: The Stationery Office (TSO),
2019.

M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski, G. Lee,
D. Patterson, A. Rabkin, I. Stoica, and M. Zaharia, “A view of cloud computing,”
Communications of the ACM, vol. 53, no. 4, pp. 50-58, 2010.

G. Inc., “Understanding and avoiding vendor lock-in in cloud computing,” 2023.

[. Sommerville, Software Engineering. Harlow: Pearson Education Limited, 10th
edition ed., 2016.

K. Wiegers and J. Beatty, Software Requirements. Redmond, WA: Microsoft Press,
4th edition ed., 2023.

[EEE, “Ieee 830-1998: Recommended practice for software requirements specificati-

ons,” 1998. Institute of Electrical and Electronics Engineers.

O. of Government Commerce, [TIL Service Transition. London: The Stationery
Office (TSO), 2007.

R. S. Pressman and B. R. Maxim, Software Engineering: A Practitioner’s Approach.
McGraw-Hill Education, 9 ed., 2020.

Red Hat, Inc., Red Hat Enterprise Linux 9 System Design Guide. 2024.

P. A. Laplante, Requirements Engineering for Software and Systems. CRC Press,
3 ed., 2017.

N. I. of Standards and T. (NIST), “Security and privacy controls for information
systems and organizations (nist sp 800-53, rev. 5),” tech. rep., U.S. Department of

Commerce, 2020.

“Verordnung (eu) 2016/679 des europdischen parlaments und des rates vom 27.

april 2016 zum schutz natiirlicher personen bei der verarbeitung personenbezogener

29

https://www.uni-goettingen.de/de/document/download/d895466597b111a39f3592cac5e93ddb-en.pdf/itil_state_of_the_nation_survey.pdf
https://www.uni-goettingen.de/de/document/download/d895466597b111a39f3592cac5e93ddb-en.pdf/itil_state_of_the_nation_survey.pdf
https://www.uni-goettingen.de/de/document/download/d895466597b111a39f3592cac5e93ddb-en.pdf/itil_state_of_the_nation_survey.pdf

[15]

[16]

[17]

18]

[19]

[20]

[21]

22]
23]

[24]

daten (datenschutz-grundverordnung, dsgvo).” https://eur-lex.europa.eu/eli/
reg/2016/679/0j, 2016. Amtsblatt der Européischen Union, L 119, 4.5.2016.

B. Burns, Designing Distributed Systems: Patterns and Paradigms for Scalable, Re-
liable Services. O’Reilly Media, 2016.

MongoDB Inc., MongoDB Documentation, Version 7.0, 2023.

“It infrastructure management best practices.” https://www.gartner.com/en/
documents, 2022.

G. Kim, J. Humble, P. Debois, and J. Willis, The DevOps Handbook: How to Crea-
te World-Class Agility, Reliability, and Security in Technology Organizations. 1T
Revolution Press, 2017.

L. Bass, P. Clements, and R. Kazman, Software Architecture in Practice. Boston:
Addison-Wesley, 4th ed., 2021.

W. Stallings, Network Security FEssentials: Applications and Standards. Boston: Pear-
son, 7th ed., 2021.

D. Merkel, “Docker: Lightweight linux containers for consistent development and

deployment,” Linuz Journal, vol. 239, 2014.
Docker Inc., “Docker documentation.” https://docs.docker.com/, 2025.
Red Hat Inc., “Ansible documentation.” https://docs.ansible.com/, 2025.

M. Hiittermann, DevOps for Developers. Apress, 2012.

30

https://eur-lex.europa.eu/eli/reg/2016/679/oj
https://eur-lex.europa.eu/eli/reg/2016/679/oj
https://www.gartner.com/en/documents
https://www.gartner.com/en/documents
https://docs.docker.com/
https://docs.ansible.com/

	Einleitung
	Motivation und Relevanz des Themas
	Problemstellung: Fehlende Transparenz und Nachvollziehbarkeit in IT-Infrastrukturen
	Zielsetzung der Arbeit
	Abgrenzung und Vorgehensweise

	Theoretische und technische Grundlagen
	Begriff des Configuration Managements
	Rolle und Bedeutung einer CMDB im IT-Service-Management
	ITIL-Referenzmodell und Best Practices
	Open-Source-Ansätze im Configuration Management
	Einordnung und Architektur von DataGerry

	Anforderungsanalyse
	Methodik der Anforderungsanalyse
	Funktionale Anforderungen an eine CMDB
	Nicht-funktionale Anforderungen (Sicherheit, Skalierbarkeit, Wartbarkeit)
	Konkrete Use Cases für die CMDB-Implementierung

	Konzeptionelle Architektur einer CMDB
	Überblick über die Zielarchitektur
	Modularer Aufbau und Schnittstellen
	Datenflüsse und Kommunikation
	Integration und Sicherheit
	Bezug zum Feasibility Check
	Zusammenfassung

	Integration und Automatisierung
	Ziel und Bedeutung der Integration
	Technologische Grundlagen
	Umsetzung der Automatisierung
	Infrastructure as Code mit Ansible
	Containerisierung mit Docker Compose
	Integration mit CI/CD

	Integration der CMDB mit Monitoring-Systemen
	Zusammenfassung

	Fazit und Ausblick
	Zusammenfassung der Ergebnisse
	Ausblick auf weiterführende Arbeiten

	Anhang

