
FH Aachen

Fachbereich 09
Medizintechnik und Technomathematik

Studiengang Angewandte Mathematik und Informatik

Seminararbeit

Eine prototypische Implementierung für Responsive Design und
Touchbedienung im Webtool Miori Boards

Yannic Sieger
Matr.-Nr.: 3630695

Betreuer: Prof. Dr. Alexander Voß

Betreuerin: Olga Wolf, Dipl.-Math.

15. Dezember 2025

Eidesstattliche Erklärung

Ich versichere hiermit, dass ich die vorliegende Arbeit selbstständig verfasst und keine anderen als
die im Literaturverzeichnis angegebenen Quellen benutzt habe.

Stellen, die wörtlich oder sinngemäß aus veröffentlichten oder noch nicht veröffentlichten Quellen
entnommen sind, sind als solche kenntlich gemacht.

Die Zeichnungen oder Abbildungen in dieser Arbeit sind von mir selbst erstellt worden oder mit
einem entsprechenden Quellennachweis versehen.

Diese Arbeit ist in gleicher oder ähnlicher Form noch bei keiner anderen Prüfungsbehörde eingereicht
worden.

Im Rahmen der Erstellung dieser Arbeit wurde das KI-System “KI.connect.nrw“ unterstützend zur
sprachlichen Überarbeitung sowie zur fachlichen Reflexion und Präzisierung eigenständig entwickelter
Argumente genutzt. Eine Übernahme von KI-generierten Texten oder inhaltlichen Lösungsvorschlägen
erfolgte nicht. Sämtliche fachlichen Aussagen, Bewertungen und Schlussfolgerungen wurden ei-
genständig erarbeitet und verantwortet. Die Nutzung erfolgte im Einklang mit der Zweckbestimmung
des Systems sowie unter Beachtungdatenschutz- und urheberrechtlicher Vorgaben.

Name: Yannic Sieger
Aachen, 15. Dezember 2025

I

Abstract

Im Zuge des Trends zu ”New Work“ und der fortschreitenden Digitalisierung verlagert sich die Arbeit
zunehmend auf mobile Endgeräte wie Smartphones und Tablets. Das Webtool Miori Boards, welches
als zentrale Informationsquelle für das Projektmanagement dient, ist derzeit primär auf die Nutzung
an Desktop-Systemen ausgelegt und verfügt weder über eine responsive Darstellung noch über eine
Unterstützung für Touchgesten.
Ziel dieser Arbeit ist die Erarbeitung einer Implementierungsstrategie, um Miori Boards an die An-
forderungen mobiler Endgeräte anzupassen. Hierfür werden zunächst grundlegende Technologien des
Responsive Webdesigns, wie das CSS Box-Model, Flexbox und Grid, sowie Konzepte der Touchges-
tensteuerung mittels JavaScript PointerEvents analysiert. Auf Basis des Frameworks Vue.js und der
Bibliothek VueUse wird eine Strategie entwickelt, die einen ”Mobile-First“-Ansatz verfolgt.
Die praktische Umsetzung erfolgt exemplarisch durch einen Prototypen in Miori Boards. Dabei wird
die Übersichtseite durch dynamische Layout-Anpassungen responsive gestaltet und der Präsentations-
modus um eine Wischgeste (Swipe) zur Navigation erweitert. Die Evaluation anhand einer eigens
erstellten Benchmarkseite bestätigt, dass die entwickelten Konzepte die Anforderungen an Perfor-
mance, Usability und technische Umsetzbarkeit erfüllen. Die Ergebnisse bilden somit eine fundierte
Grundlage für die vollständige mobile Optimierung der Webanwendung.

II

Inhaltsverzeichnis

Inhaltsverzeichnis

1 Einleitung 1

1.1 Motivation . 1
1.2 Problemstellung . 1
1.3 Ziel der Arbeit . 1
1.4 Aufbau der Arbeit . 1

2 Grundlagen und Stand der Technik 2

2.1 Miori Boards . 2
2.2 Responsive (Web-) Design . 2

2.2.1 CSS Box-Model . 3
2.2.2 Media Queries . 5
2.2.3 Viewport-Meta-Tag . 5
2.2.4 Responsive Layout-Technologien . 6
2.2.5 Responsive Bilder und Medien. 9
2.2.6 Responsive Typografie . 9

2.3 Touchgestensteuerung . 9
2.3.1 JavaScript EventListener . 10
2.3.2 Arten von Touchgesten . 10

3 Anforderungen 12

3.1 Allgemeine Anforderungen . 12
3.2 Anforderungen an das Responsive Design . 13
3.3 Anforderungen an die Touchgestensteuerung. 14

4 Implementierungsstrategie 15

4.1 Verwendete Frameworks und Bibliotheken . 15
4.1.1 Vue.js . 15
4.1.2 VueUse Core, Gesture und Motion . 16
4.1.3 WZL Essentials . 16

4.2 Responsive Design . 17
4.2.1 Element Gestaltung . 17
4.2.2 Layout Gestaltung . 19

4.3 Touchgesten . 20
4.3.1 Implementierung von Touchgesten . 20
4.3.2 Nutzung und visuelle Indikatoren . 22

4.4 Strategie . 23

III

Inhaltsverzeichnis

5 Prototyp und Evaluation 25

5.1 Prototyp in Miori Boards . 25
5.1.1 Responsive Übersichtseite . 25
5.1.2 Touchgesten im Präsentationsmodus. 27

5.2 Evaluation des Konzepts . 28
5.2.1 Benchmarkseite . 28
5.2.2 Umsetzbarkeit der Anforderungen . 29

6 Fazit und Ausblick 30

6.1 Zusammenfassung der Ergebnisse . 30
6.2 Ausblick . 30

6.2.1 Progressive Web App (PWA). 30
6.2.2 Web- und Service-Worker . 30

Quellenverzeichnis 31

Abkürzungsverzeichnis 34

Abbildungsverzeichnis 35

Tabellenverzeichnis 36

IV

1 Einleitung

1 Einleitung

Dieses Kapitel führt in die Grundthematik der Seminararbeit ein und bildet den Rahmen für die
weiteren Kapitel.

1.1 Motivation

Durch den stetig wachsenden Trend zu New Work1 ist es möglich, von überall aus zu arbeiten. Im
Zuge der fortschreitenden Digitalisierung ist es wichtig, eine zentrale Quelle zu haben, welche den
aktuellen Stand eines Projekts anzeigen kann. Dabei können besonders Webapplikationen helfen, da
diese auf internetfähigen Geräten aufrufbar sind und der Nutzer nicht abhängig vom Nutzungsgerät
ist. Durch das universale Aufrufen von Webapplikationen verschiedener Systeme, muss beachtet
werden, wie die Informationen und Daten darzustellen sind, da sich die digitalen Endgeräte deut-
lich unterscheiden können und es keine allgemeine Lösung gibt zur Darstellung auf allen digitalen
Endgeräten.

1.2 Problemstellung

Das Webtool Miori Boards ermöglicht es Projekte zu planen und als zentrale Informationsquelle zu
dienen. Miori Boards ist dabei auf die Nutzung von Desktop-Systemen und Laptops ausgelegt. Durch
die fehlende Responsivität der Webseite, ist die Nutzung auf mobilen Endgeräten wie Tablets und
Smartphones nur eingeschränkt möglich. Zudem fehlt es an einer Unterstützung für mobile End-
geräte mit Touchscreens, die primär über Touchgesten bedient werden. Dadurch ist die Bedienung
der Webseite auf mobilen Endgeräten erschwert und es können nicht alle Funktionalitäten genutzt
werden.

1.3 Ziel der Arbeit

Vor diesem Hintergrund soll in dieser Arbeit eine Implementierungsstrategie erarbeitet werden, wie
Miori Boards gerecht den Anforderungen mobiler Endgeräte angepasst werden kann. Dabei soll
die Webseite so erweitert werden, dass sie auch auf Touchgesten reagiert und die Darstellung auf
mehreren Bildschirmgrößen funktioniert.

1.4 Aufbau der Arbeit

Zu Beginn werden Miori Boards vorgestellt und grundlegende Technologien für responsives Webde-
sign sowie Touchgesten erläutert. Daraufhin werden Anforderungen an die Implementierungsstrategie
definiert, die bei der Umsetzung berücksichtigt werden müssen. Anschließend wird die Implemen-
tierungsstrategie ausgearbeitet und als Strategie zur Umsetzung vorgestellt. In Kapitel 5 wird die
Strategie prototypisch an Miori Boards umgesetzt und mithilfe einer Benchmarkapplikation evaluiert.
Abschließend wird ein Fazit gezogen und ein Ausblick auf mögliche weitere Erweiterungen gegeben.

1New Work beschreibt die Idee von modernen und flexiblen Formen der Büroarbeit und der Arbeitsorganisation,
darunter zählt auch die situative mobile Arbeit [6]

1

2 Grundlagen und Stand der Technik

2 Grundlagen und Stand der Technik

Im diesen Kapitel wird das Tool Miori Boards vorgestellt, sowie grundlegende Techniken und Kon-
zepte, die für die Entwicklung einer responive Webanwendung mit Touchgestensteuerung notwendig
sind.

2.1 Miori Boards

Miori Boards ist eine Webanwendung, entwickelt vom Lehrstuhl Produktionssystematik des WZL1 der
RWTH Aachen. Mithilfe von individuell erstellbaren Boards, ermöglicht Miori Boards ein ”effizientes
Team- und Projektmanagement“ [5].
Ein Board besteht dabei aus mehreren Kacheln, die Widgets enthalten, zur Darstellung von ”eige-
nen Inhalten, Medien und Datenvisualisierungen“ [5], siehe Abbildung 2.1. Es gibt dabei das
Personen-, Todo-, Tool-, Umfrage-, Tabellen-, Media- und Chart-Widget. Die Widgets im Board
können individuell angepasst und angeordnet werden.
An einem Board können mehrere Personen beteiligt sein, die entweder die Owner- oder Member-Rolle
besitzen. Member können die Widgets des Boards benutzen, währenddessen der Owner zusätzlich
Personen zum Board einladen2 kann und Widgets hinzufügen sowie entfernen kann. Ebenfalls kann
der Owner zudem auch weitere Owner ernennen.

Abbildung 2.1: Miori Boards Board

2.2 Responsive (Web-) Design

Durch die Vielzahl an verschiedenen Bildschirmgrößen und Auflösungen moderner Endgeräte ist es
notwendig, dass Webanwendungen sich flexibel an diese anpassen können, um den selben Inhalt
darzustellen. Dazu gibt es die Idee von Responsive (Web-) Design, welches mehrere Technologien

1Werkzeugmaschinenlabor
2Dies geschieht über einen Einladungslink

2

2 Grundlagen und Stand der Technik

und Ansätze kombiniert, um dies zu ermöglichen. Der Begriff selbst wurde von Ethan Marcotte
im Jahr 2010 geprägt [7][25]. Im folgenden werden die wichtigsten Technologien und Prinzipien
vorgestellt, die für das Responsive Design relevant sind.

2.2.1 CSS Box-Model
Die strukturelle Grundlage einer Webseite wird durch das HTML3-Dokument und dessen DOM4

gebildet. Dabei fungiert ein einzelnes HTML-Element als Knotenpunkt im DOM-Baum. HTML-
Elemente können weitere Elemente umschließen5, wodurch eine hierarchische Struktur aus Eltern-
und Kind-Elementen entsteht. Der DOM-Baum beginnt beim <html>-Wurzelelement, welches das
gesamte Dokument repräsentiert [12].
HTML-Elemente sind nach dem Box-Model aufgebaut, welches aus vier Bereichen besteht, siehe
Abbildung 2.2. Der Content beinhaltet den Inhalt des Elements, etwa in Form von weiteren Elementen
oder reinen Texten sowie Grafiken. Die Border dient als visuelle Grenze des Elements in Form
eines Rahmens. Das Padding definiert den Abstand zwischen dem Content und der Border, das
Margin dagegen definiert den Außenabstand des Elements zu umliegenden Elementen. Die Größe
des Elements wird durch die jeweiligen Größen der Seiten von Content, Padding und Border bestimmt
[12].

Margin (Außenabstand)

Border (Rahmen)

Padding (Innenabstand)

Content (Inhalt)

Abbildung 2.2: CSS Box Model

Im Kontext des Box-Models ist die CSS-Eigenschaft box-sizing relevant, da diese Eigenschaft
bestimmt, wie zum Beispiel width, height sowie deren min- und max- Eigenschaften interpre-
tiert werden. Bei dem Wert box-sizing: content-box werden die Eigenschaften direkt auf
den Content angewendet, wodurch Padding und Border diesem Wert hinzuaddiert werden. Dagegen
bezieht sich box-sizing: border-box auf das ganze Element und nicht nur auf den Content,
wodurch der Wert die ganze Größe des Elements bestimmt und gegebenfalls den Content verkleinert,
um in die Größe zu passen [8].
Um die Größe eines Elements zu bestimmen, gibt es verschiedene CSS-Einheiten, die genutzt werden
können. Diese sind in der Tabelle 2.1 dargestellt.

3HyperText Markup Language
4Document Object Model
5Als eine Art Verschatelung

3

2 Grundlagen und Stand der Technik

Tabelle 2.1: Relevante Einheiten für responsive Design [14][17]

Einheit Beschreibung

px feste CSS-Standardeinheit.

em relative Einheit basierend auf der Schriftgröße des Elternelements.

rem relative Einheit basierend auf der Schriftgröße des Root-Elements.

fr*
Flexible Einheit, die den verfügbaren Platz im Verhältnis zu anderen

Elementen aufteilt.

%
relative Einheit, die basierend auf dem Elternelement die Größe

bestimmt.

Eigentschaften, die mit * markiert sind, können nur in CSS Grids verwendet werden.

Neben den Einheiten gibt es noch die Funktion calc(), mit der mathematische Operationen
durchgeführt werden können. Dadurch können verschiedene Einheiten kombiniert werden, um eine
flexible Größe zu definieren [9]. Mit der Funktion clamp() kann eine Größe definiert werden, die
sich flexibel anpasst, aber innerhalb eines bestimmten Bereichs bleibt. Dabei werden ein Minimalwert,
ein bevorzugter Wert und ein Maximalwert angegeben [10].
Trotz der definierten Größe eines Elements kann es vorkommen, dass der Inhalt nicht in das Element
passt. Dabei entsteht ein Überlauf beziehungweise ein Overflow. Das Verhalten des überlaufenden
Teils kann mit der CSS-Eigenschaft overflow gesteuert werden [21]. Die verschiedenen Werte für
die Eigenschaft overflow sind in der Tabelle 2.2 dargestellt.

4

2 Grundlagen und Stand der Technik

Tabelle 2.2: Overflow-Eigenschaften im Responsive Design [21]

Wert Darstellung Besonderheit

visible overflow bleibt sichtbar. Ist der Initialwert.

hidden overflow wird abgeschnitten.
Der abgeschnittene Inhalt ist nicht

mehr zugänglich.

scroll
overflow wird scrollable mit

Scrollbalken.
Es wird ein Scrollbalken für die x-

als auch y-Achse angezeigt

auto
erst bei overflow wird es scrollable

mit Scrollbalken.

Scrollbalken nehmen erst Platz im
Layout ein, wenn diese sichtbar

sind.

Bei der Nutzung von overflow: auto ist noch zu beachten, dass die Scrollbar eingefügt wird
und es dadurch zu einer Layout-Verschiebung kommt. Dies kann mit der Eigenschaft scrollbar-
gutter: stable verhindert werden, welche permanent Platz für die Scrollbar reserviert, un-
abhängig davon ob diese angezeigt wird oder nicht [27]. Mit der Erweiterung overflow-x und
overflow-y kann das Overflow-Verhalten für die jeweilige Achse separat definiert werden [21].

2.2.2 Media Queries
Damit gewisse CSS6-Eigenschaften nur unter bestimmten Bedingungen angewendet werden, gibt
es Media Queries. Media Queries ermöglichen es, dass Eigenschaften nur aktiviert werden, wenn
beispielsweise die Viewport-Breite oder -Höhe einen bestimmten Wert überschreitet [31]. Diese In-
formationen werden vom User-Agent bereitgestellt, welcher eine digitale Identität anhand der verwen-
deten Hard- und Software darstellt. Media Queries gleichen diese Informationen ab und bestimmen
so, ob die Bedingungen erfüllt sind [30]. Anhand dieser Bedingungen und logischen Operatoren wie
beispielsweise and, not oder only können passend zur Nutzerumgebung Stylings aktiviert oder
deaktiviert werden [31].

2.2.3 Viewport-Meta-Tag
Der Viewport ist der sichtbare Bereich einer Webseite auf dem Bildschirm eines Endgerätes. So
ist der Viewport bei einem Desktop-Browser in der Regel das Browserfenster, während es bei mo-
bilen Geräten der Bildschirmbereich ist, der die Webseite anzeigt. Der Viewport-Meta-Tag ist ein
HTML-Tag im Header, der dem mobilen Browser mitteilt, dass dieser die Website auf 100% der

6Cascading Style Sheets

5

2 Grundlagen und Stand der Technik

Bildschirmbreite setzen soll. Dies ist notwendig, da viele mobile Browser standardmäßig die Website
auf eine Breite von 980px gerendert haben, weil viele Websites nicht für mobile Geräte optimiert
waren [25]. Ohne den Viewport-Meta-Tag würden Media-Queries nicht funktionieren, da die Bild-
schirmbreite immer 980px wäre.

2.2.4 Responsive Layout-Technologien
Für die Anordnung von HTML-Elementen auf einer Webseite gibt es Layouts, die bestimmen, wie die
Elemente positioniert werden. Responsive Layout-Technologien ermöglichen es, dass diese Anordnung
flexibel ist und sich an verschiedene Bildschirmgrößen anpasst [25]. Die zwei wichtigsten Layout-
Technologien im Kontext von Responsive Design sind Flexbox und Grid.

Allgemein
Beide Layout-Technologien sind nach einem Achsenmodell aufgebaut. Flexbox ist für eindimensionale
Layouts gedacht, während Grid für zweidimensionale Layouts verwendet wird [16][13]. So besitzt
Flexbox eine Hauptachse und eine Querachse, während ein Grid mit Zeilen und Spalten arbeitet.
Beide Layout-Technologien besitzen CSS-Eigenschaften, die es ermöglichen, die Anordnung der Kin-
delemente entlang der Achsen zu steuern. Diese Eigenschaften sind in der Tabelle 2.3 dargestellt.

Tabelle 2.3: Anordnungen für responsive Layouts [11]

justify-* (Hauptachse / Zeilen) align-* (Querachse / Spalten)

content
Verteilt den freien Raum zwischen

Kindelementen.*
Verteilt den freien Raum zwischen

Kindelementen

items
Positioniert alle Kindelemente entlang

der Hauptachse.
Richtet alle Kindelemente entlang der

Querachse aus.*

self
Positioniert ein einzelnes Kindelement

entlang der Hauptachse.
Richtet ein einzelnes Kindelement

entlang der Querachse aus.*

Im Grid-Layout können alle Eigenschaften verwendet werden. Die Eigenschaften, die mit * markiert sind, funk-
tionieren auch im Flexbox-Layout.

Einige CSS-Eigenschaften aus der Tabelle 2.3 können aufgrund der eindimensionalen Struktur von
Flexbox nicht darauf angewendet werden. Eine weitere Eigenschaft, die beide Layouts nutzen, ist
gap, welche einen Abstand zwischen den Kindelementen definiert [18].

Flexbox
Damit ein HTML-Element als Flex-Container fungiert, muss die CSS-Eigenschaft display: flex

gesetzt sein. Dadurch werden alle direkten Kindelemente zu Flex-Elementen, die entlang der Haupt-

6

2 Grundlagen und Stand der Technik

achse angeordnet sind [16]. Mit der Eigenschaft flex-direction kann die Richtung der Haupt-
achse angepasst werden, sodass die Flex-Elemente entweder horizontal oder vertikal sowie umge-
dreht7 angeordnet werden [16]. Rechtwinklig zur Hauptachse befindet sich die Querachse, entlang
derer die Flex-Elemente ebenfalls ausgerichtet werden können.
Durch den flexiblen Aufbau von Flexbox können die Flex-Elemente ihre Größe anpassen, um den
verfügbaren Platz optimal auszunutzen [16]. Um dies zu steuern, gibt es Eigenschaften, die den
Flex-Elementen übergeben werden können, siehe Tabelle 2.4.

Tabelle 2.4: Flex-Skalierungs-Eigenschaften [15]

Eigenschaft Beschreibung

flex-shrink
Bestimmt einen Faktor, um wie viel ein Flex-Element
schrumpft, wenn nicht genügend Platz vorhanden ist.

flex-grow
Bestimmt einen Faktor, um wie viel ein Flex-Element wächst,

um den verfügbaren Platz auszufüllen.

flex-basis
Legt die Ausgangsgröße eines Flex-Elements fest, bevor der

verfügbare Platz verteilt wird.

flex-basis überschreibt bei der Flexberechnung width und height, wenn der Initialwert auto
überschrieben wird.

Die Eigenschaften flex-shrink und flex-grow können eingeschränkt werden, indem die Größe
des Flex-Elementes mit min- und max- limitiert wird. Dadurch wird ein Größenbereich bestimmt,
in dem das Flex-Element wächst oder schrumpft [16]. Die Eigenschaft flex-basis überschreibt
bei der Flexberechnung width und height des Flex-Elementes, wenn der Initialwert auto nicht
verändert wird.
Durch die einzelne Hauptachse ist es möglich, dass diese zu voll wird und die Flex-Elemente nicht
mehr in den Container passen. In diesem Fall kann mit der Eigenschaft flex-wrap: wrap de-
finiert werden, dass die Flex-Elemente in die nächste Zeile umbrechen [16]. Dadurch entsteht eine
weitere Flex Line, die unter der ersten liegt, wo die Hauptachse weitergeführt wird.

Grid
Neben Flexboxen gibt es auch Grids als responsive Layout-Technologie. Um ein Element als Grid-
Container zu definieren, muss die Eigenschaft display: grid gesetzt werden [13]. Dadurch
entsteht ein Raster mit einer Spalten- und Zeilenachse. Initial besitzt das Grid nur eine Spalte und
erstellt implizit so viele Zeilen wie es Kindelemente gibt. Zur Bestimmung von Spalten und Zeilen

7dabei wird an die Richtung noch -reverse drangehangen

7

2 Grundlagen und Stand der Technik

gibt es folgende Eigenschaften in der Tabelle 2.5.

Tabelle 2.5: Grideigenschaften zur Deklarierung

Eigenschaft Beschreibung

grid-template-

columns

Definiert die Anzahl und Größe der Spalten in einem
Grid-Layout.

grid-template-

rows

Definiert die Anzahl und Größe der Zeilen in einem
Grid-Layout.

grid-column
Legt fest, wie viele Spalten ein Grid-Element einnimmt

und wo es beginnt.

grid-row
Legt fest, wie viele Zeilen ein Grid-Element einnimmt und

wo es beginnt.

grid-template-

areas

Definiert benannte Bereiche innerhalb des Grids, die zur
einfacheren Platzierung von Elementen verwendet werden

können.

grid-area
Weist einem Grid-Element einen benannten Bereich zu,

der in grid-template-areas definiert ist.

Vordefinierte Spalten und Zeilen werden als explizite Spalten und Zeilen bezeichnet, während auto-
matisch erstellte Spalten und Zeilen als implizite Spalten und Zeilen bezeichnet werden [13]. Falls es
mehr Kindelemente gibt als explizite Zeilen oder Spalten, werden automatisch implizite Zeilen oder
Spalten erstellt, um die Kindelemente aufzunehmen. Die Eigenschaften grid-auto-rows und
grid-auto-columns definieren die Größe der impliziten Zeilen beziehungsweise Spalten [13].
Um eine variable Anzahl an Spalten oder Zeilen mit fester Größe zu erstellen, kann die Funktion
repeat() genutzt werden, mit dem Wert auto-fit, wodurch so viele Spalten oder Zeilen ent-
stehen, die in das Grid passen [13]. Die Funktion repeat() kann auch mit einer festen Anzahl
genutzt werden, um die Lesbarkeit zu verbessern, wenn viele Spalten oder Zeilen mit derselben Größe
definiert werden sollen [13].
Zur Bestimmung von Spalten- und Zeilengrößen können dieselben Einheiten benutzt werden, wie
die aus der Tabelle 2.1. Im Grid-Kontext wird die Einheit fr benutzt, welche einen Bruchteil des
verfügbaren Platzes im Grid darstellt, wodurch flexibel zur Containergröße die Zellengröße be-
stimmt werden kann [17]. Neben den Einheiten, gibt es noch die minmax() Funktion, mit der

8

2 Grundlagen und Stand der Technik

ein Größenbereich definiert werden kann [19].
Kindelemente eines Grids können mit den Eigenschaften grid-column und grid-row auch
definieren wie viele Zellen eingenommen werden mit dem Schlüsselwort span. Bei dem Wert -1
wird die ganze Spalte oder Zeile eingenommen [13].

2.2.5 Responsive Bilder und Medien
Responsive Bilder und Medien umfasst die Idee, dass Bilder und Medien die verfügbare horizon-
tale Breite des Containers beziehungsweise des Bildschirms einnehmen. Das Medium sollte dabei
sein Verhältnis8 beibehalten, um Verzerrungen zu vermeiden. Dies wird mit der CSS-Eigenschaft
max-width: 100% sowie height: auto erreicht [25]. Bei responsiven Bildern kann noch
zusätzlich noch das Ursprungsbild in verschiedenen Auflösungen bereitgestellt werden, um passend
zum Nutzungsgerät die Bandbreite zu sparen sowie dem Layout gerecht zu werden [26].

2.2.6 Responsive Typografie
Responsive Typografie beschäftigt sich mit der Anpassung von Schriftgrößen. Dabei sind die CSS-
Einheiten em und rem relevant.
Die Einheit em bezieht sich auf die Schriftgröße des Elternelements, während rem sich auf die
Schriftgröße des Root-Elements (HTML-Tag) bezieht. Dadurch kann im Root-Element die Schrift-
größe angepasst werden und alle rem-Werte passen sich daran an [14]. Die Root-Element Schrift-
größe wird standardmäßig auf 16 Pixel gesetzt, kann aber mit der CSS-Eigenschaft font-size
angepasst werden. Der Browser skaliert die Schriftgröße auch, wenn der Nutzer die Zoom-Funktion
verwendet [25]. Wenn Texte zu lang werden für ihr Element, gibt es mehrere Möglichkeiten damit
umzugehen. So kann der Text umgebrochen werden mit overflow-wrap: break-word, wo-
durch der Text in die nächste Zeile springt, wenn kein Platz mehr da ist. Falls es nicht gewünscht
ist den ganzen Text zu zeigen, kann der Text mit text-overflow abgeschnitten werden.

2.3 Touchgestensteuerung

Durch die Einführung von grafischen Nutzeroberflächen in Betriebssystemen etablierte sich die Be-
nutzung von Pointing Devices. Diese steuern einen Pointer auf der grafischen Nutzeroberfläche, um
Interaktionen auszuführen, wie das Klicken von Buttons oder das Bewegen von Objekten. [2] Lange
Zeit waren Computermäuse und Trackpads die gängigsten Pointing Devices. Mit dem Aufkommen
von Touchscreens wurde auch der eigene Finger zu einem Pointing Device. Dabei wird die Position,
Anzahl, Geschwindigkeit und Bewegung der Finger, Berührungsdauer und Anzahl der Berührungen
ausgewertet, um verschiedene Aktionen auszuführen. Wenn mehrere vorbestimmte Bedingungen
erfüllt sind, wird von einer Touchgeste gesprochen. Diese können sich ganz nach Betriebssystem und
Anwendung unterscheiden.

8aspect-ratio

9

2 Grundlagen und Stand der Technik

2.3.1 JavaScript EventListener
Damit Touchgesten in einer Webanwendung implementiert werden können, müssen diese mit Ja-
vaScript umgesetzt werden, da JavaScript die Funktionalität der Webseite bestimmt. In JavaScript
werden verschiedene Aktionen oder Zustandsänderungen mit einem Event beschrieben. Da es ver-
schiedene Arten von Events gibt, gibt es spezialisierte Events, die von anderen Events abgeleitet
sind. Im Beispiel von der Abbildung 2.3 ist die Vererbungshierarchie der DOM-Events dargestellt,
die für Touchgesten relevant sind.

Event UIEvent

MouseEvent

TouchEvent

PointerEvent

Abbildung 2.3: Horizontale Vererbungshierarchie der DOM-Events, speziell für Touchgesten [29][22]

Basierend auf dem UIEvent9 gibt es das MouseEvent und das TouchEvent, die für Maus-
beziehungsweise Touchereignisse zuständig sind. Es existiert noch basierend auf dem MouseEvent

das PointerEvent, welches sowohl Maus- als auch Touchereignisse unterstützt und somit eine
einheitliche Schnittstelle für beide Eingabemethoden bietet [22]. PointerEvent besitzt erweiterte
Informationen wie pointerType und reagiert auf Stifteingaben.
Für PointerEvents gibt es verschiedene Aktionen, die als EventListener genutzt werden können,
um auf Touchgesten zu reagieren. Folgende Liste 2.4 zeigt alle relevanten PointerEvents auf,
die existieren.

Abbildung 2.4: Liste der Pointer Events in Web-APIs [22]

1. pointerdown

2. pointerleave

3. gotpointercapture

4. pointercancel

5. pointermove

6. pointerup

7. pointerenter

8. lostpointercapture

9. pointerover

10. pointerout

2.3.2 Arten von Touchgesten
Dadurch dass es kein einheitliches System für Touchgesten gibt, existieren viele verschiedene Arten
von Touchgesten. Aus diesem Grund ist es wichtig die gängigsten und wichtigsten Touchgesten zu
bestimmen. Damit ist garantiert, dass die meisten Nutzer die Touchgesten kennen und verwenden
können.

9User Interface Event

10

2 Grundlagen und Stand der Technik

Die Designdokumentationen von Microsoft [33], Apple [1] und Google [3] geben verschiedene Touch-
gesten an, die ein Entwickler für Android, Windows sowie MacOS beachten soll. Die Schnittmenge
aller Touchgesten der Designdokumentationen ist in der Tabelle 2.6 aufgeführt. Die Dokumentatio-
nen von Microsoft, Apple und Google sind repräsentativ, da im Jahr 2025 71,88% der Desktopsyste-
me Windows und 8,7% MacOS verwendeten [36]. Als mobile Betriebssysteme wurden 2025 72,03%
Android und 27,59% iOS genutzt [37].

Tabelle 2.6: Übersicht der unterstützten Touch-Gesten

Name Touchgeste Beschreibung Use-Case

Tap kurze Berührung Auswählen oder aktivieren ei-
nes Elements

Double-
Tap

zwei kurze Taps mit ge-
ringen Zeitabstand

Alternative Aktion zum Tap
oder Zoom-In/-Out

Hold lange Berührung Alternative Aktion zum Tap

Scroll Hold mit einer Wisch-
bewegung Bewegt den Inhalt

Swipe/Flick schneller ruckartiger
Scroll

Bewegt ein Element weg oder
ermöglicht alternative Aktio-
nen

Drag (and
Drop)

Drop Hold mit einer Naviga-
tionsbewegung

Bewegt ein Element an eine
andere Position

Zoom Wegziehen von zwei
Berührungspunkten Vergrößert den Inhalt

Pinch
Zusammenziehen
von zwei
Berührungspunkten

Verkleinert den Inhalt

11

3 Anforderungen

3 Anforderungen

Damit eine ansprechende Implementierungsstrategie entwickelt werden kann, werden Anforderungen
benötigt, die wichtige Aspekte und Limitationen hervorheben.

3.1 Allgemeine Anforderungen

Bevor die spezifischen Anforderungen definiert werden, muss zuvor genannt werden, wie die Qua-
litätsanforderungen und Rahmenbedingungen für die Implementierung aussehen sollen.
Die Implementierung sollte mit geringem Aufwand realisierbar sein. Auch die Wartbarkeit des Codes
sollte gewährleistet sein, da diese Implementierung eine optionale Erweiterung von Miori Boards ist
und der Quellcode nicht unnötig komplex werden darf. Wichtig ist auch, dass es erweiterbar ist, falls
weitere Touchgesten oder neue Ansichten hinzukommen sollten. Hinsichtlich der Performance sollte
diese konsistent sein, damit die Benutzung der Touchgestensteuerung und die verschiedenen Ansich-
ten flüssig und ohne Verzögerungen funktionieren. Ein wichtiger Aspekt bei der Implementierung ist
die Unterstützung verschiedener Rendering Engines. Eine Rendering Engine ist die Software in einem
Browser, die das HTML und CSS einer Webseite visuell darstellt und Schnittstellen bereitstellt, die
dann mit JavaScript angesprochen werden können. Rendering Engines decken die Grundfunktiona-
litäten von HTML und CSS ab, jedoch gibt es Features von CSS oder HTML die nicht von allen
Engines unterstützt werden. Relevant dabei sind die Rendering Engines Blink (Google), Gecko
(Mozilla) und WebKit (Apple), die die gängigsten Engines sind und unterstützt werden sollten
bei der Implementierung [24]. In unserem Kontext wird die Rendering Engine Trident (Microsoft)
nicht mehr berücksichtigt, da diese von Microsoft nicht mehr weiterentwickelt wird und stattdessen
Microsoft Edge die Blink Engine nutzt. Der letzte wichtige Punkt der allgemeinen Anforderungen
ist die Testbarkeit der Implementierung. Dadurch, dass nun mehrere Eingabegeräte sowie digitale
Endgeräte zur Verwendung unterstützt werden sollen, ist es schwer bei jedem neuen Feature al-
le Möglichkeiten zu prüfen, ob es einwandfrei funktioniert. Die Tabelle 3.1 fasst die allgemeinen
Anforderungen nochmals übersichtlich zusammen.

Tabelle 3.1: Allgemeine Anforderung an der Implementierung

Qualitätsanforderungen Rahmenbedingungen

Erweiterung leicht möglich Implementierungsaufwand gering

leichte Wartbarkeit möglich
Support verschiedener Rendering

Engines

Testbarkeit der Implementierung konsistente Performance

12

3 Anforderungen

3.2 Anforderungen an das Responsive Design

Responsive Design ist eine grundlegende Voraussetzung, um Webseiten wie Miori Boards geräte-
übergreifend nutzbar zu machen. Miori Boards unterstützt derzeit nur Laptops und Desktop-Systeme.
Bei der Betrachtung der Internetnutzung zeigt sich ein anderes Bild. Im zweiten Quartal 2025
nutzten mehr als 93% der Internetnutzer das Internet mit einem Smartphone. Dagegen nutzten
nur etwa 59% der Internetnutzer Desktop-Systeme und Laptops, um das Internet zu besuchen
[34]. Dies zeigt, dass die Mehrheit der Nutzer Webseiten mit dem Handy besucht. Damit eine
Webseite auf verschiedenen Geräten ansprechend nutzbar ist, muss sie sich an die verschiedenen
Bildschirmgrößen kontinuierlich anpassen können, weshalb dynamisches Layout notwendig ist. So ist
es wichtig, dass es sich reaktiv verhält und auch jedem Element den Platz gibt, den es benötigt.
Das Layout sollte auch den Platz optimal nutzen, indem es Elemente umsortiert oder in andere
Darstellungen wechselt. Auch Elemente sollten sich anhand ihres vorhandenen Platzes anpassen.
So sollten bei Platzmangel Unterelemente versteckt werden oder in eine alternative Darstellung
wechseln. Text und Interaktionselemente sollten trotz begrenztem Platz eine Mindestgröße besitzen.
Damit ist der Text angenehm zu lesen und die Interaktionselemente sind, je nach Eingabegerät,
weiterhin nutzbar. Jedoch sollten Text und die Interaktionselemente nicht zu groß sein, da sonst
der Text schwer lesbar wird oder die Interaktionselemente eine falsche Wichtigkeit bekommen sowie
ungewollt ausgelöst werden können. Für die Implementierung des Responsive Designs ergeben sich
somit die in der Tabelle 3.2 dargestellten Anforderungen.

Tabelle 3.2: Anforderungen an die Implementierung des Responsive Design

Funktionale Anforderungen Nicht-funktionale Anforderungen

Dynamische Layout-Anpassung Kontinuierliche Anpassung

Dynamische Element-Anpassung Hohe Lesbarkeit und Bedienbarkeit

Funktionalität beibehalten bei
Platzmangel

Optimale Platznutzung der Elemente

13

3 Anforderungen

3.3 Anforderungen an die Touchgestensteuerung

Damit Miori Boards auch auf digitalen Endgeräten funktioniert, die keine Maus und Tastatur be-
sitzen, ist eine Touchgestensteuerung notwendig, da diese zu einer der häufigsten Bedienungsarten
zählt, mit denen das Internet bedient wird [34]. Bei der Implementierung der Touchgestensteuerung
ist es wichtig Gesten zu verwenden, die die meisten Nutzer kennen, damit die Nutzung für den Nutzer
intuitiv bleibt und nicht die Nutzererfahrung negativ beeinflusst. Ein weiterer wichtiger Punkt ist,
dass die verschiedenen Touchgesten oder ihre Events nicht kollidieren, da sonst ein falsches Verhalten
ausgelöst werden kann. So könnte zum Beispiel beim Wischen eines Elements auch ein Scroll-Event
ausgelöst werden, wodurch das Wisch-Event abbrechen könnte. Es ist wichtig, dass ähnliche Touch-
gesten nicht gleichzeitig ein Event auslösen. Für die Nutzung einer Touchgestensteuerung ist es
hilfreich mit Indikatoren zu visualisieren, dass etwas benutzbar ist. So können subtile Animationen,
Elemente mit Schatten oder auch Symbole helfen, dem Nutzer zu zeigen, dass etwas bedienbar ist
[4]. Zur Steigerung der Nutzererfahrung hilft es, wenn die Elemente, die ein Touch-Event haben,
dynamisch auf die Touchgeste reagieren und nicht während der Aktion die Kontrolle entziehen, we-
gen einer Animation oder einem Breakpoint. Dadurch können Nutzer noch die Aktion abbrechen,
falls es die nicht gewünschte Aktion war. Ebenfalls fühlt es sich für den Nutzer natürlicher an, wenn
das Element dynamisch und direkt auf die Berührung reagiert [4]. Für die Implementierung der
Touchgestensteuerung ergeben sich somit die in der Tabelle 3.3 dargestellten Anforderungen.

Tabelle 3.3: Anforderungen an die Implementierung der Touchgestensteuerung

Funktionale Anforderungen Nicht-funktionale Anforderungen

Touchgestensteuerung bereitstellen Intuitive Nutzung / Nutzererfahrung

Verwendung bekannter Gesten Visuelle Indikatoren für Bedienbarkeit

Vermeidung von Konflikten zwischen
Gesten

Natürliche, flüssige Reaktion auf
Touchgesten

14

4 Implementierungsstrategie

4 Implementierungsstrategie

Bevor die technische Umsetzung an Miori Boards stattfinden kann, ist es wichtig eine Strategie zu
entwickeln, wie die Implementierung ablaufen soll. Dabei kann die Verwendung von Frameworks und
Bibliotheken helfen, um die Implementierung zu erleichtern und zu beschleunigen. Zudem müssen
anforderungsgerechte Lösungen für die Implementierung von Touchgesten und Responsive Design
gefunden werden. Aus diesen Ergebnissen wird eine allgemeine Implementierungsstrategie abgeleitet,
die bei der Umsetzung genutzt werden kann.

4.1 Verwendete Frameworks und Bibliotheken

Um eine einfache Implementierung zu ermöglichen, sind bereits existierende Lösungen des Problems
in Form von Frameworks und Bibliotheken sehr hilfreich. Im folgenden Unterkapitel wird erläutert
wieso Vue.js, die Utilities-Bibliothek VueUse und die WZL eigene Bibliothek WZL Essentials
verwendet werden und wie sie die Implementierung der Touchgesten sowie des Responsive Designs
unterstützen.

4.1.1 Vue.js
Vue.js1 ist ein communitygestütztes, progressives JavaScript Webframework, ursprünglich von Evan
You initiiert [40]. Mit Vue ist es möglich, SPA2s zu entwickeln, also Webseiten, die aus nur einem
HTML-Dokument bestehen und mithilfe von JavaScript und CSS dynamisch angepasst werden.
Dabei verwendet Vue ein Reaktivitätssystem mit reactive-proxy, welches Veränderungen er-
kennt und diese dynamisch überall anpasst. Dadurch werden Zustandsveränderungen automatisch
erkannt und verarbeitet. Vue arbeitet mit SFC3s, welche aus HTML-, JS- und CSS-Code im jewei-
ligen <template>-, <script>- und <style>Tag der Datei bestehen. Bei den Komponenten
können bereits definierte Komponenten wiederbenutzt werden. Dadurch lässt sich viel Code wie-
derverwenden und die Architektur des Projekts wird modularer. Zu der Modularität trägt auch die
Idee der Composables bei. Composables sind Funktionen, die wiederverwendbaren Code in Form des
reaktiven Vue-Systems bereitstellen. Dadurch lassen sich Funktionalitäten in einzelne Composables
auslagern und in verschiedenen Komponenten wiederverwenden. Eine weitere Technologie von Vue
sind die Directives. Directives sind spezielle Funktionen, die an ein HTML-Element gebunden werden
können, um das Verhalten des Elementes zu verändern oder auf bestimmte Ereignisse zu reagieren.
So gibt es beispielsweise die Directive v-if, die ein Element nur rendert, wenn eine bestimmte
Bedingung erfüllt ist. Ebenso gibt es die Directive v-on, die es ermöglicht auf Events zu reagieren,
wie beispielsweise einem Klick-Event. Directives sind erkennbar an dem Präfix v-*.
Für das Implementierungsvorhaben wird Vue benutzt, da es bereits das verwendete Frontend Fra-
mework von Miori Boards sowie aller anderen Miori Produkte ist. Darüber hinaus eignet sich Vue
als Implementierungsgrundlage, da Komponenten mit einer Touchgestehe versehen werden können.

1Gesprochen wie das englische Wort view
2Single Page Application
3Single File Component

15

4 Implementierungsstrategie

Dadurch haben alle anderen Komponenten, die von dieser Komponente Gebrauch machen, auch das
neue Feature. Dies gilt auch für Responsive Design Entscheidungen, die das Element beziehungsweise
die Komponente betreffen.

4.1.2 VueUse Core, Gesture und Motion
VueUse ist eine umfangreiche Sammlung von Utility-Funktionen für das Framework Vue.js. Die
Bibliothek stellt viele nützliche Composables bereit, die häufige Anwendungsfälle abdecken und da-
durch den Entwicklungsaufwand reduzieren. Ein großer Teil der Bibliothek beinhaltet EventListener,
die das Event kapseln und dessen Werte reaktiv bereitgestellt werden. So gibt es beispielsweise die
Composable usePointer, welche ein Objekt zurückgibt, das die wichtigen Informationen für ein
Pointer-Event beinhaltet, wie die Position des Pointers, den Typ des Pointers und ob der Pointer
gedrückt ist oder nicht. Dabei liefert usePointer immer den aktuellen Zustand des Pointers,
wodurch reaktiv darauf reagiert werden kann. Die Bibliothek VueUse kann durch Add-ons modular
erweitert werden, um noch mehr Utilities bereizustellen. Interessant für das Implementierungsvorha-
ben sind die Plugins Gestures und Motion.
VueUse Gestures bietet Composables und Directives an, die generische Touchgesten implementie-
ren, wie beispielsweise useSwipe, usePinch oder v-drag. Da diese nicht nativ als Events in
JavaScript existieren, reduziert die Nutzung dieser Composables und Directives viel Programmier-
aufwand, da die Gesten bereits abstrahiert vorliegen und nur noch in der Komponente verwendet
werden müssen.
VueUse Motion bietet auch Composables an, die Animationen und Bewegungen von Elementen
vereinfachen. So können Animationen erstellt werden, die auf bestimmte Zustandsänderungen rea-
gieren. Dadurch lassen sich visuelle Indikatoren für Touchgesten einfach umsetzen, um dem Nutzer
ein Feedback zu geben, dass die Geste erkannt wurde und ausgeführt wird.
Für die Implementierung soll VueUse sowie seine Erweiterungen verwendet werden, da eine Vielzahl
von nützlichen Composables und Directives bereitgestellt wird, die den Programmieraufwand deutlich
verringern. Dadurch ist die Implementierung von Touchgesten im Vue.js-Kontext effizient möglich.

4.1.3 WZL Essentials
Die WZL Essentials sind eine vom Lehrstuhl Produktionssystematik eigen entwickelte Bibliothek zur
Bereitstellung von essenziellen Komponenten. Dadurch kann ein einheitliches Design und Verhalten
der Komponenten gewährleistet werden. Die Bibliothek ist geschrieben in Vue.js. Zu den Grund-
komponenten gehören beispielsweise Buttons, Dropdowns, Tooltips, Navigationselemente oder auch
Boxen. Die vom WZL entwickelten Tools nutzen zwei verschiedene Style-Themes, die in den Essen-
tials eingebunden sind: Miori und WZL. Die Essentials sind in den meisten Webanwendungen des
Lehrstuhls Produktionssystematik integriert, dazu gehört auch Miori Boards.

16

4 Implementierungsstrategie

4.2 Responsive Design

Damit die Implementierung des Responsive Design erfolgreich ist, müssen die Anforderungen aus
Kapitel 3.2 erfüllt werden. Dazu zählt primär die Gestaltung der einzelnen Elemente sowie das Layout
der gesamten Webseite als auch des einzelnen Elementes.

4.2.1 Element Gestaltung
Allgemein
Bei der Gestaltung eines Elementes ist es wichtig mit dem Boxmodel aus 2.2.1 zu arbeiten, da
dies die Grundlage für jedes HTML-Element bildet. Um jedes Element einheitlich und alleinstehend
für sich zu sein, sollte die Eigenschaft box-sizing: border-box gesetzt werden. Dadurch
wird sichergestellt, dass die Größe des Elementes immer gleich bleibt, unabhängig von dem Inhalt
des Elementes. Dadurch kommt es nicht zu unerwarteten Layout-Verschiebungen, wenn der Inhalt
des Elementes größer oder kleiner wird. Bei content-box wiederum kann dies passieren, da das
Element durch den Inhalt wächst und somit andere Elemente verschiebt oder überlappt.

Overflow
Die Nutzung von overflow kann helfen, um unerwartete Layout-Verschiebungen zu verhindern,
wenn der Inhalt größer wird als das Element. Es ist ebenfalls auch gut geeignet, um sehr große
Inhalte anzeigen zu können, welche nicht unbedingt vollständig sichtbar sein müssen. So können
beispielsweise lange Tabellen, Texte, Listen oder Ansammlungen von Elementen gleicher Art ange-
zeigt werden. Damit bleiben alle Informationen erhalten, sind aber nicht direkt sichbar. Dadurch
ist der Sichtbereich des Elementes limitiert, jedoch kann der ganze Inhalt praktisch unendlich groß
sein. Trotz dieser Freiheit sollte bevorzugt nur die Höhe des Inhalts größer sein als das Sichtbereich.
Diese Limitierung ist notwendig, da das vertikale Scrollen für den Nutzer einfacher und intuitiver
ist als das horizontale Scrollen, bedingt durch das Scrollen mit dem Mausrad oder das Wischen mit
dem Finger. Ein horizontaler Überlauf kann jedoch genutzt werden, um Elemente anzuzeigen, die
in beiden Dimensionen größer sind als das Sichtbereich und eine andere Darstellung schwer möglich
ist, wie zum Beispiel bei Tabellen.
Die Nutzung von overflow: auto in Kombination mit scrollbar-gutter: stable ist
eine gute Möglichkeit Elemente mit viel Inhalt anzuzeigen, ohne das Layout zu verändern. Besonders
bei Elementen mit variabler Anzahl von Inhalten ist dies sehr hilfreich, da unabhängig von der Anzahl
das Layout stabil bleibt, was sehr gewünscht ist bei einer responsive Webseite.

Größen
Wichtig bei der Gestaltung eines Elementes ist auch die Elementgröße selbst. Diese bestimmt wie
das sichtbare Fenster aussieht, in dem der Inhalt oder overflow-Inhalt zu sehen ist. Dabei sind
die CSS-Eigenschaften width, height sowie deren min- und max- Varianten relevant. Für die
Bestimmung dieser Größen eignen sich die Einheiten %, rem und px sehr gut. Mit der Einheit %
lassen sich gut Elemente gestalten, die sich an die Größe des Elternelementes anpassen. Dadurch

17

4 Implementierungsstrategie

kann das Element flexibel auf verschiedene Bildschirmgrößen reagieren. Die Einheit rem eignet sich
gut, um Elemente mit der Größe des Textes wachsen zu lassen. So wächst beispielsweise ein Button
mit seinem Textinhalt, wenn im Browser gezoomt wird. Dadurch wird verhindert, dass der Text über
den Button hinausläuft oder zu klein für den Button ist. Die Einheit px eignet sich gut, um eine
feste Größe für ein Element zu definieren, welches unabhängig von der Bildschirmgröße oder dem
Textinhalt ist. So können feste Abstände oder Größen definiert werden, die immer gleich bleiben
sollen.
Damit Elemente auch auf den kleinsten gängigsten Bildschirmen nutzbar bleiben, sollte eine maxi-
male Breite definiert werden, wo das Element noch nutzbar ist. Hierbei reicht es nur eine Breite zu
definieren, da bei Elementen mit variabler Höhe ein Overflow mit Scroll genutzt werden kann, um
den Inhalt anzuzeigen. Der Richtwert für die maximale Darstellungsbreite eines Elementes sollte bei
360px liegen, da dies die kleinste gängigste Bildschirmbreite bei Smartphones ist [35]. Dadurch
wird sichergestellt, dass das Element auch auf kleinen Bildschirmen gut nutzbar bleibt. Trotz die-
sem Richtwert sollten Elemente auch für größere Breiten designt werden, damit diese den Platz auf
größeren Bildschirmen auch optimal nutzen können. Um dies zu erreichen, können die vorgestellten
Layout-Technologien aus Kapitel 4.2.2 verwendet werden oder es werden mehrere Versionen des
Elementes erstellt, die sich anhand des vorhandenen Platzes anpassen und gegebenfalls austauschen
mithilfe von Media Queries und JavaScript.
Zu der Gestaltung eines Elementes gehört es auch wie der Text aussieht. So sollten Texte immer
mindestens eine em Größe haben, bestenfalls eine rem Größe, da so alle Texte eine abhängige Größen
zum Root-Element besitzen und gegebenfalls zentral dort angesteuert werden können, falls sich die
Bildschirmgröße ändert oder ein Zoom verwendet wird. Wenn der Text zu lang sein sollte, kann
es helfen diesen umbrechen zu lassen mit word-wrap: break-word und overflow-wrap:

break-word oder der Text wird abgeschnitten mit text-overflow, falls der Text in nur einer
Zeile sein darf. Da kann dann mithilfe eines Tooltips der ganze Text angezeigt werden.
Genauso sollten Bilder und Medien ihr Größenverhältnis beibehalten, aber niemals überlaufen, damit
das Medium vollkommen anschaubar ist und keine Verzerrungen besitzt. Deshalb sollten Bilder
limitiert werden mit max-width: 100%, damit diese nicht über den Bildschirm- oder Elementrand
hinübergehen. Dazu sollten Bilder die Eigenschaft height: auto haben, da so das Bild in seinem
Seitenverhältnis bleibt. Es ist ebenfalls möglich max-height: 100% zu nehmen, jedoch ist dies
nicht empfehlenswert, da es dann eher zu einem horizontalen Scroll kommen kann, welches entgegen
der Nutzerfreundlichkeit spricht.
Bei der Gestaltung von Icons, Buttons oder anderen interaktiven Elementen ist es wichtig, dass diese
eine Mindestgröße besitzen, damit sie auch auf kleinen Bildschirmen gut bedienbar sind. Dabei sollte
eine Mindestgröße von 24px x 24px genommen werden, da dies die empfohlene Mindestgröße für
Touch-Ziele ist laut WCAG4 [39]. Empfohlen wird aber eher die Größe 44px x 44px [38]. Dadurch
wird sichergestellt, dass die Elemente auch auf kleinen Bildschirmen gut bedienbar sind und keine

4Web Content Accessibility Guidelines

18

4 Implementierungsstrategie

Probleme bei der Bedienung auftreten.

4.2.2 Layout Gestaltung
Neben der Elementgestaltung ist die Gestaltung des Layouts der gesamten Webseite sowie des
einzelnen Elementes wichtig für ein erfolgreiches Responsive Design.

Allgemein
Eines der wichtigsten Layouts ist das Layout des <body>-Element, weil dort Veränderungen am
stärksten wahrgenommen werden, schließlich enthält dieses Element alle angezeigte Elemente und
besitzt somit die größte height sowie width, optimalerweise mit height: 100% und width:

100%. Deshalb sollte besonders dieses Layout responsive gestaltet werden, da sonst die ganze Web-
seite darunter leidet. Dadurch, dass dieses Layout die gesamte Bildschirmgröße einnimmt, ist es
wichtig, wie sich dieses Layout an verschiedene Bildschirmgrößen anpasst.
Die Bildschirmgrößen vieler Geräte sind unterschiedlich von ihrer Pixel-Breite und -Höhe. Trotz der
verschiedenen Bildschirmgrößen, lassen sich diese in drei Gruppen einteilen. Die erste Gruppe sind
Bildschirme im Hochformat (Portrait Mode). Die zweite Gruppe sind Bildschirme im Querfor-
mat (Landscape Mode). Die letzte Gruppe bilden quadratische Bildschirme, diese werden jedoch
nur selten genutzt und sind eher eine Nische, weshalb diese Gruppe nicht weiter betrachtet wird.
Tendenziell sind kleine Bildschirme eher im Hochformat ausgerichtet, während große Bildschirme
meist im Querformat genutzt werden, dies ist aber keine feste Regel, da eine Drehung des Bild-
schirms möglich ist und somit beide Formate in allen Bildschirmgrößen vorhanden sind. Durch die
Einordnung in diese zwei Gruppen ist es möglich für beide Gruppen ein Layout zu erstellen, welches
sich an das jeweilige Format anpasst.
Damit das Layout auch responsive ist, sollten Layout-Technologien genutzt werden, die sich gut an
verschiedene Bildschirmgrößen anpassen können. Dabei sollten die Technologien aus dem Kapitel
2.2 genutzt werden.

Flexbox
Eine Flexbox eignet sich sehr gut für eindimensionale Layouts, wo es nicht wichtig ist eine feste An-
ordnung zu besitzen. Seine Darstellung ist optimal für eine Ansammlung von ähnlichen beziehung-
weisen gleichen Elementen, wie zum Beispiel bei einer Bildergalerie oder einer Liste von Einträgen.
Durch den flexiblen Aufbau sind Flexboxen mit flex-wrap: wrap sehr einfach responsive zu
gestalten, da diese Layout-Technologie automatisch die Elemente in die nächste Zeile umbrechen
lässt, wenn nicht mehr genug Platz in der aktuellen Zeile ist. Dadurch passen sich Flexboxen sehr gut
an verschiedene Bildschirmgrößen an. Durch die Nutzung von flex-shrink und flex-grow

kann zusammen mit min- und max- Eigenschaften die Größe der Flex-Elemente gut gesteuert
werden, wodurch sich die Elemente an die verfügbare Fläche anpassen können. Die Eigenschaft
flex-basis sollte nicht benutzt werden, da diese die Größensteuerung des Elementes übernimmt
und somit die Flexibilität des Elementes einschränkt. Die Nutzung von gap ist ebenfalls empfeh-

19

4 Implementierungsstrategie

lenswert, um Abstände zwischen den Flex-Elementen zu schaffen, ohne dass zusätzliche Margins
genutzt werden müssen. Bei der Anordnung der Flex-Elemente kann mit justify-content und
align-items gearbeitet werden, um die Elemente optimal im Flex-Container zu positionieren.
Falls ein Flex-Element auf der Querachse anders positioniert werden soll als die anderen Elemente,
kann mit align-self gearbeitet werden, um dieses Element individuell zu positionieren.

Grid
Grid ist eine weitere Layout-Technologie, die sich gut für Responsive Design eignet. Grids arbeiten
mit Zeilen und Spalten, die ein Raster bilden, in dem die Kindelemente positioniert werden können.
Dadurch ist es möglich, dass Kindelemente mehrere Zeilen und Spalten einnehmen können, wodurch
zweidimensionale Layouts möglich sind. Dabei sollten Zeilen und Spalten etwa feste Einheiten nutzen
wie rem sowie px oder die flexible Einheit fr benutzen, um den verfügbaren Platz aufzuteilen. Die
Einheit % eignet sich weniger, da der Entwickler manuell auf die 100% kommen muss und die Eigen-
schaft min-* der Grid-Elemente nicht beachtet wird, wodurch die Eigenschaften der Grid-Elemente
ignoriert werden. mit fr werden die Eigenschaften der Grid-Elemente beachtet. Ebenfalls beachtet
fr auch die gap-Eigenschaft des Grids. Durch diese festere Struktur, ist es unüblich sich an die
Elementgröße anzupassen, weshalb es sich eignet mehrere Grid-Layouts für verschiedene Bildschirm-
größen beziehungsweise Elementgrößen zu erstellen und diese dann mit Media-Queries auszutau-
schen. Als Media-Queries eignen sich besonders die Eigenschaften @media und @container.
Wenn ein Gridlayout sich verändert, ist es empfehlenswert mit grid-template-areas zu ar-
beiten, da so die Anordnung der Kindelemente sehr einfach angepasst werden kann, ohne dass die
Kindelemente selbst angepasst werden müssen. Dadurch wird der Entwicklungsaufwand reduziert
und die Lesbarkeit des Codes verbessert. Falls sich das Grid eher nach den Elementen richten soll,
kann mit dem Wert repeat(auto-fit, minmax(...)) gearbeitet werden. Dadurch entste-
hen so viele Spalten oder Zeilen, die ein Größenbereich haben und sich an die Größe der Gridelemente
anpassen. Damit ist das Grid deutlich flexibler und passt sich eher an die Elternelementgröße an als
an die Bildschirmgröße.

4.3 Touchgesten

Um eine erfolgreiche Implementierung zu gewährleisten, müssen passend zu den Anforderungen aus
Kapitel 3.3 Lösungen gefunden werden, die für eine hohe Nutzerzufriedenheit sorgen und zeitgleich
den Implementierungsaufwand gering halten.

4.3.1 Implementierung von Touchgesten
Bei der Implementierung von Touchgesten ist es fundamental, dass alle Aktionen der Webanwen-
dung auch mit Touchgesten ausgeführt werden können. Einschränkungen für Touchnutzer führen zu
einer schlechten Nutzererfahrung und limitieren die Zugänglichkeit der Webanwendung auf Touch-
geräten. Bei einer komplexen Webanwendung ist es jedoch schwierig alle Aktionen mit einzigartigen
Touchgesten abzubilden, da die Anzahl je nach Funktionsumfang stark variieren kann. Deshalb soll-

20

4 Implementierungsstrategie

ten generische Aktionen mit allgemeinen Touchgesten abgebildet werden, die auf viele Aktionen
angewendet werden können.
Für die Implementierung sollten die Javascript PointerEvents genutzt werden, da diese sowohl Maus-
als auch Touchereignisse unterstützen und somit eine einheitliche Schnittstelle für beide Eingabeme-
thoden bieten. Dadurch wird der Programmieraufwand reduziert, da nicht für jede Eingabemetho-
de eigene EventListener implementiert werden müssen. TouchEvents sind auch für Touchgesten
zuständig, jedoch werden diese weder vom Safari-Browser noch vom Firefox-Browser unterstützt [29],
wodurch eine allgemeine Anforderung verletzt wird. PointerEvents werden von allen gängigen
Browsern unterstützt und sind somit die bessere Wahl für die Implementierung von Touchgesten.
Mithilfe der PointerEvents ist es möglich eigene Touchgesten zu implementieren, indem Ei-
genschaften des Events mit Bedingungen verknüpft werden. Einige Touchgesten sind bereits vom
Browser definiert und können ohne eigene Implementierung genutzt werden. Das Event click bildet
ein Tap ab und dblclick ist ein Double-Tap. Die Touchgesten Scroll, Zoom und Pinch werden
durch das Standardverhalten des Browsers abgedeckt. Elemente, die einen Scrollbalken besitzen,
können mit einer Scrollgeste bedient werden. Zoom und Pinch sind auf der ganzen Webanwendung
möglich und erlauben es dem Nutzer die Webanwendung zu vergrößern oder zu verkleinern. Dabei
ist zu beachten, dass diese Geste eher einer Lupe gleichkommt, als der üblichen Zoom-Funktion des
Browsers, die den Inhalt skaliert.
Dieses Verhalten kann mit der CSS-Eigenschaft touch-action angepasst werden, um das Brow-
serverhalten auf dem Element beispielsweise zu deaktivieren. Ebenfalls kann beim PointerEvent

die Methode event.preventDefault() aufgerufen werden, wodurch das Standardverhalten
des Browsers abbricht.
Das Scrollen sollte nicht deaktiviert werden, da dies eine wichtige Funktion ist für die Webanwendung
und die Nutzererfahrung stark beeinträchtigen würde. Für Zoom und Pinch kann es jedoch sinnvoll
sein, diese zu deaktivieren, wenn die Webanwendung eigene Implementierungen für diese Gesten
besitzt, um Konflikte zu vermeiden.
Ein weiterer wichtiger Aspekt ist, dass es keine native Lösung gibt, um :hover-Zustände mit Touch-
geräten abzubilden. Dadurch könnte Styling oder auch Funktionalität verloren gehen, da Touchgeräte
keinen Hover-Zustand besitzen. Eine Möglichkeit diese Funktionalität anzubieten ist es, eine Hold-
Geste zu verwenden, da diese keine Tap-Aktion ausführt, aber dennoch eine Interaktion mit dem
Element darstellt. Dadurch kann der Nutzer beispielsweise ein Tooltip öffnen, welches bei Hover
mit der Maus geöffnet werden würde. Die restlichen definierten Touchgesten, siehe Tabelle 2.6,
benötigen eine eigene Implementierung, die auf den PointerEvents basieren sollte.
Bei der Implementierung einer Touchgeste sollte der EventListener nur gültig sein für das Element,
welches die Geste unterstützen soll. Dadurch wird verhindert, dass die Geste auf anderen Elementen
ausgelöst wird, was zu unerwartetem Verhalten führen kann. Ebenfalls sollten Touchgesten auf sehr
großen Elementen mit Bedacht eingesetzt werden, wenn die Kindelemente des Elementes ebenfalls
Touchgesten besitzen, die ähnlich zur Touchgeste des Elternelementes sind. Dies gilt auch für meh-
rere Touchgesten auf einem Element. So kann ein Wischen auch als ein Scroll interpretiert werden

21

4 Implementierungsstrategie

oder ein Hold wird ausgelöst, obwohl ein Drag and Drop ausgeführt werden sollte. Dies mindert
deutlich die Nutzererfahrung und sollte vermieden werden.
Wenn komplexere Gesten implementiert werden sollen, ist es empfehlenswert mit VueUse sowie den
Erweiterungen Gestures und Motion zu arbeiten. VueUse bietet die Composable usePointer an,
welche alle wichtigen Informationen eines Pointers bereitstellt, wie die Position, den Typ und ob
der Pointer gedrückt ist oder nicht. Dadurch lässt sich sehr einfach eine eigene Touchgeste imple-
mentieren. Für komplexere Gesten wie Swipe, Pinch oder Drag and Drop bietet VueUse Gestures
bereits Composables an, die diese Gesten implementieren und nur noch in der Komponente ver-
wendet werden müssen. Dadurch lässt sich der Programmieraufwand deutlich verringern und die
Implementierung wird vereinfacht. Bei der Benutzung von usePointer oder den VueUse Gestu-
res Composables ist es empfehlenswert noch VueUse Motion zu verwenden, da damit Animationen
und auch visuelle Indikatoren für die Touchgeste möglich sind, um dem Nutzer eine Rückmeldung
zu geben, dass seine Geste erkannt und ausgeführt wird. Dabei ist es wichtig, dass das Element
dem Finger folgt, und der Nutzer nicht in seinem Vorhaben unterbrochen wird. Erst wenn der Finger
losgelassen wird, darf eine Aktion stattfinden, basierend auf seiner Geste. Dadurch ist es möglich,
dass der Nutzer beispielsweise ein Swipe abbricht, indem er den Finger nicht loslässt, sondern in
die entgegengesetzte Richtung bewegt. Würde das Element ab einem bestimmten Punkt die Akti-
on ausführen, wäre es nicht mehr möglich die Geste abzubrechen, was die Nutzererfahrung stark
beeinträchtigen würde.

4.3.2 Nutzung und visuelle Indikatoren
Bei der Gestaltung einer Touchgeste sollte nicht nur bedacht werden, wie die Touchgeste funktioniert.
Es ist auch wichtig, dass der Nutzer weiß, dass dort eine Touchgeste möglich ist. Dabei können
visuelle Indikatoren helfen, die dem Nutzer unterbewusst zeigen, dass dort eine Aktion möglich ist.
Eine Möglichkeit wäre es eine Animation auf das Element anzuwenden. So könnte ein Element leicht
pulsieren, sich bewegen oder die Geste andeuten, wodurch der Nutzer aufmerksam gemacht wird,
dass dort eine Touchgeste möglich ist und gegebenenfalls gezeigt wird, was mit diesem Element zur
Verfügung steht. Eine weitere Möglichkeit ist es ein Icon einzubinden, welches die Geste andeutet.
So könnten Pfeile eine Richtung andeuten, in die ein Element bewegt werden kann oder Touch-Icons
benutzt werden, um eine allgemeine Aktion anzuzeigen. Bei der Nutzung von Touchgesten, die ein
Element bewegen ist es wichtig, dass das Element einen Schatten besitzt und sich so vom Hintergrund
abhebt. Dadurch wird dem Nutzer signalisiert, dass das Element bewegt werden kann und es nicht
fest mit dem Hintergrund verbunden ist. Allgemein sollten visuelle Indikatoren dezent eingesetzt
werden, um den Nutzer nicht zu überfordern und die Webanwendung unübersichtlich wirken zu
lassen. Dabei sind Animationen sehr aufdringlich, währends Icons dezenter sind und Schatten ein
gängiges Gestaltungsmittel für interaktive Elemente sind. Aus diesem Grund sollten Animationen nur
für die wichtigen Elemente eingesetzt werden. Icons können für alle interaktiven Elemente eingesetzt
werden, sollten jedoch nicht zu dominant sein. Schatten können soweit immer eingesetzt werden,
jedoch ist zu beachten, dass Schatten auch aus Styling-Gründen eingesetzt werden und nicht immer

22

4 Implementierungsstrategie

ein interaktives Element bedeuten, weshalb es im richtigen Kontext erst als ein interaktives Element
wahrgenommen wird.
Auch ohne visuelle Indikatoren können Touchgesten angedeutet werden, anhand des Aufbaus der
Webanwendung. So lädt eine einzelne Karte dazu ein, diese zu wischen. Ebenso kann eine Liste
von Elementen dazu einladen, diese zu scrollen. Dadurch wird dem Nutzer klar, dass er mit diesen
Elementen interagieren kann, ohne das es explizit angezeigt wird. Wenn dies nicht eindeutig sichtbar
ist, sollte ein visueller Indikator hinzugefügt werden, um die Nutzererfahrung zu verbessern. Elemente
sollten innerhalb der Webanwendung auch einer Designlinie folgen, damit der Nutzer beim Benutzen
der Seite lernt, welche Elemente interaktiv sind und welche nicht. Dadurch wird die Webanwendung
konsistenter und die Nutzererfahrung verbessert sich. Das was der Nutzer gelernt hat, kann er
auf andere Elemente der Webanwendung übertragen, wodurch er schneller und einfacher mit der
Webanwendung interagieren kann.

4.4 Strategie

Nachdem nun alle Konzepte und Anforderungen zusammengekommen sind, wird in diesem Kapitel
beschrieben wie die Implementierung des Prototyps in Miori Boards aussehen sollte.
Zu Beginn wird sich um das Responsive Design gekümmert, da dies eine Überarbeitung der gesamten
grafischen Nutzeroberfläche bedeutet. Würde der Entwickler zuerst mit den Touchgesten anfangen,
könnte es passieren, dass Elemente, die zuvor wichtig waren für die Touchgesten, durch das Respon-
sive Design verändert oder entfernt werden. Dies würde zu unnötigen Mehraufwand führen.

Responsive Design
Für den Beginn der Implementierung des Responsive Designs bietet es sich an, zuerst ganz oben
im HTML-Dokument zu starten und sich dann Stück für Stück nach unten vorzuarbeiten. Dadurch
können schon Limitationen früh erkannt werden und diese vorbeugend zu lösen beziehungsweise mit
zu Bedenken im weiteren Design. Dabei sollte der Entwickler sich zuerst überlegen welches Kind-
element das Hauptelement ist. Da dieses Hauptelement einen Stellenwert hat, sollte es bevorzugt
behandelt werden und soviel Platz einnehmen wie es braucht, da dies das Kernelement des Eltern-
elementes ist. Wenn das Hauptelement noch nicht designt ist, ist es sinnvoll, sich zuerst Gedanken
über dieses zu machen, um die Größe und den Platzbedarf abschätzen zu können. Es kann je nach
Element auch Sinn ergeben von unten anzufangen, wenn tiefer im Elementbaum bereits Limitationen
vorhanden oder bekannt sind, die beim Design des Elternelementes berücksichtigt werden müssen.
Wenn das erste Element bestimmt ist, geht es darauffolgend mit dem zweitwichtigsten Element
weiter. Dies geht solange bis alle Kindelemente des Elternelementes bestimmt sind.
Bei der Bestimmung der Elemente sollte der Entwickler zuerst anfangen für kleine Bildschirme zu
designen (Mobile-First Ansatz) [20]. Dadurch wird sichergestellt, dass die wichtigsten Elemente auch
auf kleinen Bildschirmen Platz finden und nicht von unwichtigen Elementen verdrängt werden. Dazu
empfiehlt es sich mit einer Breite von 360px zu starten, da dies die kleinste gängige Bildschirmbreite

23

4 Implementierungsstrategie

von Smartphones ist. Die gängigste kleinste Bildschirmhöhe beträgt 640px. Interaktive Elemente
sollten dabei eine Mindestgröße von 24px x 24px besitzen, bevorzugt aber 44px x 44px groß
sein.
Wenn alle Elemente bestimmt sind, kann sich nun entscheiden werden welches Layout benutzt wird.
So bieten sich Grids gut an für feste Anordnungen von Elementen, während Flexboxen gut für flexible
Anordnungen geeignet sind, wo die exakte Anordnung der Elemente nicht so wichtig ist. Besonders
bei Grids ist zu beachten, dass je nach Bildschirmgröße ein anderes Grid-Template benutzt werden
sollte, um die Elemente bestmöglich anzuordnen.
Nach diesem Schema arbeitet sich der Entwickler rekursiv durch den DOM-Baum, bis alle Elemente
auf der Ansicht beziehungweise Seite angepasst sind. Danach können Anpassungen gemacht werden,
um die Ansicht für größere Bildschirme zu optimieren. Bei der Benutzung von Flexboxen und Grids
ist dies meist nur eine Anpassung der Anordnung der Elemente, da die Größen sich meist automatisch
anpassen. Elemente selbst können jedoch in eine komplett alternative Darstellung wechseln, wenn
dies für größere Bildschirme sinnvoll ist, wie beispielsweise eine Navigationsleiste, die von einem
Dropdown mit einzelnen Einträgen zu einer Auflistung der Menüpunkte wechselt.

Touchgesten
Wenn die Ansicht nun responsive ist, kann mit der Implementierung der Touchgesten begonnen
werden. So sollten primär nur EventListener benutzt werden, die PointerEvents unterstützen. Falls
doch ein MouseEvent oder KeyboardEvent benutzt wird, muss es dazu passend ein Fallback für
Touchgeräte geben. Dabei ist es wichtig zu beachten was die Aktion macht, um damit passend eine
Geste zuzordnen. Wenn die Implementierung erfolgt ist, sollte noch ein Indikator eingebaut werden,
wenn die Geste nicht direkt ersichtlich ist aus dem Elementenkontext heraus. Je komplexer die Geste
ist, desto wichtiger ist es einen Indikator zu haben, damit der Nutzer die Geste auch wirklich entdeckt
und versteht.

Miori Boards
Im Kontext von Miori Boards sollten bei der Implementierung zuerst alle Komponenten angepasst
werden, die aus den WZL-Essentials stammen, da diese in der gesamten Webanwendung verwen-
det werden und von sich aus Limitationen besitzen können. Hier ist die Benutzung von simplen
Touchgesten und einem guten Responsive Design besonders wichtig, da diese Komponenten sehr
oft verwendet werden. Danach sollten alle wiederverwendbaren Komponenten von Miori Boards an-
gepasst werden, da diese ebenfalls an mehreren Stellen verwendet werden. Dort können komplexere
Touchgesten und spezialisiertere Responsive Designs verwendet werden, da diese Komponenten nur
in Miori Boards genutzt werden und nicht in anderen Projekten, wodurch ein generisches Design
nicht notwendig ist. Zum Schluss sollten die einzigartigen Elemente der einzelnen Ansichten bezie-
hungsweise Seiten angepasst werden. Wenn nach dieser Strategie vorgegangen wird, sollte eine gute
Grundlage für die Implementierung des Prototyps in Miori Boards geschaffen sein und folglich auch
für alle weiteren Webanwendungen, die nach dieser Strategie arbeiten.

24

5 Prototyp und Evaluation

5 Prototyp und Evaluation

Nachdem in Kapitel 4 die Implementierungsstrategie für den Prototypen beschrieben wurde, wird
in diesem Kapitel beschrieben, wie der Prototyp in Miori Boards umgesetzt wurde. Dazu folgt eine
Evaluation des Konzepts

5.1 Prototyp in Miori Boards

Für die prototypische Implementation in Miori Boards wurde exemplarisch die Übersichtseite im
Kontext des Responsive Designs überarbeitet. Dazu wurde im Präsentationsmodus des Kachelwid-
gets eine Swipetouchgeste implementiert. Dazu wurden die in Kapitel 4.4 beschriebenen Strategien
angewandt.

5.1.1 Responsive Übersichtseite
Die Übersichtseite von Miori Boards dient als Startpunkt der Webseite und bietet eine Personenkarte
an mit Profilbild, Name und E-Mail der Person, sowie ihr Anwesenheitsstatus und mögliche Abwe-
sendheitszeiträume. Des Weiteren gibt es kleine Boardkacheln, die alle Boards repräsentieren, auf
die die Person Zugriff hat. Über die Ansammlung der Boardkachel, gibt es eine Suchleiste, mit der
nach Boards gesucht werden kann. Unter der Boardkachelauflistung gibt es noch einen Button, um
Boards zu erstellen. Die Übersichtseite wurde primär für Laptop- und Desktopbildschirme entwickelt.

Abbildung 5.1: Miori Boards Übersichtseite ohne
Responsive Design

Abbildung 5.2: Miori Boards Übersichtseite mit Re-
sponsive Design

Wie in der Abbildung 5.1 zu sehen, ist die Übersichtseite nicht geeignet für kleinere Bildschirme,
da die Personenkarte überläuft in die Horizontale sowie die Boardkachelauflistung ebenfalls keinen
festen Rahmen hat. Ein weiterer Negativpunkt ist, dass der Button zur Boarderstellung unter der

25

5 Prototyp und Evaluation

Boardsauflistung ist, wodurch bei einer großen Anzahl an Boards lange gescrollt werden muss, um
den Button zu erreichen.
Zu Beginn der Überarbeitung wurde der Mobile-First Ansatz verfolgt, in dem die Bildschirmgröße
auf 360px x 640px eingestellt wurde, um die Ansicht für ein typisches Smartphone zu simulie-
ren, siehe 5.1. Da die Elemente bereits vorgegeben sind, muss kein neuer HTML-Code geschrieben
werden, sondern es muss nur das CSS angepasst werden, um die Ansicht responsive zu bekommen.
Dazu wurde zu Beginn die Personenkarte überarbeitet. Die Personenkarte nutzt bereits das Flexbox
Layout, jedoch gibt es nur zwei Kindelemente, nämlich das Profilbild und die Informationen. Das
Profilbild ist neben dem Informationselement positioniert, wodurch es zu einem Overflow kommt.
Mit der Eigenschaft flex-wrap: wrap kann dies behoben werden, wodurch bei zu geringen
Platz das Informationselement unter das Profilbild rutscht. Dadurch existiert kein Overflow in der
Horizontalen mehr. Ebenfalls wurde der Personenkarte ein Padding von 20px gegeben, damit der
Inhalt nicht direkt am Rand ist. Da das Informationselement der Personenkarte bereits kleiner als
360px groß ist, muss am Layout des Elementes nicht angepasst werden. Die Kindelemente von
dem Informationselement nutzen keine responsive Layout-Technologie sondern folgen der Standard-
Block-Darstellung. Damit es nun zu keinem Overflow kommt, wird der Name mit der Eigenschaft
word-break: break-word versehen, wodurch der Name in die nächste Zeile umbricht, wenn
kein Platz mehr ist. Die E-Mail Adresse wird mit der Eigenschaft text-overflow: ellipsis

versehen, wodurch die E-Mail Adresse abgeschnitten wird, wenn der Platz nicht ausreicht. Die An-
wesenheitselemente folgen einer festen Größe, wodurch diese nicht angepasst werden müssen.
Da nun die Personenkarte responsive ist, wird als nächstes die Boardkachelauflistung angepasst.
Diese nutzt Flexbox und auch die Eigenschaft flex-wrap: wrap. Der Grund wieso es zu einem
Overflow kommt, liegt daran, dass die Boardkachel keine Limitierung der Breite hat, wodurch es
sich über den Bildschirm ausdehnt. Dies wurde behoben, indem die Boardkachel eine Breite von
100% bekommen hat, wodurch die Boardkachel nur den Platz einnimmt, den es gibt. Durch diese
Eigenschaft, passiert es jedoch, dass alle Boardkacheln immer eine ganze Reihe in der Flexbox
einnehmen, da sie ja den ganzen horizontalen Platz für sich beanspruchen. Damit dies nicht mehr
passiert, wird eine maximale Breite von 340px für die Boardkachel gesetzt, wodurch das Element nur
eine limitierte Breite einnimmt. Die Größe von 340px wurde rein aus stylischen Gründen gewählt.
Durch diese Limitierung sieht die Boardkachel bei jeder Bildschirmgröße größer als 360px gleich aus,
da die Boardkachel immer die maximale Breite einnimmt und nur bei noch kleineren Bildschirmen
schrumpft.
Als letzte Änderung wurde der Button zur Borderstellung neu positioniert, damit dieser leichter
erreichbar ist. Dazu wurde der Button neben der Boardsuchleiste positioniert, wodurch eine Toolbar
passend zur Boardkachelauflistung entsteht. Der Button ist dabei 48px x 48px groß, wodurch
er auch auf Touchgeräten gut bedienbar ist. Die Toolbar selbst nutzt ebenfalls Flexbox, um die
Elemente nebeneinander anzuordnen. Falls der Platz nicht ausreicht, schrumpft nur die Suchleiste,
da der Button ansonsten zu klein werden würde und die Bedienbarkeit darunter leidet.
Durch diese Anpassungen ist die Übersichtseite nun responsive und sieht sowohl auf kleinen Bild-

26

5 Prototyp und Evaluation

schirmen als auch auf großen Bildschirmen gut aus, siehe Abbildung 5.2.

5.1.2 Touchgesten im Präsentationsmodus
Einer der wichtigsten Features von Miori Boards ist das Kachelwidget, bei dem jeder Nutzer des
Boards eine Kachel besitzt, um dort verschiedene Inhalte zu präsentieren. Dabei gibt es einen
Präsentationsmodus, bei dem die Kachel zentral auf dem Bildschirm liegt und der Nutzer seine
Inhalte präsentieren kann. Der Präsentationsmodus wurde primär für Desktop- und Laptopbildschir-
me entwickelt, bei denen der Nutzer eine Tastatur zur Verfügung hat, um mit den Pfeiltasten die
Kacheln zu wechseln. Durch diese Implementierung ist es nicht möglich, dass Nutzer ohne Tastatur
den Präsentationsmodus bedienen können. Aus diesem Grund soll eine Touchgestensteuerung im-
plementiert werden, um den Präsentationsmodus auch auf Touchgeräten (und Mäusen) bedienbar
zu machen.

Abbildung 5.3: Miori Boards Präsentationsmodus

Wie in Abbilung 5.3 zu sehen, liegt die Kachel zentral auf dem Bildschirm und der Rest des Bildschirm
ist mit einem Overlay abgedunkelt, wodurch die Kachel das einzige eindeutig sichtbare Element ist.
Aufgrund der Kachelform bietet es sich an eine Swipegeste zu implementieren, um die Kachel zu
wechseln. Dabei stellt ein Swipe nach Links die linke Pfeiltaste dar und ein Swipe nach Rechts die
rechte Pfeiltaste. Durch den Aufbau des Präsentationsmodus ist bereits klar, dass die Kachel das
einzige interaktive Element ist, wodurch keine weiteren Hinweise für die Bedienung notwendig sind.
Für die Touchgestenimplementierung wird die Directive v-drag verwendet und dazu wird die Funk-
tion apply() aus dem Motionplugin benutzt, um die Kachelbewegung zu animieren. Mit der Direc-
tive v-drag kann eine Funktion übergeben werden, die bestimmt wie die Logik auszusehen hat bei
einem Drag an dem Kachelelement. Die Directive übergibt dabei ein Objekt, welches verschiedene
Attribute besitzt, die den Zustand des Elementes beschreiben. Dabei wird zuerst beobachtet, ob es
eine Bewegung in die X-Richtung oder Y-Richtung ist. Da die Kachel nur horizontal geswipt werden
soll, werden Bewegungen in die Y-Richtung ignoriert und verändern das Element nicht. Bei Bewe-
gungen in die X-Richtung wird die Kachel mit der Funktion set() verschoben, um eine flüssige
Animation zu erzeugen, die dem Finger folgt. Danach wird aus dem Objekt geprüft, ob ein Swipe

27

5 Prototyp und Evaluation

stattgefunden hat. Dabei wird der Swipezustand mit -1, 0 und 1 definiert. Bei -1 wurde ein Swipe
nach Links erkannt, bei 1 ein Swipe nach Rechts und bei 0 wurde kein Swipe erkannt. Bei der
Prüfung des Zustandes können nun die Funktionen zum Kachelwechsel aufgerufen werden, wenn
ein Swipe erkannt wurde. Anschließend wird noch überprüft, ob noch ein Dragging stattfindet. Falls
nicht, wird die Kachel mit der Funktion apply() wieder in die Ursprungsposition animiert, um die
Kachel zurückzusetzen.
Durch diese Implementierung ist es nun möglich, den Präsentationsmodus mithilfe einer Touchges-
te zu bedienen, wodurch Nutzer ohne Tastatur ebenfalls den Präsentationsmodus nutzen können.
Ebenfalls können Nutzer mit Maus die Kachel wechseln, indem sie die Kachel anklicken und ziehen,
um sie zu wechseln, da die Directive v-drag mit PointerEvents arbeitet.

5.2 Evaluation des Konzepts

Um das Konzept zu evaluieren wurde neben dem Prototypen in Miori Boards noch eine Benchmark-
seite erstellt, die einzelne Touchgesten und deren Funktionsweise demonstrieren. Folglich wurden
auch Responsive Design Konzepte beispielhaft gezeigt, um diese ebenfalls zu demonstrieren. Ebenso
wurden die in Kapitel 3 beschriebenen Anforderungen auf ihre Umsetzbarkeit im Prototypen und der
Benchmarkseite überprüft.

5.2.1 Benchmarkseite
Die prototypische Implementierung an Boards zeigt bereits, dass in einzelnen Anwendungsfällen
die Implementierungsstrategie erfolgreich funktioniert. Dies evaluiert jedoch nicht, dass das Kon-
zept allgemein funktioniert. Aus diesem Grund wurde eine Benchmarkseite erstellt, die verschiedene
Touchgesten und Responsive Design Konzepte demonstriert.

(a) ohne Responsive Design (b) mit minmax-Funktion (c) mit Media Queries

Abbildung 5.4: Vergleich verschiedener Grid-Layouts auf der Benchmarkseite

Die Abbildung 5.4 zeigt einen Ausschnitt der Benchmarkseite. Dort wurden alle definierten Touch-
gesten aus der Tabelle 2.6 implementiert und können ausprobiert werden. Die Responsive Layout-
Technologien Flexbox und Grid wurden ebenfalls implementiert und können auf der Benchmarkseite
getestet werden mit verschiedenen Ansätzen diese zu benutzen. Auch wurden einzelne Strategi-

28

5 Prototyp und Evaluation

en für responsive Elemente eingebaut, wie das Verhalten von Bildern oder Texten ist, wenn das
Elternelement verschiedene Größen annimmt oder wenn eine Liste in den Overflow geht.

5.2.2 Umsetzbarkeit der Anforderungen
Zuletzt wird überprüft, ob die in Kapitel 3 beschriebenen Anforderungen im Prototypen und der
Benchmarkseite umgesetzt werden konnten.
Dabei wird mit den allgemeinen Anforderungen aus der Tabelle 3.1 angefangen. Durch die Nut-
zung von Vue.js und dem Ökosystem ist der Implementierungsaufwand gering, da viele Funktiona-
litäten bereits durch Bibliotheken abgedeckt werden können. Der modulare Aufbau der Komponenten
sorgt für eine leichte Wartbarkeit und Erweiterbarkeit der Implementierung. Ebenfalls ist die Test-
barkeit durch den modularen Aufbau möglich mit Benchmarks der Komponenten. Die benutzten
CSS-Eigenschaften und Javascript-Events sowie das Vue.js Ökosystem werden von allen gängigen
Rendering Engines unterstützt. Mit der Verwendung von grundlegenden CSS-Eigenschaften und ele-
mentaren Javascript-Events kann eine konsistente Performance erreicht werden. Bei der übermäßigen
Nutzung von den VueUse Bibliotheken besteht jedoch die Gefahr, dass die Performance leidet, wenn
zu viele EventListener gleichzeitig aktiv sind. Damit wurden die allgemeinen Anforderungen weites-
gehend erfüllt.
Als nächstes werden die Anforderungen der Touchgesten behandelt, die in der Tabelle 3.3 beschrieben
wurden. Bei der Implementierungsstrategie wurde darauf geachtet, nur Touchgesten zu benutzen,
die eine große Nutzerzahl kennen. Mithilfe von PointerEvents und VueUse Gestures Directives
sowie Composables kann die Touchgestensteuerung bereitgestellt werden. Die Bibliothek VueUse
Motion hilft dabei, dass die Touchgesten eine flüssige und natürliche Reaktion zeigen, sowie visuelle
Indikatoren ermöglichen, um die Nutzbarkeit zu verbessern. Der Konflikt von ähnlichen Gesten kann
vermieden werden durch die Implementierung in einem Elementenscope sowie dem Deaktivieren
von Standardgesten des Browsers. Mit der Empfehlung von großen Icons und Button steigt die
Nutzererfahrung auf Touchgeräten, sowie die Zugänglichkeit der Anwendung.Somit wurden auch
die Anforderungen der Touchgesten erfüllt.
Abschließend werden die Anforderungen des Responsive Designs aus der Tabelle 3.2 überprüft. Mit
der Vorstellung von Flexbox und Grid wurden zwei dynamische Layout-Systeme angeboten, die
eine flexible Anordnung von Elementen ermöglichen. Mithilfe von der Overflow-Eigenschaft können
Elemente ihre Funktionalität behalten bei Platzmangel, sowie sich dynamisch an den Platz anpassen.
Die Verwendung von Media Queries sowie relativer Einheiten erlauben eine reaktive Anpassung der
Elemente an verschiedenen Bildschirmgrößen. Durch die Empfehlung des Mobile-First Ansatzes wird
sichergestellt, dass die wichtigsten Elemente auch auf kleinen Bildschirmen Platz finden. Dank rem
und word-break ist es möglich die Lesbarkeit von Texten auf verschiedenen Bildschirmgrößen zu
gewährleisten. Somit wurden auch die Anforderungen des Responsive Designs erfüllt.
Insgesamt konnte das Konzept erfolgreich in der Benchmarkseite und dem Prototypen in Miori
Boards umgesetzt werden, wodurch die Umsetzbarkeit der Anforderungen bestätigt werden konnte.

29

6 Fazit und Ausblick

6 Fazit und Ausblick

In diesem finalen Kapitel werden die wichtigsten Erkenntnisse und Ergebnisse der Seminararbeit zu-
sammengefasst. Zudem wird ein Ausblick auf mögliche zukünftige Entwicklungen und Erweiterungen
gegeben, die auf den in dieser Arbeit behandelten Themen aufbauen können.

6.1 Zusammenfassung der Ergebnisse

Ziel war es eine Implementierungsstrategie für die Umsetzung von Responsive Design und Touchges-
ten auf Miori Boards zu entwickeln. Mithilfe des Einsatzes von Vue.js und VueUse sowie der Strategie
für Touchgesten und Responsive Design konnte eine solide Grundlage geschaffen werden, die eine
effiziente und benutzerfreundliche Implementierung ermöglicht. Mit dem Mobile-First Ansatz sowie
der komponentenbasierten Implementierung werden bereits potenzielle Probleme verhindert, bevor
diese auftreten können. Es ist jedoch wichtig zu beachten, dass bei zu vielen EventListenern in einer
Ansicht die Performance beeinträchtigt werden kann. Die prototypische Umsetzung der Strategie
zeigt, dass diese an Miori Boards erfolgreich funktioniert und somit der Grundstein für die Imple-
mentierung gelegt ist. Die entwickelte Strategie bietet damit eine passende Basis für zukünftige
Projekte und kann als Leitfaden für die Umsetzung ähnlicher Anforderungen dienen.

6.2 Ausblick

Nun muss nur noch die tatsächliche Implementierung auf den Miori Boards erfolgen. Nach der
Implementierung gibt es noch weitere Möglichkeiten zur Erweiterung von Miori Boards.

6.2.1 Progressive Web App (PWA)
Eine mögliche Erweiterung wäre die Entwicklung von Miori Boards als PWA1. PWAs ermöglichen es
den Nutzern, die Anwendung wie eine native App zu installieren und gegebenefalls auch offline zu
öffnen. Dies könnte die Benutzererfahrung weiter verbessern und die Zugänglichkeit der Anwendung
erhöhen, da nicht mehr eine Webseite sondern eine Anwendung benutzt wird [23].

6.2.2 Web- und Service-Worker
Infolge der PWA-Implementierung könnten Web- und Service-Worker genutzt werden, um Hinter-
grundprozesse zu ermöglichen. Dadurch könnten beispielsweise Push-Benachrichtigungen implemen-
tiert werden, die den Nutzer über wichtige Ereignisse informieren, auch wenn die Anwendung nicht
aktiv genutzt wird [32]. Service-Worker könnten zudem genutzt werden, um Ressourcen zu ca-
chen und so die Ladezeiten der Anwendung zu verbessern oder die Offlinenutzung der Anwendung
ermöglichen [28].

1Progressive Web App

30

Quellenverzeichnis

Quellenverzeichnis

[1] Apple. ”Gestures,“ besucht am 15. Dez. 2025. Adresse: https://developer.apple.
com/design/human-interface-guidelines/gestures#Specifications

[2] D. C. ENGELBART, ”X-Y POSITION INDICATOR FOR A DISPLAY SYSTEM,“ US 3541541
A, Patented Nov. 17, 1970, 1970. Adresse: https://worldwide.espacenet.com/
publicationDetails/biblio?locale=de_EP&CC=US&NR=3541541

[3] Google. ”Gestures,“ besucht am 15. Dez. 2025. Adresse: https://m3.material.io/
foundations/interaction/gestures

[4] Google. ”Gestures,“ besucht am 15. Dez. 2025. Adresse: https://m2.material.io/
design/interaction/gestures.html#properties

[5] GPMC. ”Miori Boards,“ besucht am 15. Dez. 2025. Adresse: https://www.miori.
tools/shopfloor-board/

[6] B.-J. Krings, ”New Work und die Zukunft der Arbeit,“ Aus Politik und Zeitgeschichte, Nr. 46/2023,
S. 04–09, 8. Nov. 2023, issn: 0479-611X. besucht am 15. Dez. 2025. Adresse: https:
//www.bpb.de/shop/zeitschriften/apuz/new-work-2023/542500/new-

work-und-die-zukunft-der-arbeit/

[7] E. Marcotte. ”Responsive Web Design,“ A List Apart, besucht am 15. Dez. 2025. Adresse:
https://alistapart.com/article/responsive-web-design/

[8] MDN. ”box-sizing,“ besucht am 15. Dez. 2025. Adresse: https://developer.mozilla.
org/en-US/docs/Web/CSS/box-sizing

[9] MDN. ”calc(),“ besucht am 15. Dez. 2025. Adresse: https://developer.mozilla.
org/en-US/docs/Web/CSS/calc()

[10] MDN. ”clamp(),“ besucht am 15. Dez. 2025. Adresse: https://developer.mozilla.
org/en-US/docs/Web/CSS/clamp()

[11] MDN. ”CSS box alignment overview,“ besucht am 15. Dez. 2025. Adresse: https://
developer.mozilla.org/en-US/docs/Web/CSS/Guides/Box_alignment/

Overview

[12] MDN. ”CSS Box Model,“ besucht am 15. Dez. 2025. Adresse: https://developer.
mozilla.org/en-US/docs/Learn/CSS/Building_blocks/The_box_model

[13] MDN. ”CSS Grid Layout,“ besucht am 15. Dez. 2025. Adresse: https://developer.
mozilla.org/en-US/docs/Learn_web_development/Core/CSS_layout/

Grids

[14] MDN. ”CSS Values and Units,“ besucht am 15. Dez. 2025. Adresse: https://developer.
mozilla.org/en- US/docs/Learn_web_development/Core/Styling_

basics/Values_and_units

31

https://developer.apple.com/design/human-interface-guidelines/gestures#Specifications
https://developer.apple.com/design/human-interface-guidelines/gestures#Specifications
https://worldwide.espacenet.com/publicationDetails/biblio?locale=de_EP&CC=US&NR=3541541
https://worldwide.espacenet.com/publicationDetails/biblio?locale=de_EP&CC=US&NR=3541541
https://m3.material.io/foundations/interaction/gestures
https://m3.material.io/foundations/interaction/gestures
https://m2.material.io/design/interaction/gestures.html#properties
https://m2.material.io/design/interaction/gestures.html#properties
https://www.miori.tools/shopfloor-board/
https://www.miori.tools/shopfloor-board/
https://www.bpb.de/shop/zeitschriften/apuz/new-work-2023/542500/new-work-und-die-zukunft-der-arbeit/
https://www.bpb.de/shop/zeitschriften/apuz/new-work-2023/542500/new-work-und-die-zukunft-der-arbeit/
https://www.bpb.de/shop/zeitschriften/apuz/new-work-2023/542500/new-work-und-die-zukunft-der-arbeit/
https://alistapart.com/article/responsive-web-design/
https://developer.mozilla.org/en-US/docs/Web/CSS/box-sizing
https://developer.mozilla.org/en-US/docs/Web/CSS/box-sizing
https://developer.mozilla.org/en-US/docs/Web/CSS/calc()
https://developer.mozilla.org/en-US/docs/Web/CSS/calc()
https://developer.mozilla.org/en-US/docs/Web/CSS/clamp()
https://developer.mozilla.org/en-US/docs/Web/CSS/clamp()
https://developer.mozilla.org/en-US/docs/Web/CSS/Guides/Box_alignment/Overview
https://developer.mozilla.org/en-US/docs/Web/CSS/Guides/Box_alignment/Overview
https://developer.mozilla.org/en-US/docs/Web/CSS/Guides/Box_alignment/Overview
https://developer.mozilla.org/en-US/docs/Learn/CSS/Building_blocks/The_box_model
https://developer.mozilla.org/en-US/docs/Learn/CSS/Building_blocks/The_box_model
https://developer.mozilla.org/en-US/docs/Learn_web_development/Core/CSS_layout/Grids
https://developer.mozilla.org/en-US/docs/Learn_web_development/Core/CSS_layout/Grids
https://developer.mozilla.org/en-US/docs/Learn_web_development/Core/CSS_layout/Grids
https://developer.mozilla.org/en-US/docs/Learn_web_development/Core/Styling_basics/Values_and_units
https://developer.mozilla.org/en-US/docs/Learn_web_development/Core/Styling_basics/Values_and_units
https://developer.mozilla.org/en-US/docs/Learn_web_development/Core/Styling_basics/Values_and_units

Quellenverzeichnis

[15] MDN. ”flex,“ besucht am 15. Dez. 2025. Adresse: https://developer.mozilla.
org/en-US/docs/Web/CSS/Reference/Properties/flex

[16] MDN. ”Flexbox,“ besucht am 15. Dez. 2025. Adresse: https://developer.mozilla.
org/en-US/docs/Learn_web_development/Core/CSS_layout/Flexbox

[17] MDN. ”fr,“ besucht am 15. Dez. 2025. Adresse: https://developer.mozilla.org/
en-US/docs/Web/CSS/fr

[18] MDN. ”gap,“ besucht am 15. Dez. 2025. Adresse: https://developer.mozilla.
org/en-US/docs/Web/CSS/gap

[19] MDN. ”minmax(),“ besucht am 15. Dez. 2025. Adresse: https://developer.mozilla.
org/en-US/docs/Web/CSS/Reference/Values/minmax

[20] MDN. ”Mobile First,“ besucht am 15. Dez. 2025. Adresse: https : / / developer .
mozilla.org/en-US/docs/Glossary/Mobile_First

[21] MDN. ”overflow,“ besucht am 15. Dez. 2025. Adresse: https://developer.mozilla.
org/en-US/docs/Web/CSS/overflow

[22] MDN. ”PointerEvent,“ besucht am 15. Dez. 2025. Adresse: https : / / developer .
mozilla.org/en-US/docs/Web/API/PointerEvent

[23] MDN. ”Progressive Web Apps,“ besucht am 15. Dez. 2025. Adresse: https://developer.
mozilla.org/en-US/docs/Web/Progressive_web_apps

[24] MDN. ”Rendering engine,“ besucht am 15. Dez. 2025. Adresse: https://developer.
mozilla.org/en-US/docs/Glossary/Engine/Rendering

[25] MDN. ”Responsive Design,“ besucht am 15. Dez. 2025. Adresse: https://developer.
mozilla.org/en-US/docs/Learn_web_development/Core/CSS_layout/

Responsive_Design

[26] MDN. ”Responsive Images,“ besucht am 15. Dez. 2025. Adresse: https://developer.
mozilla.org/en-US/docs/Web/HTML/Guides/Responsive_images

[27] MDN. ”scrollbar-gutter,“ besucht am 15. Dez. 2025. Adresse: https://developer.
mozilla.org/en-US/docs/Web/CSS/scrollbar-gutter

[28] MDN. ”Service Workers,“ besucht am 15. Dez. 2025. Adresse: https://developer.
mozilla.org/en-US/docs/Web/API/Service_Worker_API

[29] MDN. ”Touch Events,“ besucht am 15. Dez. 2025. Adresse: https://developer.
mozilla.org/en-US/docs/Web/API/Touch_events/Using_Touch_events

[30] MDN. ”User Agent,“ besucht am 15. Dez. 2025. Adresse: https://developer.mozilla.
org/en-US/docs/Glossary/User_agent

32

https://developer.mozilla.org/en-US/docs/Web/CSS/Reference/Properties/flex
https://developer.mozilla.org/en-US/docs/Web/CSS/Reference/Properties/flex
https://developer.mozilla.org/en-US/docs/Learn_web_development/Core/CSS_layout/Flexbox
https://developer.mozilla.org/en-US/docs/Learn_web_development/Core/CSS_layout/Flexbox
https://developer.mozilla.org/en-US/docs/Web/CSS/fr
https://developer.mozilla.org/en-US/docs/Web/CSS/fr
https://developer.mozilla.org/en-US/docs/Web/CSS/gap
https://developer.mozilla.org/en-US/docs/Web/CSS/gap
https://developer.mozilla.org/en-US/docs/Web/CSS/Reference/Values/minmax
https://developer.mozilla.org/en-US/docs/Web/CSS/Reference/Values/minmax
https://developer.mozilla.org/en-US/docs/Glossary/Mobile_First
https://developer.mozilla.org/en-US/docs/Glossary/Mobile_First
https://developer.mozilla.org/en-US/docs/Web/CSS/overflow
https://developer.mozilla.org/en-US/docs/Web/CSS/overflow
https://developer.mozilla.org/en-US/docs/Web/API/PointerEvent
https://developer.mozilla.org/en-US/docs/Web/API/PointerEvent
https://developer.mozilla.org/en-US/docs/Web/Progressive_web_apps
https://developer.mozilla.org/en-US/docs/Web/Progressive_web_apps
https://developer.mozilla.org/en-US/docs/Glossary/Engine/Rendering
https://developer.mozilla.org/en-US/docs/Glossary/Engine/Rendering
https://developer.mozilla.org/en-US/docs/Learn_web_development/Core/CSS_layout/Responsive_Design
https://developer.mozilla.org/en-US/docs/Learn_web_development/Core/CSS_layout/Responsive_Design
https://developer.mozilla.org/en-US/docs/Learn_web_development/Core/CSS_layout/Responsive_Design
https://developer.mozilla.org/en-US/docs/Web/HTML/Guides/Responsive_images
https://developer.mozilla.org/en-US/docs/Web/HTML/Guides/Responsive_images
https://developer.mozilla.org/en-US/docs/Web/CSS/scrollbar-gutter
https://developer.mozilla.org/en-US/docs/Web/CSS/scrollbar-gutter
https://developer.mozilla.org/en-US/docs/Web/API/Service_Worker_API
https://developer.mozilla.org/en-US/docs/Web/API/Service_Worker_API
https://developer.mozilla.org/en-US/docs/Web/API/Touch_events/Using_Touch_events
https://developer.mozilla.org/en-US/docs/Web/API/Touch_events/Using_Touch_events
https://developer.mozilla.org/en-US/docs/Glossary/User_agent
https://developer.mozilla.org/en-US/docs/Glossary/User_agent

Quellenverzeichnis

[31] MDN. ”Using Media Queries,“ besucht am 15. Dez. 2025. Adresse: https://developer.
mozilla.org/en-US/docs/Web/CSS/CSS_media_queries/Using_media_

queries

[32] MDN. ”Using Web Workers,“ besucht am 15. Dez. 2025. Adresse: https://developer.
mozilla.org/en- US/docs/Web/API/Web_Workers_API/Using_web_

workers

[33] Microsoft. ”Übersicht über Windows Touchgesten,“ besucht am 15. Dez. 2025. Adresse:
https : / / learn . microsoft . com / de - de / windows / win32 / wintouch /

windows-touch-gestures-overview

[34] A. Petrosyan. ”Share of users worldwide accessing the internet in 2nd quarter 2025, by device,“
besucht am 15. Dez. 2025. Adresse: https://www.statista.com/statistics/
1289755/internet-access-by-device-worldwide

[35] StatCounter. ”Distribution of mobile screen resolutions used worldwide in 2024,“ besucht am
15. Dez. 2025. Adresse: https://www.statista.com/statistics/1445438/
leading-mobile-screen-resolutions-worldwide/

[36] StatCounter. ”Marktanteile der führenden Betriebssysteme weltweit von Januar 2009 bis Juli
2025,“ besucht am 15. Dez. 2025. Adresse: https://de.statista.com/statistik/
daten/studie/157902/umfrage/marktanteil-der-genutzten-betriebssysteme-

weltweit-seit-2009/

[37] StatCounter. ”Marktanteile der führenden mobilen Betriebssysteme an der Internetnutzung mit
Mobiltelefonen weltweit von Januar 2011 bis Juli 2025,“ besucht am 15. Dez. 2025. Adresse:
https://de.statista.com/statistik/daten/studie/184335/umfrage/

marktanteil-der-mobilen-betriebssysteme-weltweit-seit-2009/

[38] W3C. ”Target Size (Enhanced),“ besucht am 15. Dez. 2025. Adresse: https://www.w3.
org/WAI/WCAG22/Understanding/target-size-enhanced

[39] W3C. ”Target Size (Minimum),“ besucht am 15. Dez. 2025. Adresse: https://www.w3.
org/WAI/WCAG22/Understanding/target-size-minimum

[40] E. You. ”Vuejs/core,“ besucht am 15. Dez. 2025. Adresse: https://github.com/
vuejs/core

33

https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_media_queries/Using_media_queries
https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_media_queries/Using_media_queries
https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_media_queries/Using_media_queries
https://developer.mozilla.org/en-US/docs/Web/API/Web_Workers_API/Using_web_workers
https://developer.mozilla.org/en-US/docs/Web/API/Web_Workers_API/Using_web_workers
https://developer.mozilla.org/en-US/docs/Web/API/Web_Workers_API/Using_web_workers
https://learn.microsoft.com/de-de/windows/win32/wintouch/windows-touch-gestures-overview
https://learn.microsoft.com/de-de/windows/win32/wintouch/windows-touch-gestures-overview
https://www.statista.com/statistics/1289755/internet-access-by-device-worldwide
https://www.statista.com/statistics/1289755/internet-access-by-device-worldwide
https://www.statista.com/statistics/1445438/leading-mobile-screen-resolutions-worldwide/
https://www.statista.com/statistics/1445438/leading-mobile-screen-resolutions-worldwide/
https://de.statista.com/statistik/daten/studie/157902/umfrage/marktanteil-der-genutzten-betriebssysteme-weltweit-seit-2009/
https://de.statista.com/statistik/daten/studie/157902/umfrage/marktanteil-der-genutzten-betriebssysteme-weltweit-seit-2009/
https://de.statista.com/statistik/daten/studie/157902/umfrage/marktanteil-der-genutzten-betriebssysteme-weltweit-seit-2009/
https://de.statista.com/statistik/daten/studie/184335/umfrage/marktanteil-der-mobilen-betriebssysteme-weltweit-seit-2009/
https://de.statista.com/statistik/daten/studie/184335/umfrage/marktanteil-der-mobilen-betriebssysteme-weltweit-seit-2009/
https://www.w3.org/WAI/WCAG22/Understanding/target-size-enhanced
https://www.w3.org/WAI/WCAG22/Understanding/target-size-enhanced
https://www.w3.org/WAI/WCAG22/Understanding/target-size-minimum
https://www.w3.org/WAI/WCAG22/Understanding/target-size-minimum
https://github.com/vuejs/core
https://github.com/vuejs/core

Quellenverzeichnis

WZL Werkzeugmaschinenlabor

HTML HyperText Markup Language

DOM Document Object Model

CSS Cascading Style Sheets

rem root em

px pixel

fr fractional unit

API Application Programming Interface

UIEvent User Interface Event

SPA Single Page Application

SFC Single File Component

WCAG Web Content Accessibility Guidelines

PWA Progressive Web App

34

Abbildungsverzeichnis

Abbildungsverzeichnis

2.1 Miori Boards Board . 2
2.2 CSS Box Model . 3
2.3 Horizontale Vererbungshierarchie der DOM-Events, speziell für Touchgesten [29][22] . 10
2.4 Liste der Pointer Events in Web-APIs [22] . 10

5.1 Miori Boards Übersichtseite ohne Responsive Design . 25
5.2 Miori Boards Übersichtseite mit Responsive Design. 25
5.3 Miori Boards Präsentationsmodus . 27
5.4 Vergleich verschiedener Grid-Layouts auf der Benchmarkseite . 28

35

Tabellenverzeichnis

Tabellenverzeichnis

2.1 Relevante Einheiten für responsive Design [14][17] . 4
2.2 Overflow-Eigenschaften im Responsive Design [21] . 5
2.3 Anordnungen für responsive Layouts [11] . 6
2.4 Flex-Skalierungs-Eigenschaften [15] . 7
2.5 Grideigenschaften zur Deklarierung . 8
2.6 Übersicht der unterstützten Touch-Gesten . 11

3.1 Allgemeine Anforderung an der Implementierung . 12
3.2 Anforderungen an die Implementierung des Responsive Design . 13
3.3 Anforderungen an die Implementierung der Touchgestensteuerung . 14

36

	Einleitung
	Motivation
	Problemstellung
	Ziel der Arbeit
	Aufbau der Arbeit

	Grundlagen und Stand der Technik
	Miori Boards
	Responsive (Web-) Design
	CSS Box-Model
	Media Queries
	Viewport-Meta-Tag
	Responsive Layout-Technologien
	Responsive Bilder und Medien
	Responsive Typografie

	Touchgestensteuerung
	JavaScript EventListener
	Arten von Touchgesten

	Anforderungen
	Allgemeine Anforderungen
	Anforderungen an das Responsive Design
	Anforderungen an die Touchgestensteuerung

	Implementierungsstrategie
	Verwendete Frameworks und Bibliotheken
	Vue.js
	VueUse Core, Gesture und Motion
	WZL Essentials

	Responsive Design
	Element Gestaltung
	Layout Gestaltung

	Touchgesten
	Implementierung von Touchgesten
	Nutzung und visuelle Indikatoren

	Strategie

	Prototyp und Evaluation
	Prototyp in Miori Boards
	Responsive Übersichtseite
	Touchgesten im Präsentationsmodus

	Evaluation des Konzepts
	Benchmarkseite
	Umsetzbarkeit der Anforderungen

	Fazit und Ausblick
	Zusammenfassung der Ergebnisse
	Ausblick
	Progressive Web App (PWA)
	Web- und Service-Worker

	Quellenverzeichnis
	Abkürzungsverzeichnis
	Abbildungsverzeichnis
	Tabellenverzeichnis
	Anhang

