FH Aachen

Fachbereich 09
Medizintechnik und Technomathematik

Studiengang Angewandte Mathematik und Informatik

Seminararbeit

Eine prototypische Implementierung fiir Responsive Design und

Touchbedienung im Webtool Miori Boards

Yannic Sieger
Matr.-Nr.: 3630695

Betreuer: Prof. Dr. Alexander VoB

Betreuerin: Olga Wolf, Dipl.-Math.

15. Dezember 2025

UNIVERSITY OF APPLIED SCIENCES

FH AACHEN

Eidesstattliche Erklarung

Ich versichere hiermit, dass ich die vorliegende Arbeit selbststandig verfasst und keine anderen als

die im Literaturverzeichnis angegebenen Quellen benutzt habe.

Stellen, die wortlich oder sinngemaB aus veroffentlichten oder noch nicht veroffentlichten Quellen

entnommen sind, sind als solche kenntlich gemacht.

Die Zeichnungen oder Abbildungen in dieser Arbeit sind von mir selbst erstellt worden oder mit

einem entsprechenden Quellennachweis versehen.

Diese Arbeit ist in gleicher oder dhnlicher Form noch bei keiner anderen Priifungsbehorde eingereicht

worden.

Im Rahmen der Erstellung dieser Arbeit wurde das KI-System “Kl.connect.nrw" unterstiitzend zur
sprachlichen Uberarbeitung sowie zur fachlichen Reflexion und Prazisierung eigenstandig entwickelter
Argumente genutzt. Eine Ubernahme von Kl-generierten Texten oder inhaltlichen Lésungsvorschligen
erfolgte nicht. Samtliche fachlichen Aussagen, Bewertungen und Schlussfolgerungen wurden ei-
genstandig erarbeitet und verantwortet. Die Nutzung erfolgte im Einklang mit der Zweckbestimmung

des Systems sowie unter Beachtungdatenschutz- und urheberrechtlicher Vorgaben.

Name: Yannic Sieger
Aachen, 15. Dezember 2025

?a&fegv

Abstract

Im Zuge des Trends zu ,,New Work" und der fortschreitenden Digitalisierung verlagert sich die Arbeit
zunehmend auf mobile Endgerate wie Smartphones und Tablets. Das Webtool Miori Boards, welches
als zentrale Informationsquelle fiir das Projektmanagement dient, ist derzeit primar auf die Nutzung
an Desktop-Systemen ausgelegt und verfligt weder iiber eine responsive Darstellung noch iiber eine
Unterstitzung fiir Touchgesten.

Ziel dieser Arbeit ist die Erarbeitung einer Implementierungsstrategie, um Miori Boards an die An-
forderungen mobiler Endgerate anzupassen. Hierfiir werden zunachst grundlegende Technologien des
Responsive Webdesigns, wie das CSS Box-Model, Flexbox und Grid, sowie Konzepte der Touchges-
tensteuerung mittels JavaScript PointerEvents analysiert. Auf Basis des Frameworks Vue.js und der
Bibliothek VueUse wird eine Strategie entwickelt, die einen , Mobile-First"-Ansatz verfolgt.

Die praktische Umsetzung erfolgt exemplarisch durch einen Prototypen in Miori Boards. Dabei wird
die Ubersichtseite durch dynamische Layout-Anpassungen responsive gestaltet und der Prasentations-
modus um eine Wischgeste (Swipe) zur Navigation erweitert. Die Evaluation anhand einer eigens
erstellten Benchmarkseite bestatigt, dass die entwickelten Konzepte die Anforderungen an Perfor-
mance, Usability und technische Umsetzbarkeit erfiillen. Die Ergebnisse bilden somit eine fundierte

Grundlage fir die vollstindige mobile Optimierung der Webanwendung.

Inhaltsverzeichnis

Inhaltsverzeichnis

1 Einleitung

L1 MoOtivation
1.2 Problemstellungo
1.3 Ziel der Arbeit ..o
1.4 Aufbau der Arbeit. o

2 Grundlagen und Stand der Technik

2.1 Miori Boardso
2.2 Responsive (Web-) Design.........ooi
221 CSS Box-Model o
2.2.2 Media QUEIIES . ..o
2.2.3 Viewport-Meta-Tago
2.2.4 Responsive Layout-Technologien i
2.2.5 Responsive Bilder und Medien.........
2.2.6 Responsive Typografieo
2.3 ToUChgeSteNSTEUEIUNG\ e
2.3.1 JavaScript EventListenert
2.3.2 Arten von Touchgesten

3 Anforderungen

3.1 Allgemeine Anforderungeno
3.2 Anforderungen an das Responsive Designo i
3.3 Anforderungen an die Touchgestensteuerung...........o,

4 Implementierungsstrategie

4.1 Verwendete Frameworks und Bibliotheken L
A 1L VUE S
4.1.2 VueUse Core, Gesture und Motion ...
4.1.3 WIZL Essentials

4.2 Responsive Designoooiii
421 Element Gestaltungo
4.2.2 Layout Gestaltungiiii

4.3 TOUChGES O .
4.3.1 Implementierung von Touchgesten i
4.3.2 Nutzung und visuelle Indikatoren.........

4.4 Strategie

10
10

12

12
13
14

15

15
15
16
16
17
17
19
20
20
22
23

Inhaltsverzeichnis

5 Prototyp und Evaluation

5.1 Prototyp in Miori Boards
5.1.1 Responsive Ubersichtseiteo
5.1.2 Touchgesten im Prasentationsmodus. ...

5.2 Evaluation des Konzeptso
5.2.1 Benchmarkseiteo o
5.2.2 Umsetzbarkeit der Anforderungen

6 Fazit und Ausblick

6.1 Zusammenfassung der Ergebnisse

6.2 Ausblick

6.2.1 Progressive Web App (PWA) ... o

6.2.2 Web- und Service-Worker
Quellenverzeichnis
Abkiirzungsverzeichnis
Abbildungsverzeichnis

Tabellenverzeichnis

25

25
25
27
28
28
29

30

30
30
30
30

31
34
35
36

1 Einleitung

1 Einleitung

Dieses Kapitel fiihrt in die Grundthematik der Seminararbeit ein und bildet den Rahmen fiir die

weiteren Kapitel.

1.1 Motivation

Durch den stetig wachsenden Trend zu New Work! ist es méglich, von iiberall aus zu arbeiten. Im
Zuge der fortschreitenden Digitalisierung ist es wichtig, eine zentrale Quelle zu haben, welche den
aktuellen Stand eines Projekts anzeigen kann. Dabei kdnnen besonders Webapplikationen helfen, da
diese auf internetfahigen Geraten aufrufbar sind und der Nutzer nicht abhangig vom Nutzungsgerat
ist. Durch das universale Aufrufen von Webapplikationen verschiedener Systeme, muss beachtet
werden, wie die Informationen und Daten darzustellen sind, da sich die digitalen Endgerate deut-
lich unterscheiden kénnen und es keine allgemeine Losung gibt zur Darstellung auf allen digitalen

Endgeraten.

1.2 Problemstellung

Das Webtool Miori Boards erméglicht es Projekte zu planen und als zentrale Informationsquelle zu
dienen. Miori Boards ist dabei auf die Nutzung von Desktop-Systemen und Laptops ausgelegt. Durch
die fehlende Responsivitat der Webseite, ist die Nutzung auf mobilen Endgeraten wie Tablets und
Smartphones nur eingeschrankt moglich. Zudem fehlt es an einer Unterstiitzung fiir mobile End-
gerdte mit Touchscreens, die primar lGber Touchgesten bedient werden. Dadurch ist die Bedienung
der Webseite auf mobilen Endgeraten erschwert und es kénnen nicht alle Funktionalitdten genutzt

werden.

1.3 Ziel der Arbeit

Vor diesem Hintergrund soll in dieser Arbeit eine Implementierungsstrategie erarbeitet werden, wie
Miori Boards gerecht den Anforderungen mobiler Endgerate angepasst werden kann. Dabei soll
die Webseite so erweitert werden, dass sie auch auf Touchgesten reagiert und die Darstellung auf

mehreren BildschirmgréBen funktioniert.

1.4 Aufbau der Arbeit

Zu Beginn werden Miori Boards vorgestellt und grundlegende Technologien fiir responsives Webde-
sign sowie Touchgesten erlautert. Daraufhin werden Anforderungen an die Implementierungsstrategie
definiert, die bei der Umsetzung beriicksichtigt werden missen. AnschlieBend wird die Implemen-
tierungsstrategie ausgearbeitet und als Strategie zur Umsetzung vorgestellt. In Kapitel 5 wird die
Strategie prototypisch an Miori Boards umgesetzt und mithilfe einer Benchmarkapplikation evaluiert.

AbschlieBend wird ein Fazit gezogen und ein Ausblick auf mogliche weitere Erweiterungen gegeben.

INew Work beschreibt die Idee von modernen und flexiblen Formen der Biiroarbeit und der Arbeitsorganisation,
darunter z3hlt auch die situative mobile Arbeit [6]

2 Grundlagen und Stand der Technik

2 Grundlagen und Stand der Technik

Im diesen Kapitel wird das Tool Miori Boards vorgestellt, sowie grundlegende Techniken und Kon-
zepte, die fiir die Entwicklung einer responive Webanwendung mit Touchgestensteuerung notwendig

sind.

2.1 Miori Boards

Miori Boards ist eine Webanwendung, entwickelt vom Lehrstuhl Produktionssystematik des WZL! der
RWTH Aachen. Mithilfe von individuell erstellbaren Boards, erméglicht Miori Boards ein ,,effizientes
Team- und Projektmanagement” [5].

Ein Board besteht dabei aus mehreren Kacheln, die Widgets enthalten, zur Darstellung von ,,eige-
nen Inhalten, Medien und Datenvisualisierungen* [5], siche Abbildung 2.1. Es gibt dabei das
Personen-, Todo-, Tool-, Umfrage-, Tabellen-, Media- und Chart-Widget. Die Widgets im Board
konnen individuell angepasst und angeordnet werden.

An einem Board kénnen mehrere Personen beteiligt sein, die entweder die Owner- oder Member-Rolle
besitzen. Member konnen die Widgets des Boards benutzen, wahrenddessen der Owner zusatzlich
Personen zum Board einladen? kann und Widgets hinzufiigen sowie entfernen kann. Ebenfalls kann

der Owner zudem auch weitere Owner ernennen.

[1|OR| Ubersicht Seminararbeit berq (3
Seminararbeit s wu ety ode
Professionelle Arbeiter [> & I @& Wichtige Umfrage + 2%

1. Was schmeckt besser?

Pizza © 1 votes
YS Nudeln @ o votes

08.12.2025

immung slastung

Analysis 2 Blatt 11

Hausaufgaben 2 & Ansammlung toller Hunde RN BT « 3
(3 22.12.2025 i

Lineare Algebra 2
Abgeschlossene Ziele Blatt 5

Entwicklung eines Prototypen 9 15.12.2025
Archiv [1]

(5 29.01.2026

Abbildung 2.1: Miori Boards Board

2.2 Responsive (Web-) Design

Durch die Vielzahl an verschiedenen BildschirmgroBen und Auflésungen moderner Endgeréte ist es
notwendig, dass Webanwendungen sich flexibel an diese anpassen konnen, um den selben Inhalt

darzustellen. Dazu gibt es die Idee von Responsive (Web-) Design, welches mehrere Technologien

1Werkzeugmaschinenlabor
2Dies geschieht iiber einen Einladungslink

2 Grundlagen und Stand der Technik

und Ansatze kombiniert, um dies zu ermoglichen. Der Begriff selbst wurde von Ethan Marcotte
im Jahr 2010 gepragt [7][25]. Im folgenden werden die wichtigsten Technologien und Prinzipien

vorgestellt, die fiir das Responsive Design relevant sind.

2.2.1 CSS Box-Model

Die strukturelle Grundlage einer Webseite wird durch das HTML3-Dokument und dessen DOM?*
gebildet. Dabei fungiert ein einzelnes HTML-Element als Knotenpunkt im DOM-Baum. HTML-
Elemente konnen weitere Elemente umschlieBen®, wodurch eine hierarchische Struktur aus Eltern-
und Kind-Elementen entsteht. Der DOM-Baum beginnt beim <html>-Wurzelelement, welches das
gesamte Dokument reprasentiert [12].

HTML-Elemente sind nach dem Box-Model aufgebaut, welches aus vier Bereichen besteht, siehe
Abbildung 2.2. Der Content beinhaltet den Inhalt des Elements, etwa in Form von weiteren Elementen
oder reinen Texten sowie Grafiken. Die Border dient als visuelle Grenze des Elements in Form
eines Rahmens. Das Padding definiert den Abstand zwischen dem Content und der Border, das
Margin dagegen definiert den AuBenabstand des Elements zu umliegenden Elementen. Die GroBe
des Elements wird durch die jeweiligen GroBen der Seiten von Content, Padding und Border bestimmt
[12].

Border (Rahmen)
Padding (Innenabstand)

Content (Inhalt)

Abbildung 2.2: CSS Box Model

Im Kontext des Box-Models ist die CSS-Eigenschaft box—sizing relevant, da diese Eigenschaft
bestimmt, wie zum Beispiel width, height sowie deren min— und max— Eigenschaften interpre-
tiert werden. Bei dem Wert box—-sizing: content-box werden die Eigenschaften direkt auf
den Content angewendet, wodurch Padding und Border diesem Wert hinzuaddiert werden. Dagegen
bezieht sich box-sizing: border-box auf das ganze Element und nicht nur auf den Content,
wodurch der Wert die ganze GroBe des Elements bestimmt und gegebenfalls den Content verkleinert,
um in die GroBe zu passen [8].

Um die GroBe eines Elements zu bestimmen, gibt es verschiedene CSS-Einheiten, die genutzt werden

kénnen. Diese sind in der Tabelle 2.1 dargestellt.

3HyperText Markup Language
4Document Object Model
5Als eine Art Verschatelung

2 Grundlagen und Stand der Technik

Tabelle 2.1: Relevante Einheiten fiir responsive Design [14][17]

Einheit Beschreibung
px feste CSS-Standardeinheit.
em relative Einheit basierend auf der SchriftgroBe des Elternelements.
rem relative Einheit basierend auf der SchriftgroBe des Root-Elements.

ok Flexible Einheit, die den verfiigbaren Platz im Verhaltnis zu anderen
r
Elementen aufteilt.

relative Einheit, die basierend auf dem Elternelement die GroBe

o\

bestimmt.

Eigentschaften, die mit * markiert sind, kénnen nur in CSS Grids verwendet werden.

Neben den Einheiten gibt es noch die Funktion calc (), mit der mathematische Operationen

durchgefiihrt werden konnen. Dadurch kénnen verschiedene Einheiten kombiniert werden, um eine

flexible GroBe zu definieren [9]. Mit der Funktion clamp () kann eine GroBe definiert werden, die

sich flexibel anpasst, aber innerhalb eines bestimmten Bereichs bleibt. Dabei werden ein Minimalwert,

ein bevorzugter Wert und ein Maximalwert angegeben [10].

Trotz der definierten GréBe eines Elements kann es vorkommen, dass der Inhalt nicht in das Element

passt. Dabei entsteht ein Uberlauf beziehungweise ein Overflow. Das Verhalten des iiberlaufenden

Teils kann mit der CSS-Eigenschaft overflow gesteuert werden [21]. Die verschiedenen Werte fiir

die Eigenschaft overflow sind in der Tabelle 2.2 dargestellt.

2 Grundlagen und Stand der Technik

Tabelle 2.2: Overflow-Eigenschaften im Responsive Design [21]

Wert Darstellung Besonderheit

visible overflow bleibt sichtbar. Ist der Initialwert.

Der abgeschnittene Inhalt ist nicht

hidden overflow wird abgeschnitten. o
mehr zuganglich.
overflow wird scrollable mit Es wird ein Scrollbalken fiir die x-
scroll _
Scrollbalken. als auch y-Achse angezeigt

.) Scrollbalken nehmen erst Platz im
erst bei overflow wird es scrollable _ _)
auto _ Layout ein, wenn diese sichtbar
mit Scrollbalken. i
sind.

Bei der Nutzung von overflow: auto ist noch zu beachten, dass die Scrollbar eingefiigt wird
und es dadurch zu einer Layout-Verschiebung kommt. Dies kann mit der Eigenschaft scrollbar—
gutter: stable verhindert werden, welche permanent Platz fiir die Scrollbar reserviert, un-
abhangig davon ob diese angezeigt wird oder nicht [27]. Mit der Erweiterung overflow—-x und

overflow-y kann das Overflow-Verhalten fiir die jeweilige Achse separat definiert werden [21].

2.2.2 Media Queries

Damit gewisse CSS°-Eigenschaften nur unter bestimmten Bedingungen angewendet werden, gibt
es Media Queries. Media Queries ermoglichen es, dass Eigenschaften nur aktiviert werden, wenn
beispielsweise die Viewport-Breite oder -Hohe einen bestimmten Wert iiberschreitet [31]. Diese In-
formationen werden vom User-Agent bereitgestellt, welcher eine digitale Identitdt anhand der verwen-
deten Hard- und Software darstellt. Media Queries gleichen diese Informationen ab und bestimmen
so, ob die Bedingungen erfiillt sind [30]. Anhand dieser Bedingungen und logischen Operatoren wie
beispielsweise and, not oder only kdnnen passend zur Nutzerumgebung Stylings aktiviert oder
deaktiviert werden [31].

2.2.3 Viewport-Meta-Tag

Der Viewport ist der sichtbare Bereich einer Webseite auf dem Bildschirm eines Endgerates. So
ist der Viewport bei einem Desktop-Browser in der Regel das Browserfenster, wahrend es bei mo-
bilen Geraten der Bildschirmbereich ist, der die Webseite anzeigt. Der Viewport-Meta-Tag ist ein
HTML-Tag im Header, der dem mobilen Browser mitteilt, dass dieser die Website auf 100% der

6Cascading Style Sheets

2 Grundlagen und Stand der Technik

Bildschirmbreite setzen soll. Dies ist notwendig, da viele mobile Browser standardmaBig die Website
auf eine Breite von 980px gerendert haben, weil viele Websites nicht fiir mobile Gerate optimiert
waren [25]. Ohne den Viewport-Meta-Tag wiirden Media-Queries nicht funktionieren, da die Bild-

schirmbreite immer 980px ware.

2.2.4 Responsive Layout-Technologien

Fiir die Anordnung von HTML-Elementen auf einer Webseite gibt es Layouts, die bestimmen, wie die
Elemente positioniert werden. Responsive Layout-Technologien erméglichen es, dass diese Anordnung
flexibel ist und sich an verschiedene BildschirmgroBen anpasst [25]. Die zwei wichtigsten Layout-

Technologien im Kontext von Responsive Design sind Flexbox und Grid.

Allgemein

Beide Layout-Technologien sind nach einem Achsenmodell aufgebaut. Flexbox ist fiir eindimensionale
Layouts gedacht, wahrend Grid fiir zweidimensionale Layouts verwendet wird [16][13]. So besitzt
Flexbox eine Hauptachse und eine Querachse, wahrend ein Grid mit Zeilen und Spalten arbeitet.
Beide Layout-Technologien besitzen CSS-Eigenschaften, die es erméglichen, die Anordnung der Kin-

delemente entlang der Achsen zu steuern. Diese Eigenschaften sind in der Tabelle 2.3 dargestellt.

Tabelle 2.3: Anordnungen fiir responsive Layouts [11]

justify-* (Hauptachse / Zeilen) align-x (Querachse / Spalten)

Verteilt den freien Raum zwischen Verteilt den freien Raum zwischen
content))
Kindelementen.* Kindelementen
" Positioniert alle Kindelemente entlang Richtet alle Kindelemente entlang der
items
der Hauptachse. Querachse aus.*
r Positioniert ein einzelnes Kindelement Richtet ein einzelnes Kindelement
se
entlang der Hauptachse. entlang der Querachse aus.*

Im Grid-Layout kénnen alle Eigenschaften verwendet werden. Die Eigenschaften, die mit * markiert sind, funk-

tionieren auch im Flexbox-Layout.

Einige CSS-Eigenschaften aus der Tabelle 2.3 kénnen aufgrund der eindimensionalen Struktur von
Flexbox nicht darauf angewendet werden. Eine weitere Eigenschaft, die beide Layouts nutzen, ist

gap, welche einen Abstand zwischen den Kindelementen definiert [18].

Flexbox

Damit ein HTML-Element als Flex-Container fungiert, muss die CSS-Eigenschaft display: flex

gesetzt sein. Dadurch werden alle direkten Kindelemente zu Flex-Elementen, die entlang der Haupt-

2 Grundlagen und Stand der Technik

achse angeordnet sind [16]. Mit der Eigenschaft f1ex—-direction kann die Richtung der Haupt-
achse angepasst werden, sodass die Flex-Elemente entweder horizontal oder vertikal sowie umge-
dreht” angeordnet werden [16]. Rechtwinklig zur Hauptachse befindet sich die Querachse, entlang
derer die Flex-Elemente ebenfalls ausgerichtet werden kénnen.

Durch den flexiblen Aufbau von Flexbox kénnen die Flex-Elemente ihre GroBe anpassen, um den
verfigbaren Platz optimal auszunutzen [16]. Um dies zu steuern, gibt es Eigenschaften, die den

Flex-Elementen iibergeben werden kénnen, siehe Tabelle 2.4.

Tabelle 2.4: Flex-Skalierungs-Eigenschaften [15]

Eigenschaft Beschreibung

Bestimmt einen Faktor, um wie viel ein Flex-Element
flex-shrink) . .
schrumpft, wenn nicht gentigend Platz vorhanden ist.

Bestimmt einen Faktor, um wie viel ein Flex-Element wachst,
flex—grow . }
um den verfiigbaren Platz auszufiillen.

Legt die AusgangsgroBe eines Flex-Elements fest, bevor der
flex-basis - o
verfligbare Platz verteilt wird.

flex-basis iiberschreibt bei der Flexberechnung width und height, wenn der Initialwert auto

tiberschrieben wird.

Die Eigenschaften flex—shrink und flex—grow kénnen eingeschrankt werden, indem die GroBe
des Flex-Elementes mit min— und max— limitiert wird. Dadurch wird ein GréBenbereich bestimmt,
in dem das Flex-Element wachst oder schrumpft [16]. Die Eigenschaft flex-basis iberschreibt
bei der Flexberechnung width und height des Flex-Elementes, wenn der Initialwert auto nicht
verandert wird.

Durch die einzelne Hauptachse ist es moglich, dass diese zu voll wird und die Flex-Elemente nicht
mehr in den Container passen. In diesem Fall kann mit der Eigenschaft flex-wrap: wrap de-
finiert werden, dass die Flex-Elemente in die nichste Zeile umbrechen [16]. Dadurch entsteht eine

weitere Flex Line, die unter der ersten liegt, wo die Hauptachse weitergefiihrt wird.

Grid

Neben Flexboxen gibt es auch Grids als responsive Layout-Technologie. Um ein Element als Grid-
Container zu definieren, muss die Eigenschaft display: grid gesetzt werden [13]. Dadurch
entsteht ein Raster mit einer Spalten- und Zeilenachse. Initial besitzt das Grid nur eine Spalte und

erstellt implizit so viele Zeilen wie es Kindelemente gibt. Zur Bestimmung von Spalten und Zeilen

“dabei wird an die Richtung noch —reverse drangehangen

2 Grundlagen und Stand der Technik

gibt es folgende Eigenschaften in der Tabelle 2.5.

Tabelle 2.5: Grideigenschaften zur Deklarierung

Eigenschaft Beschreibung
grid-template- Definiert die Anzahl und GroBe der Spalten in einem
columns Grid-Layout.
grid-template- Definiert die Anzahl und GroBe der Zeilen in einem
TOWS Grid-Layout.

. Legt fest, wie viele Spalten ein Grid-Element einnimmt
grid-column)
und wo es beginnt.

. Legt fest, wie viele Zeilen ein Grid-Element einnimmt und
grid—-row .
wo es beginnt.

_ Definiert benannte Bereiche innerhalb des Grids, die zur
grid-template-) .
einfacheren Platzierung von Elementen verwendet werden
areas i
konnen.

, Weist einem Grid-Element einen benannten Bereich zu,
grid-area) . L)
der in grid-template—areas definiert ist.

Vordefinierte Spalten und Zeilen werden als explizite Spalten und Zeilen bezeichnet, wahrend auto-
matisch erstellte Spalten und Zeilen als implizite Spalten und Zeilen bezeichnet werden [13]. Falls es
mehr Kindelemente gibt als explizite Zeilen oder Spalten, werden automatisch implizite Zeilen oder
Spalten erstellt, um die Kindelemente aufzunehmen. Die Eigenschaften grid-auto-rows und
grid-auto-columns definieren die GroBe der impliziten Zeilen beziehungsweise Spalten [13].
Um eine variable Anzahl an Spalten oder Zeilen mit fester GroBe zu erstellen, kann die Funktion
repeat () genutzt werden, mit dem Wert auto—fit, wodurch so viele Spalten oder Zeilen ent-
stehen, die in das Grid passen [13]. Die Funktion repeat () kann auch mit einer festen Anzahl
genutzt werden, um die Lesbarkeit zu verbessern, wenn viele Spalten oder Zeilen mit derselben GroBe
definiert werden sollen [13].

Zur Bestimmung von Spalten- und ZeilengroBen koénnen dieselben Einheiten benutzt werden, wie
die aus der Tabelle 2.1. Im Grid-Kontext wird die Einheit fr benutzt, welche einen Bruchteil des
verfligbaren Platzes im Grid darstellt, wodurch flexibel zur ContainergroBe die ZellengroBe be-

stimmt werden kann [17]. Neben den Einheiten, gibt es noch die minmax () Funktion, mit der

2 Grundlagen und Stand der Technik

ein GroBenbereich definiert werden kann [19].
Kindelemente eines Grids koénnen mit den Eigenschaften grid-column und grid-row auch
definieren wie viele Zellen eingenommen werden mit dem Schlisselwort span. Bei dem Wert -1

wird die ganze Spalte oder Zeile eingenommen [13].

2.2.5 Responsive Bilder und Medien

Responsive Bilder und Medien umfasst die Idee, dass Bilder und Medien die verflighare horizon-
tale Breite des Containers beziehungsweise des Bildschirms einnehmen. Das Medium sollte dabei
sein Verhaltnis® beibehalten, um Verzerrungen zu vermeiden. Dies wird mit der CSS-Eigenschaft
max-width: 100% sowie height: auto erreicht [25]. Bei responsiven Bildern kann noch
zusatzlich noch das Ursprungsbild in verschiedenen Auflésungen bereitgestellt werden, um passend

zum Nutzungsgerat die Bandbreite zu sparen sowie dem Layout gerecht zu werden [26].

2.2.6 Responsive Typografie
Responsive Typografie beschaftigt sich mit der Anpassung von SchriftgroBen. Dabei sind die CSS-

Einheiten em und rem relevant.

Die Einheit em bezieht sich auf die SchriftgroBe des Elternelements, wahrend rem sich auf die
SchriftgroBe des Root-Elements (HTML-Tag) bezieht. Dadurch kann im Root-Element die Schrift-
groBe angepasst werden und alle rem-Werte passen sich daran an [14]. Die Root-Element Schrift-
groBe wird standardmaBig auf 16 Pixel gesetzt, kann aber mit der CSS-Eigenschaft font-size
angepasst werden. Der Browser skaliert die SchriftgroBe auch, wenn der Nutzer die Zoom-Funktion
verwendet [25]. Wenn Texte zu lang werden fiir ihr Element, gibt es mehrere Moglichkeiten damit
umzugehen. So kann der Text umgebrochen werden mit overflow-wrap: break-word, wo-
durch der Text in die nachste Zeile springt, wenn kein Platz mehr da ist. Falls es nicht gewiinscht

ist den ganzen Text zu zeigen, kann der Text mit text—overflow abgeschnitten werden.

2.3 Touchgestensteuerung

Durch die Einfiihrung von grafischen Nutzeroberflachen in Betriebssystemen etablierte sich die Be-
nutzung von Pointing Devices. Diese steuern einen Pointer auf der grafischen Nutzeroberflache, um
Interaktionen auszufiihren, wie das Klicken von Buttons oder das Bewegen von Objekten. [2] Lange
Zeit waren Computermause und Trackpads die gangigsten Pointing Devices. Mit dem Aufkommen
von Touchscreens wurde auch der eigene Finger zu einem Pointing Device. Dabei wird die Position,
Anzahl, Geschwindigkeit und Bewegung der Finger, Beriihrungsdauer und Anzahl der Beriihrungen
ausgewertet, um verschiedene Aktionen auszufiihren. Wenn mehrere vorbestimmte Bedingungen
erfullt sind, wird von einer Touchgeste gesprochen. Diese konnen sich ganz nach Betriebssystem und

Anwendung unterscheiden.

8aspect-ratio

2 Grundlagen und Stand der Technik

2.3.1 JavaScript EventListener

Damit Touchgesten in einer Webanwendung implementiert werden kénnen, miissen diese mit Ja-
vaScript umgesetzt werden, da JavaScript die Funktionalitat der Webseite bestimmt. In JavaScript
werden verschiedene Aktionen oder Zustandsanderungen mit einem Event beschrieben. Da es ver-
schiedene Arten von Events gibt, gibt es spezialisierte Events, die von anderen Events abgeleitet

sind. Im Beispiel von der Abbildung 2.3 ist die Vererbungshierarchie der DOM-Events dargestellt,

MouseEvent PointerEvent

die fiir Touchgesten relevant sind.

TouchEvent

Abbildung 2.3: Horizontale Vererbungshierarchie der DOM-Events, speziell fiir Touchgesten [29][22]

Basierend auf dem UIEvent?’ gibt es das MouseEvent und das TouchEvent, die fiir Maus-
beziehungsweise Touchereignisse zustandig sind. Es existiert noch basierend auf dem MouseEvent
das PointerEvent, welches sowohl Maus- als auch Touchereignisse unterstiitzt und somit eine
einheitliche Schnittstelle fiir beide Eingabemethoden bietet [22]. PointerEvent besitzt erweiterte
Informationen wie pointerType und reagiert auf Stifteingaben.

Fir PointerEvents gibt es verschiedene Aktionen, die als EventListener genutzt werden kénnen,
um auf Touchgesten zu reagieren. Folgende Liste 2.4 zeigt alle relevanten PointerEvents auf,

die existieren.

Abbildung 2.4: Liste der Pointer Events in Web-APIs [22]

1. pointerdown 6. pointerup

2. pointerleave 7. pointerenter

3. gotpointercapture 8. lostpointercapture
4. pointercancel 9. pointerover

5. pointermove 10. pointerout

2.3.2 Arten von Touchgesten

Dadurch dass es kein einheitliches System fiir Touchgesten gibt, existieren viele verschiedene Arten
von Touchgesten. Aus diesem Grund ist es wichtig die gangigsten und wichtigsten Touchgesten zu
bestimmen. Damit ist garantiert, dass die meisten Nutzer die Touchgesten kennen und verwenden

kdnnen.

9User Interface Event

10

2 Grundlagen und Stand der Technik

Die Designdokumentationen von Microsoft [33], Apple [1] und Google [3] geben verschiedene Touch-
gesten an, die ein Entwickler fiir Android, Windows sowie MacOS beachten soll. Die Schnittmenge
aller Touchgesten der Designdokumentationen ist in der Tabelle 2.6 aufgefiihrt. Die Dokumentatio-
nen von Microsoft, Apple und Google sind reprasentativ, da im Jahr 2025 71,88% der Desktopsyste-
me Windows und 8,7% MacOS verwendeten [36]. Als mobile Betriebssysteme wurden 2025 72,03%
Android und 27,59% iOS genutzt [37].

Tabelle 2.6: Ubersicht der unterstiitzten Touch-Gesten

Name Touchgeste Beschreibung Use-Case
Tap Py kurze Beriihrung Auswahlen oder aktivieren ei-
nes Elements
Double- ® zwei kurze Taps mit ge- Alternative Aktion zum Tap
Tap ringen Zeitabstand oder Zoom-In/-Out
Hold ® lange Beriihrung Alternative Aktion zum Tap
Scroll o Hold ‘mit einer Wisch- Bewegt den Inhalt
bewegung
schneller ruckarticer Bewegt ein Element weg oder
Swipe/Flick o Scroll & ermoglicht alternative Aktio-
nen
Drag (and ® Hold mit einer Naviga- Bewegt ein Element an eine
Drop) tionsbewegung andere Position
[) Weezi .
egziehen von zwei "
Zoom ® Beriihrungspunkten VergroBert den Inhalt
® Zusammenziehen
Pinch ® von zwei Verkleinert den Inhalt
Beriihrungspunkten

11

3 Anforderungen

3 Anforderungen

Damit eine ansprechende Implementierungsstrategie entwickelt werden kann, werden Anforderungen

benotigt, die wichtige Aspekte und Limitationen hervorheben.

3.1 Allgemeine Anforderungen

Bevor die spezifischen Anforderungen definiert werden, muss zuvor genannt werden, wie die Qua-
litatsanforderungen und Rahmenbedingungen fiir die Implementierung aussehen sollen.

Die Implementierung sollte mit geringem Aufwand realisierbar sein. Auch die Wartbarkeit des Codes
sollte gewahrleistet sein, da diese Implementierung eine optionale Erweiterung von Miori Boards ist
und der Quellcode nicht unnétig komplex werden darf. Wichtig ist auch, dass es erweiterbar ist, falls
weitere Touchgesten oder neue Ansichten hinzukommen sollten. Hinsichtlich der Performance sollte
diese konsistent sein, damit die Benutzung der Touchgestensteuerung und die verschiedenen Ansich-
ten fliissig und ohne Verzégerungen funktionieren. Ein wichtiger Aspekt bei der Implementierung ist
die Unterstiitzung verschiedener Rendering Engines. Eine Rendering Engine ist die Software in einem
Browser, die das HTML und CSS einer Webseite visuell darstellt und Schnittstellen bereitstellt, die
dann mit JavaScript angesprochen werden konnen. Rendering Engines decken die Grundfunktiona-
lititen von HTML und CSS ab, jedoch gibt es Features von CSS oder HTML die nicht von allen
Engines unterstiitzt werden. Relevant dabei sind die Rendering Engines Blink (Google), Gecko
(Mozilla) und WebKit (Apple), die die géngigsten Engines sind und unterstiitzt werden sollten
bei der Implementierung [24]. In unserem Kontext wird die Rendering Engine Trident (Microsoft)
nicht mehr beriicksichtigt, da diese von Microsoft nicht mehr weiterentwickelt wird und stattdessen
Microsoft Edge die Blink Engine nutzt. Der letzte wichtige Punkt der allgemeinen Anforderungen
ist die Testbarkeit der Implementierung. Dadurch, dass nun mehrere Eingabegerate sowie digitale
Endgerate zur Verwendung unterstiitzt werden sollen, ist es schwer bei jedem neuen Feature al-
le Moglichkeiten zu priifen, ob es einwandfrei funktioniert. Die Tabelle 3.1 fasst die allgemeinen

Anforderungen nochmals (ibersichtlich zusammen.

Tabelle 3.1: Allgemeine Anforderung an der Implementierung

Qualitatsanforderungen Rahmenbedingungen
Erweiterung leicht moglich Implementierungsaufwand gering

_ o Support verschiedener Rendering
leichte Wartbarkeit moglich _
Engines

Testbarkeit der Implementierung konsistente Performance

12

3 Anforderungen

3.2 Anforderungen an das Responsive Design

Responsive Design ist eine grundlegende Voraussetzung, um Webseiten wie Miori Boards gerate-
ibergreifend nutzbar zu machen. Miori Boards unterstiitzt derzeit nur Laptops und Desktop-Systeme.
Bei der Betrachtung der Internetnutzung zeigt sich ein anderes Bild. Im zweiten Quartal 2025
nutzten mehr als 93% der Internetnutzer das Internet mit einem Smartphone. Dagegen nutzten
nur etwa 59% der Internetnutzer Desktop-Systeme und Laptops, um das Internet zu besuchen
[34]. Dies zeigt, dass die Mehrheit der Nutzer Webseiten mit dem Handy besucht. Damit eine
Webseite auf verschiedenen Gerdten ansprechend nutzbar ist, muss sie sich an die verschiedenen
BildschirmgroBen kontinuierlich anpassen konnen, weshalb dynamisches Layout notwendig ist. So ist
es wichtig, dass es sich reaktiv verhalt und auch jedem Element den Platz gibt, den es benétigt.
Das Layout sollte auch den Platz optimal nutzen, indem es Elemente umsortiert oder in andere
Darstellungen wechselt. Auch Elemente sollten sich anhand ihres vorhandenen Platzes anpassen.
So sollten bei Platzmangel Unterelemente versteckt werden oder in eine alternative Darstellung
wechseln. Text und Interaktionselemente sollten trotz begrenztem Platz eine MindestgroBe besitzen.
Damit ist der Text angenehm zu lesen und die Interaktionselemente sind, je nach Eingabegerat,
weiterhin nutzbar. Jedoch sollten Text und die Interaktionselemente nicht zu groB sein, da sonst
der Text schwer lesbar wird oder die Interaktionselemente eine falsche Wichtigkeit bekommen sowie
ungewollt ausgelost werden kdénnen. Fiir die Implementierung des Responsive Designs ergeben sich

somit die in der Tabelle 3.2 dargestellten Anforderungen.

Tabelle 3.2: Anforderungen an die Implementierung des Responsive Design

Funktionale Anforderungen Nicht-funktionale Anforderungen
Dynamische Layout-Anpassung Kontinuierliche Anpassung
Dynamische Element-Anpassung Hohe Lesbarkeit und Bedienbarkeit

Funktionalitat beibehalten bei _
Optimale Platznutzung der Elemente
Platzmangel

13

3 Anforderungen

3.3 Anforderungen an die Touchgestensteuerung

Damit Miori Boards auch auf digitalen Endgeraten funktioniert, die keine Maus und Tastatur be-
sitzen, ist eine Touchgestensteuerung notwendig, da diese zu einer der haufigsten Bedienungsarten
zahlt, mit denen das Internet bedient wird [34]. Bei der Implementierung der Touchgestensteuerung
ist es wichtig Gesten zu verwenden, die die meisten Nutzer kennen, damit die Nutzung fiir den Nutzer
intuitiv bleibt und nicht die Nutzererfahrung negativ beeinflusst. Ein weiterer wichtiger Punkt ist,
dass die verschiedenen Touchgesten oder ihre Events nicht kollidieren, da sonst ein falsches Verhalten
ausgelost werden kann. So kdnnte zum Beispiel beim Wischen eines Elements auch ein Scroll-Event
ausgelost werden, wodurch das Wisch-Event abbrechen konnte. Es ist wichtig, dass ahnliche Touch-
gesten nicht gleichzeitig ein Event auslosen. Fiir die Nutzung einer Touchgestensteuerung ist es
hilfreich mit Indikatoren zu visualisieren, dass etwas benutzbar ist. So kénnen subtile Animationen,
Elemente mit Schatten oder auch Symbole helfen, dem Nutzer zu zeigen, dass etwas bedienbar ist
[4]. Zur Steigerung der Nutzererfahrung hilft es, wenn die Elemente, die ein Touch-Event haben,
dynamisch auf die Touchgeste reagieren und nicht wahrend der Aktion die Kontrolle entziehen, we-
gen einer Animation oder einem Breakpoint. Dadurch koénnen Nutzer noch die Aktion abbrechen,
falls es die nicht gewiinschte Aktion war. Ebenfalls fiihlt es sich fir den Nutzer natirlicher an, wenn
das Element dynamisch und direkt auf die Berithrung reagiert [4]. Fir die Implementierung der

Touchgestensteuerung ergeben sich somit die in der Tabelle 3.3 dargestellten Anforderungen.

Tabelle 3.3: Anforderungen an die Implementierung der Touchgestensteuerung

Funktionale Anforderungen Nicht-funktionale Anforderungen
Touchgestensteuerung bereitstellen Intuitive Nutzung / Nutzererfahrung
Verwendung bekannter Gesten Visuelle Indikatoren fiir Bedienbarkeit
Vermeidung von Konflikten zwischen Natiirliche, fliissige Reaktion auf
Gesten Touchgesten

14

4 Implementierungsstrategie

4 Implementierungsstrategie

Bevor die technische Umsetzung an Miori Boards stattfinden kann, ist es wichtig eine Strategie zu
entwickeln, wie die Implementierung ablaufen soll. Dabei kann die Verwendung von Frameworks und
Bibliotheken helfen, um die Implementierung zu erleichtern und zu beschleunigen. Zudem miissen
anforderungsgerechte Losungen fiir die Implementierung von Touchgesten und Responsive Design
gefunden werden. Aus diesen Ergebnissen wird eine allgemeine Implementierungsstrategie abgeleitet,

die bei der Umsetzung genutzt werden kann.

4.1 Verwendete Frameworks und Bibliotheken

Um eine einfache Implementierung zu ermoglichen, sind bereits existierende Losungen des Problems
in Form von Frameworks und Bibliotheken sehr hilfreich. Im folgenden Unterkapitel wird erlautert
wieso Vue.js, die Utilities-Bibliothek VueUse und die WZL eigene Bibliothek WZL Essentials
verwendet werden und wie sie die Implementierung der Touchgesten sowie des Responsive Designs

unterstitzen.

4.1.1 Vue.js

Vue.js! ist ein communitygestiitztes, progressives JavaScript Webframework, urspriinglich von Evan
You initiiert [40]. Mit Vue ist es moglich, SPAZ?s zu entwickeln, also Webseiten, die aus nur einem
HTML-Dokument bestehen und mithilfe von JavaScript und CSS dynamisch angepasst werden.
Dabei verwendet Vue ein Reaktivitatssystem mit reactive—-proxy, welches Veranderungen er-
kennt und diese dynamisch Ulberall anpasst. Dadurch werden Zustandsveranderungen automatisch
erkannt und verarbeitet. Vue arbeitet mit SFC3s, welche aus HTML-, JS- und CSS-Code im jewei-
ligen <template>-, <script>- und <style>Tag der Datei bestehen. Bei den Komponenten
konnen bereits definierte Komponenten wiederbenutzt werden. Dadurch lasst sich viel Code wie-
derverwenden und die Architektur des Projekts wird modularer. Zu der Modularitat tragt auch die
Idee der Composables bei. Composables sind Funktionen, die wiederverwendbaren Code in Form des
reaktiven Vue-Systems bereitstellen. Dadurch lassen sich Funktionalititen in einzelne Composables
auslagern und in verschiedenen Komponenten wiederverwenden. Eine weitere Technologie von Vue
sind die Directives. Directives sind spezielle Funktionen, die an ein HTML-Element gebunden werden
konnen, um das Verhalten des Elementes zu verandern oder auf bestimmte Ereignisse zu reagieren.
So gibt es beispielsweise die Directive v—1if, die ein Element nur rendert, wenn eine bestimmte
Bedingung erfiillt ist. Ebenso gibt es die Directive v—on, die es ermoglicht auf Events zu reagieren,
wie beispielsweise einem Klick-Event. Directives sind erkennbar an dem Prafix v—x.

Fir das Implementierungsvorhaben wird Vue benutzt, da es bereits das verwendete Frontend Fra-
mework von Miori Boards sowie aller anderen Miori Produkte ist. Darliber hinaus eignet sich Vue

als Implementierungsgrundlage, da Komponenten mit einer Touchgestehe versehen werden kénnen.

!Gesprochen wie das englische Wort view
2Single Page Application
3Single File Component

15

4 Implementierungsstrategie

Dadurch haben alle anderen Komponenten, die von dieser Komponente Gebrauch machen, auch das
neue Feature. Dies gilt auch fiir Responsive Design Entscheidungen, die das Element beziehungsweise

die Komponente betreffen.

4.1.2 VueUse Core, Gesture und Motion

VueUse ist eine umfangreiche Sammlung von Utility-Funktionen fir das Framework Vue.js. Die
Bibliothek stellt viele niitzliche Composables bereit, die haufige Anwendungsfalle abdecken und da-
durch den Entwicklungsaufwand reduzieren. Ein groBer Teil der Bibliothek beinhaltet EventListener,
die das Event kapseln und dessen Werte reaktiv bereitgestellt werden. So gibt es beispielsweise die
Composable usePointer, welche ein Objekt zuriickgibt, das die wichtigen Informationen fiir ein
Pointer-Event beinhaltet, wie die Position des Pointers, den Typ des Pointers und ob der Pointer
gedriickt ist oder nicht. Dabei liefert usePointer immer den aktuellen Zustand des Pointers,
wodurch reaktiv darauf reagiert werden kann. Die Bibliothek VueUse kann durch Add-ons modular
erweitert werden, um noch mehr Utilities bereizustellen. Interessant fiir das Implementierungsvorha-
ben sind die Plugins Gestures und Motion.

VueUse Gestures bietet Composables und Directives an, die generische Touchgesten implementie-
ren, wie beispielsweise useSwipe, usePinch oder v—drag. Da diese nicht nativ als Events in
JavaScript existieren, reduziert die Nutzung dieser Composables und Directives viel Programmier-
aufwand, da die Gesten bereits abstrahiert vorliegen und nur noch in der Komponente verwendet
werden missen.

VueUse Motion bietet auch Composables an, die Animationen und Bewegungen von Elementen
vereinfachen. So kénnen Animationen erstellt werden, die auf bestimmte Zustandsanderungen rea-
gieren. Dadurch lassen sich visuelle Indikatoren fiir Touchgesten einfach umsetzen, um dem Nutzer
ein Feedback zu geben, dass die Geste erkannt wurde und ausgefiihrt wird.

Fir die Implementierung soll VueUse sowie seine Erweiterungen verwendet werden, da eine Vielzahl
von nitzlichen Composables und Directives bereitgestellt wird, die den Programmieraufwand deutlich

verringern. Dadurch ist die Implementierung von Touchgesten im Vue.js-Kontext effizient moglich.

4.1.3 WZL Essentials

Die WZL Essentials sind eine vom Lehrstuhl Produktionssystematik eigen entwickelte Bibliothek zur
Bereitstellung von essenziellen Komponenten. Dadurch kann ein einheitliches Design und Verhalten
der Komponenten gewahrleistet werden. Die Bibliothek ist geschrieben in Vue.js. Zu den Grund-
komponenten gehoren beispielsweise Buttons, Dropdowns, Tooltips, Navigationselemente oder auch
Boxen. Die vom WZL entwickelten Tools nutzen zwei verschiedene Style-Themes, die in den Essen-
tials eingebunden sind: Miori und WZL. Die Essentials sind in den meisten Webanwendungen des

Lehrstuhls Produktionssystematik integriert, dazu gehért auch Miori Boards.

16

4 Implementierungsstrategie

4.2 Responsive Design

Damit die Implementierung des Responsive Design erfolgreich ist, miissen die Anforderungen aus
Kapitel 3.2 erfiillt werden. Dazu zahlt primar die Gestaltung der einzelnen Elemente sowie das Layout

der gesamten Webseite als auch des einzelnen Elementes.

4.2.1 Element Gestaltung
Allgemein

Bei der Gestaltung eines Elementes ist es wichtig mit dem Boxmodel aus 2.2.1 zu arbeiten, da
dies die Grundlage fiir jedes HTML-Element bildet. Um jedes Element einheitlich und alleinstehend
fir sich zu sein, sollte die Eigenschaft box-sizing: border-box gesetzt werden. Dadurch
wird sichergestellt, dass die GroBe des Elementes immer gleich bleibt, unabhangig von dem Inhalt
des Elementes. Dadurch kommt es nicht zu unerwarteten Layout-Verschiebungen, wenn der Inhalt
des Elementes groBer oder kleiner wird. Bei content-box wiederum kann dies passieren, da das

Element durch den Inhalt wachst und somit andere Elemente verschiebt oder liberlappt.

Overflow

Die Nutzung von overflow kann helfen, um unerwartete Layout-Verschiebungen zu verhindern,
wenn der Inhalt groBer wird als das Element. Es ist ebenfalls auch gut geeignet, um sehr groBe
Inhalte anzeigen zu koénnen, welche nicht unbedingt vollstandig sichtbar sein missen. So kénnen
beispielsweise lange Tabellen, Texte, Listen oder Ansammlungen von Elementen gleicher Art ange-
zeigt werden. Damit bleiben alle Informationen erhalten, sind aber nicht direkt sichbar. Dadurch
ist der Sichtbereich des Elementes limitiert, jedoch kann der ganze Inhalt praktisch unendlich groB3
sein. Trotz dieser Freiheit sollte bevorzugt nur die Hohe des Inhalts groBer sein als das Sichtbereich.
Diese Limitierung ist notwendig, da das vertikale Scrollen fiir den Nutzer einfacher und intuitiver
ist als das horizontale Scrollen, bedingt durch das Scrollen mit dem Mausrad oder das Wischen mit
dem Finger. Ein horizontaler Uberlauf kann jedoch genutzt werden, um Elemente anzuzeigen, die
in beiden Dimensionen groBer sind als das Sichtbereich und eine andere Darstellung schwer moglich
ist, wie zum Beispiel bei Tabellen.

Die Nutzung von overflow: auto in Kombination mit scrollbar—-gutter: stable ist
eine gute Moglichkeit Elemente mit viel Inhalt anzuzeigen, ohne das Layout zu verandern. Besonders
bei Elementen mit variabler Anzahl von Inhalten ist dies sehr hilfreich, da unabhangig von der Anzahl

das Layout stabil bleibt, was sehr gewiinscht ist bei einer responsive Webseite.

GroBen

Wichtig bei der Gestaltung eines Elementes ist auch die ElementgroBe selbst. Diese bestimmt wie
das sichtbare Fenster aussieht, in dem der Inhalt oder overflow-Inhalt zu sehen ist. Dabei sind
die CSS-Eigenschaften width, height sowie deren min— und max— Varianten relevant. Fiir die
Bestimmung dieser GroBen eignen sich die Einheiten %, rem und px sehr gut. Mit der Einheit %

lassen sich gut Elemente gestalten, die sich an die GroBe des Elternelementes anpassen. Dadurch

17

4 Implementierungsstrategie

kann das Element flexibel auf verschiedene BildschirmgroBen reagieren. Die Einheit rem eignet sich
gut, um Elemente mit der GroBe des Textes wachsen zu lassen. So wachst beispielsweise ein Button
mit seinem Textinhalt, wenn im Browser gezoomt wird. Dadurch wird verhindert, dass der Text liber
den Button hinauslauft oder zu klein fiir den Button ist. Die Einheit px eignet sich gut, um eine
feste GroBe fiir ein Element zu definieren, welches unabhangig von der BildschirmgroBe oder dem
Textinhalt ist. So kénnen feste Abstdnde oder GroBen definiert werden, die immer gleich bleiben
sollen.

Damit Elemente auch auf den kleinsten gangigsten Bildschirmen nutzbar bleiben, sollte eine maxi-
male Breite definiert werden, wo das Element noch nutzbar ist. Hierbei reicht es nur eine Breite zu
definieren, da bei Elementen mit variabler Hohe ein Overflow mit Scroll genutzt werden kann, um
den Inhalt anzuzeigen. Der Richtwert fiir die maximale Darstellungsbreite eines Elementes sollte bei
360px liegen, da dies die kleinste gangigste Bildschirmbreite bei Smartphones ist [35]. Dadurch
wird sichergestellt, dass das Element auch auf kleinen Bildschirmen gut nutzbar bleibt. Trotz die-
sem Richtwert sollten Elemente auch fiir groBere Breiten designt werden, damit diese den Platz auf
groBeren Bildschirmen auch optimal nutzen kénnen. Um dies zu erreichen, konnen die vorgestellten
Layout-Technologien aus Kapitel 4.2.2 verwendet werden oder es werden mehrere Versionen des
Elementes erstellt, die sich anhand des vorhandenen Platzes anpassen und gegebenfalls austauschen
mithilfe von Media Queries und JavaScript.

Zu der Gestaltung eines Elementes gehort es auch wie der Text aussieht. So sollten Texte immer
mindestens eine em GroBe haben, bestenfalls eine rem GroBe, da so alle Texte eine abhangige GroBen
zum Root-Element besitzen und gegebenfalls zentral dort angesteuert werden kénnen, falls sich die
BildschirmgroBe andert oder ein Zoom verwendet wird. Wenn der Text zu lang sein sollte, kann
es helfen diesen umbrechen zu lassen mit word-wrap: break-word und overflow-wrap:
break-word oder der Text wird abgeschnitten mit text-overflow, falls der Text in nur einer
Zeile sein darf. Da kann dann mithilfe eines Tooltips der ganze Text angezeigt werden.

Genauso sollten Bilder und Medien ihr GréBenverhaltnis beibehalten, aber niemals liberlaufen, damit
das Medium vollkommen anschaubar ist und keine Verzerrungen besitzt. Deshalb sollten Bilder
limitiert werden mit max—-width: 100%, damit diese nicht liber den Bildschirm- oder Elementrand
hiniibergehen. Dazu sollten Bilder die Eigenschaft height: auto haben, da so das Bild in seinem
Seitenverhaltnis bleibt. Es ist ebenfalls méglich max—height: 100% zu nehmen, jedoch ist dies
nicht empfehlenswert, da es dann eher zu einem horizontalen Scroll kommen kann, welches entgegen
der Nutzerfreundlichkeit spricht.

Bei der Gestaltung von Icons, Buttons oder anderen interaktiven Elementen ist es wichtig, dass diese
eine MindestgroBe besitzen, damit sie auch auf kleinen Bildschirmen gut bedienbar sind. Dabei sollte
eine MindestgroBe von 24px x 24px genommen werden, da dies die empfohlene MindestgroBe fiir
Touch-Ziele ist laut WCAG* [39]. Empfohlen wird aber eher die GroBe 44px x 44px [38]. Dadurch

wird sichergestellt, dass die Elemente auch auf kleinen Bildschirmen gut bedienbar sind und keine

4Web Content Accessibility Guidelines

18

4 Implementierungsstrategie

Probleme bei der Bedienung auftreten.

4.2.2 Layout Gestaltung

Neben der Elementgestaltung ist die Gestaltung des Layouts der gesamten Webseite sowie des

einzelnen Elementes wichtig fiir ein erfolgreiches Responsive Design.

Allgemein

Eines der wichtigsten Layouts ist das Layout des <body>-Element, weil dort Veranderungen am
starksten wahrgenommen werden, schlieBlich enthalt dieses Element alle angezeigte Elemente und
besitzt somit die groBte height sowie width, optimalerweise mit height: 100% und width:
100%. Deshalb sollte besonders dieses Layout responsive gestaltet werden, da sonst die ganze Web-
seite darunter leidet. Dadurch, dass dieses Layout die gesamte BildschirmgroBe einnimmt, ist es
wichtig, wie sich dieses Layout an verschiedene BildschirmgroBen anpasst.

Die BildschirmgroBen vieler Gerate sind unterschiedlich von ihrer Pixel-Breite und -Hohe. Trotz der
verschiedenen BildschirmgroBen, lassen sich diese in drei Gruppen einteilen. Die erste Gruppe sind
Bildschirme im Hochformat (Portrait Mode). Die zweite Gruppe sind Bildschirme im Querfor-
mat (Landscape Mode). Die letzte Gruppe bilden quadratische Bildschirme, diese werden jedoch
nur selten genutzt und sind eher eine Nische, weshalb diese Gruppe nicht weiter betrachtet wird.
Tendenziell sind kleine Bildschirme eher im Hochformat ausgerichtet, wahrend groBe Bildschirme
meist im Querformat genutzt werden, dies ist aber keine feste Regel, da eine Drehung des Bild-
schirms moglich ist und somit beide Formate in allen BildschirmgréBen vorhanden sind. Durch die
Einordnung in diese zwei Gruppen ist es moglich fiir beide Gruppen ein Layout zu erstellen, welches
sich an das jeweilige Format anpasst.

Damit das Layout auch responsive ist, sollten Layout-Technologien genutzt werden, die sich gut an
verschiedene BildschirmgroBen anpassen konnen. Dabei sollten die Technologien aus dem Kapitel

2.2 genutzt werden.

Flexbox

Eine Flexbox eignet sich sehr gut fiir eindimensionale Layouts, wo es nicht wichtig ist eine feste An-
ordnung zu besitzen. Seine Darstellung ist optimal fir eine Ansammlung von dhnlichen beziehung-
weisen gleichen Elementen, wie zum Beispiel bei einer Bildergalerie oder einer Liste von Eintragen.
Durch den flexiblen Aufbau sind Flexboxen mit flex—-wrap: wrap sehr einfach responsive zu
gestalten, da diese Layout-Technologie automatisch die Elemente in die niachste Zeile umbrechen
lasst, wenn nicht mehr genug Platz in der aktuellen Zeile ist. Dadurch passen sich Flexboxen sehr gut
an verschiedene BildschirmgroBen an. Durch die Nutzung von flex—-shrink und flex-grow
kann zusammen mit min— und max— Eigenschaften die GroBe der Flex-Elemente gut gesteuert
werden, wodurch sich die Elemente an die verfligbare Flache anpassen koénnen. Die Eigenschaft
flex—basis sollte nicht benutzt werden, da diese die GroBensteuerung des Elementes ibernimmt

und somit die Flexibilitat des Elementes einschrankt. Die Nutzung von gap ist ebenfalls empfeh-

19

4 Implementierungsstrategie

lenswert, um Abstande zwischen den Flex-Elementen zu schaffen, ohne dass zusatzliche Margins
genutzt werden missen. Bei der Anordnung der Flex-Elemente kann mit justify-content und
align-items gearbeitet werden, um die Elemente optimal im Flex-Container zu positionieren.
Falls ein Flex-Element auf der Querachse anders positioniert werden soll als die anderen Elemente,

kann mit align—self gearbeitet werden, um dieses Element individuell zu positionieren.

Grid

Grid ist eine weitere Layout-Technologie, die sich gut fiir Responsive Design eignet. Grids arbeiten
mit Zeilen und Spalten, die ein Raster bilden, in dem die Kindelemente positioniert werden kénnen.
Dadurch ist es moglich, dass Kindelemente mehrere Zeilen und Spalten einnehmen kénnen, wodurch
zweidimensionale Layouts moglich sind. Dabei sollten Zeilen und Spalten etwa feste Einheiten nutzen
wie rem sowie px oder die flexible Einheit £r benutzen, um den verfiigbaren Platz aufzuteilen. Die
Einheit % eignet sich weniger, da der Entwickler manuell auf die 100% kommen muss und die Eigen-
schaft min—« der Grid-Elemente nicht beachtet wird, wodurch die Eigenschaften der Grid-Elemente
ignoriert werden. mit fr werden die Eigenschaften der Grid-Elemente beachtet. Ebenfalls beachtet
fr auch die gap-Eigenschaft des Grids. Durch diese festere Struktur, ist es uniiblich sich an die
ElementgroBe anzupassen, weshalb es sich eignet mehrere Grid-Layouts fiir verschiedene Bildschirm-
groBen beziehungsweise ElementgroBen zu erstellen und diese dann mit Media-Queries auszutau-
schen. Als Media-Queries eignen sich besonders die Eigenschaften @media und @container.
Wenn ein Gridlayout sich verandert, ist es empfehlenswert mit grid-template-areas zu ar-
beiten, da so die Anordnung der Kindelemente sehr einfach angepasst werden kann, ohne dass die
Kindelemente selbst angepasst werden miissen. Dadurch wird der Entwicklungsaufwand reduziert
und die Lesbarkeit des Codes verbessert. Falls sich das Grid eher nach den Elementen richten soll,
kann mit dem Wert repeat (auto-fit, minmax (...)) gearbeitet werden. Dadurch entste-
hen so viele Spalten oder Zeilen, die ein GroBenbereich haben und sich an die GroBe der Gridelemente
anpassen. Damit ist das Grid deutlich flexibler und passt sich eher an die ElternelementgroBe an als

an die BildschirmgroBe.

4.3 Touchgesten

Um eine erfolgreiche Implementierung zu gewahrleisten, miissen passend zu den Anforderungen aus
Kapitel 3.3 Losungen gefunden werden, die fiir eine hohe Nutzerzufriedenheit sorgen und zeitgleich

den Implementierungsaufwand gering halten.

4.3.1 Implementierung von Touchgesten

Bei der Implementierung von Touchgesten ist es fundamental, dass alle Aktionen der Webanwen-
dung auch mit Touchgesten ausgefiihrt werden konnen. Einschrankungen fiir Touchnutzer fithren zu
einer schlechten Nutzererfahrung und limitieren die Zuganglichkeit der Webanwendung auf Touch-
geraten. Bei einer komplexen Webanwendung ist es jedoch schwierig alle Aktionen mit einzigartigen

Touchgesten abzubilden, da die Anzahl je nach Funktionsumfang stark variieren kann. Deshalb soll-

20

4 Implementierungsstrategie

ten generische Aktionen mit allgemeinen Touchgesten abgebildet werden, die auf viele Aktionen
angewendet werden konnen.

Fir die Implementierung sollten die Javascript PointerEvents genutzt werden, da diese sowohl Maus-
als auch Touchereignisse unterstiitzen und somit eine einheitliche Schnittstelle fiir beide Eingabeme-
thoden bieten. Dadurch wird der Programmieraufwand reduziert, da nicht fiir jede Eingabemetho-
de eigene EventListener implementiert werden miissen. TouchEvents sind auch fiir Touchgesten
zustandig, jedoch werden diese weder vom Safari-Browser noch vom Firefox-Browser unterstiitzt [29],
wodurch eine allgemeine Anforderung verletzt wird. PointerEvents werden von allen gangigen
Browsern unterstiitzt und sind somit die bessere Wahl fiir die Implementierung von Touchgesten.
Mithilfe der PointerEvents ist es moglich eigene Touchgesten zu implementieren, indem Ei-
genschaften des Events mit Bedingungen verkniipft werden. Einige Touchgesten sind bereits vom
Browser definiert und kdnnen ohne eigene Implementierung genutzt werden. Das Event c11ick bildet
ein Tap ab und dblclick ist ein Double-Tap. Die Touchgesten Scroll, Zoom und Pinch werden
durch das Standardverhalten des Browsers abgedeckt. Elemente, die einen Scrollbalken besitzen,
konnen mit einer Scrollgeste bedient werden. Zoom und Pinch sind auf der ganzen Webanwendung
moglich und erlauben es dem Nutzer die Webanwendung zu vergréBern oder zu verkleinern. Dabei
ist zu beachten, dass diese Geste eher einer Lupe gleichkommt, als der {iblichen Zoom-Funktion des
Browsers, die den Inhalt skaliert.

Dieses Verhalten kann mit der CSS-Eigenschaft touch—action angepasst werden, um das Brow-
serverhalten auf dem Element beispielsweise zu deaktivieren. Ebenfalls kann beim PointerEvent
die Methode event .preventDefault () aufgerufen werden, wodurch das Standardverhalten
des Browsers abbricht.

Das Scrollen sollte nicht deaktiviert werden, da dies eine wichtige Funktion ist fiir die Webanwendung
und die Nutzererfahrung stark beeintrachtigen wiirde. Fiir Zoom und Pinch kann es jedoch sinnvoll
sein, diese zu deaktivieren, wenn die Webanwendung eigene Implementierungen fiir diese Gesten
besitzt, um Konflikte zu vermeiden.

Ein weiterer wichtiger Aspekt ist, dass es keine native Lésung gibt, um : hover-Zustande mit Touch-
geraten abzubilden. Dadurch kdnnte Styling oder auch Funktionalitat verloren gehen, da Touchgerate
keinen Hover-Zustand besitzen. Eine Moglichkeit diese Funktionalitat anzubieten ist es, eine Hold-
Geste zu verwenden, da diese keine Tap-Aktion ausfiihrt, aber dennoch eine Interaktion mit dem
Element darstellt. Dadurch kann der Nutzer beispielsweise ein Tooltip 6ffnen, welches bei Hover
mit der Maus geoffnet werden wiirde. Die restlichen definierten Touchgesten, siehe Tabelle 2.6,
bendtigen eine eigene Implementierung, die auf den PointerEvents basieren sollte.

Bei der Implementierung einer Touchgeste sollte der EventListener nur giiltig sein fiir das Element,
welches die Geste unterstiitzen soll. Dadurch wird verhindert, dass die Geste auf anderen Elementen
ausgeldst wird, was zu unerwartetem Verhalten fithren kann. Ebenfalls sollten Touchgesten auf sehr
groBen Elementen mit Bedacht eingesetzt werden, wenn die Kindelemente des Elementes ebenfalls
Touchgesten besitzen, die dhnlich zur Touchgeste des Elternelementes sind. Dies gilt auch fiir meh-

rere Touchgesten auf einem Element. So kann ein Wischen auch als ein Scroll interpretiert werden

21

4 Implementierungsstrategie

oder ein Hold wird ausgelost, obwohl ein Drag and Drop ausgefiihrt werden sollte. Dies mindert
deutlich die Nutzererfahrung und sollte vermieden werden.

Wenn komplexere Gesten implementiert werden sollen, ist es empfehlenswert mit VueUse sowie den
Erweiterungen Gestures und Motion zu arbeiten. VueUse bietet die Composable usePointer an,
welche alle wichtigen Informationen eines Pointers bereitstellt, wie die Position, den Typ und ob
der Pointer gedriickt ist oder nicht. Dadurch lasst sich sehr einfach eine eigene Touchgeste imple-
mentieren. Fiir komplexere Gesten wie Swipe, Pinch oder Drag and Drop bietet VueUse Gestures
bereits Composables an, die diese Gesten implementieren und nur noch in der Komponente ver-
wendet werden missen. Dadurch lasst sich der Programmieraufwand deutlich verringern und die
Implementierung wird vereinfacht. Bei der Benutzung von usePointer oder den VueUse Gestu-
res Composables ist es empfehlenswert noch VueUse Motion zu verwenden, da damit Animationen
und auch visuelle Indikatoren fiir die Touchgeste moglich sind, um dem Nutzer eine Riickmeldung
zu geben, dass seine Geste erkannt und ausgefiihrt wird. Dabei ist es wichtig, dass das Element
dem Finger folgt, und der Nutzer nicht in seinem Vorhaben unterbrochen wird. Erst wenn der Finger
losgelassen wird, darf eine Aktion stattfinden, basierend auf seiner Geste. Dadurch ist es moglich,
dass der Nutzer beispielsweise ein Swipe abbricht, indem er den Finger nicht losldsst, sondern in
die entgegengesetzte Richtung bewegt. Wiirde das Element ab einem bestimmten Punkt die Akti-
on ausfiihren, ware es nicht mehr moglich die Geste abzubrechen, was die Nutzererfahrung stark

beeintrachtigen wiirde.

4.3.2 Nutzung und visuelle Indikatoren

Bei der Gestaltung einer Touchgeste sollte nicht nur bedacht werden, wie die Touchgeste funktioniert.
Es ist auch wichtig, dass der Nutzer weiB, dass dort eine Touchgeste moglich ist. Dabei kénnen
visuelle Indikatoren helfen, die dem Nutzer unterbewusst zeigen, dass dort eine Aktion moglich ist.
Eine Moglichkeit ware es eine Animation auf das Element anzuwenden. So kdnnte ein Element leicht
pulsieren, sich bewegen oder die Geste andeuten, wodurch der Nutzer aufmerksam gemacht wird,
dass dort eine Touchgeste moglich ist und gegebenenfalls gezeigt wird, was mit diesem Element zur
Verfligung steht. Eine weitere Moglichkeit ist es ein Icon einzubinden, welches die Geste andeutet.
So konnten Pfeile eine Richtung andeuten, in die ein Element bewegt werden kann oder Touch-Icons
benutzt werden, um eine allgemeine Aktion anzuzeigen. Bei der Nutzung von Touchgesten, die ein
Element bewegen ist es wichtig, dass das Element einen Schatten besitzt und sich so vom Hintergrund
abhebt. Dadurch wird dem Nutzer signalisiert, dass das Element bewegt werden kann und es nicht
fest mit dem Hintergrund verbunden ist. Allgemein sollten visuelle Indikatoren dezent eingesetzt
werden, um den Nutzer nicht zu Gberfordern und die Webanwendung unibersichtlich wirken zu
lassen. Dabei sind Animationen sehr aufdringlich, wahrends lcons dezenter sind und Schatten ein
gangiges Gestaltungsmittel fur interaktive Elemente sind. Aus diesem Grund sollten Animationen nur
fir die wichtigen Elemente eingesetzt werden. Icons konnen fiir alle interaktiven Elemente eingesetzt
werden, sollten jedoch nicht zu dominant sein. Schatten kdnnen soweit immer eingesetzt werden,

jedoch ist zu beachten, dass Schatten auch aus Styling-Griinden eingesetzt werden und nicht immer

22

4 Implementierungsstrategie

ein interaktives Element bedeuten, weshalb es im richtigen Kontext erst als ein interaktives Element
wahrgenommen wird.

Auch ohne visuelle Indikatoren konnen Touchgesten angedeutet werden, anhand des Aufbaus der
Webanwendung. So ladt eine einzelne Karte dazu ein, diese zu wischen. Ebenso kann eine Liste
von Elementen dazu einladen, diese zu scrollen. Dadurch wird dem Nutzer klar, dass er mit diesen
Elementen interagieren kann, ohne das es explizit angezeigt wird. Wenn dies nicht eindeutig sichtbar
ist, sollte ein visueller Indikator hinzugefligt werden, um die Nutzererfahrung zu verbessern. Elemente
sollten innerhalb der Webanwendung auch einer Designlinie folgen, damit der Nutzer beim Benutzen
der Seite lernt, welche Elemente interaktiv sind und welche nicht. Dadurch wird die Webanwendung
konsistenter und die Nutzererfahrung verbessert sich. Das was der Nutzer gelernt hat, kann er
auf andere Elemente der Webanwendung lbertragen, wodurch er schneller und einfacher mit der

Webanwendung interagieren kann.

4.4 Strategie

Nachdem nun alle Konzepte und Anforderungen zusammengekommen sind, wird in diesem Kapitel
beschrieben wie die Implementierung des Prototyps in Miori Boards aussehen sollte.

Zu Beginn wird sich um das Responsive Design gekiimmert, da dies eine Uberarbeitung der gesamten
grafischen Nutzeroberflache bedeutet. Wiirde der Entwickler zuerst mit den Touchgesten anfangen,
konnte es passieren, dass Elemente, die zuvor wichtig waren fiir die Touchgesten, durch das Respon-

sive Design verandert oder entfernt werden. Dies wiirde zu unnétigen Mehraufwand fiihren.

Responsive Design

Fir den Beginn der Implementierung des Responsive Designs bietet es sich an, zuerst ganz oben
im HTML-Dokument zu starten und sich dann Stick fir Stiick nach unten vorzuarbeiten. Dadurch
konnen schon Limitationen friih erkannt werden und diese vorbeugend zu |6sen beziehungsweise mit
zu Bedenken im weiteren Design. Dabei sollte der Entwickler sich zuerst iiberlegen welches Kind-
element das Hauptelement ist. Da dieses Hauptelement einen Stellenwert hat, sollte es bevorzugt
behandelt werden und soviel Platz einnehmen wie es braucht, da dies das Kernelement des Eltern-
elementes ist. Wenn das Hauptelement noch nicht designt ist, ist es sinnvoll, sich zuerst Gedanken
iber dieses zu machen, um die GroBe und den Platzbedarf abschatzen zu kénnen. Es kann je nach
Element auch Sinn ergeben von unten anzufangen, wenn tiefer im Elementbaum bereits Limitationen
vorhanden oder bekannt sind, die beim Design des Elternelementes beriicksichtigt werden missen.
Wenn das erste Element bestimmt ist, geht es darauffolgend mit dem zweitwichtigsten Element
weiter. Dies geht solange bis alle Kindelemente des Elternelementes bestimmt sind.

Bei der Bestimmung der Elemente sollte der Entwickler zuerst anfangen fiir kleine Bildschirme zu
designen (Mobile-First Ansatz) [20]. Dadurch wird sichergestellt, dass die wichtigsten Elemente auch
auf kleinen Bildschirmen Platz finden und nicht von unwichtigen Elementen verdrangt werden. Dazu

empfiehlt es sich mit einer Breite von 360px zu starten, da dies die kleinste géangige Bildschirmbreite

23

4 Implementierungsstrategie

von Smartphones ist. Die gangigste kleinste Bildschirmhohe betragt 640px. Interaktive Elemente
sollten dabei eine MindestgroBe von 24px x 24px besitzen, bevorzugt aber 44px x 44px groB
sein.

Wenn alle Elemente bestimmt sind, kann sich nun entscheiden werden welches Layout benutzt wird.
So bieten sich Grids gut an fir feste Anordnungen von Elementen, wahrend Flexboxen gut fir flexible
Anordnungen geeignet sind, wo die exakte Anordnung der Elemente nicht so wichtig ist. Besonders
bei Grids ist zu beachten, dass je nach BildschirmgroBe ein anderes Grid-Template benutzt werden
sollte, um die Elemente bestmoglich anzuordnen.

Nach diesem Schema arbeitet sich der Entwickler rekursiv durch den DOM-Baum, bis alle Elemente
auf der Ansicht beziehungweise Seite angepasst sind. Danach kénnen Anpassungen gemacht werden,
um die Ansicht fiir groBere Bildschirme zu optimieren. Bei der Benutzung von Flexboxen und Grids
ist dies meist nur eine Anpassung der Anordnung der Elemente, da die GréBen sich meist automatisch
anpassen. Elemente selbst kénnen jedoch in eine komplett alternative Darstellung wechseln, wenn
dies fiir groBere Bildschirme sinnvoll ist, wie beispielsweise eine Navigationsleiste, die von einem

Dropdown mit einzelnen Eintragen zu einer Auflistung der Meniipunkte wechselt.

Touchgesten

Wenn die Ansicht nun responsive ist, kann mit der Implementierung der Touchgesten begonnen
werden. So sollten primar nur EventListener benutzt werden, die PointerEvents unterstiitzen. Falls
doch ein MouseEvent oder KeyboardEvent benutzt wird, muss es dazu passend ein Fallback fir
Touchgerate geben. Dabei ist es wichtig zu beachten was die Aktion macht, um damit passend eine
Geste zuzordnen. Wenn die Implementierung erfolgt ist, sollte noch ein Indikator eingebaut werden,
wenn die Geste nicht direkt ersichtlich ist aus dem Elementenkontext heraus. Je komplexer die Geste
ist, desto wichtiger ist es einen Indikator zu haben, damit der Nutzer die Geste auch wirklich entdeckt

und versteht.

Miori Boards

Im Kontext von Miori Boards sollten bei der Implementierung zuerst alle Komponenten angepasst
werden, die aus den WZL-Essentials stammen, da diese in der gesamten Webanwendung verwen-
det werden und von sich aus Limitationen besitzen kénnen. Hier ist die Benutzung von simplen
Touchgesten und einem guten Responsive Design besonders wichtig, da diese Komponenten sehr
oft verwendet werden. Danach sollten alle wiederverwendbaren Komponenten von Miori Boards an-
gepasst werden, da diese ebenfalls an mehreren Stellen verwendet werden. Dort kénnen komplexere
Touchgesten und spezialisiertere Responsive Designs verwendet werden, da diese Komponenten nur
in Miori Boards genutzt werden und nicht in anderen Projekten, wodurch ein generisches Design
nicht notwendig ist. Zum Schluss sollten die einzigartigen Elemente der einzelnen Ansichten bezie-
hungsweise Seiten angepasst werden. Wenn nach dieser Strategie vorgegangen wird, sollte eine gute
Grundlage fiir die Implementierung des Prototyps in Miori Boards geschaffen sein und folglich auch

fur alle weiteren Webanwendungen, die nach dieser Strategie arbeiten.

24

5 Prototyp und Evaluation

5 Prototyp und Evaluation

Nachdem in Kapitel 4 die Implementierungsstrategie fiir den Prototypen beschrieben wurde, wird
in diesem Kapitel beschrieben, wie der Prototyp in Miori Boards umgesetzt wurde. Dazu folgt eine

Evaluation des Konzepts

5.1 Prototyp in Miori Boards

Fiir die prototypische Implementation in Miori Boards wurde exemplarisch die Ubersichtseite im
Kontext des Responsive Designs lberarbeitet. Dazu wurde im Prasentationsmodus des Kachelwid-
gets eine Swipetouchgeste implementiert. Dazu wurden die in Kapitel 4.4 beschriebenen Strategien

angewandt.

5.1.1 Responsive Ubersichtseite

Die Ubersichtseite von Miori Boards dient als Startpunkt der Webseite und bietet eine Personenkarte
an mit Profilbild, Name und E-Mail der Person, sowie ihr Anwesenheitsstatus und mogliche Abwe-
sendheitszeitraume. Des Weiteren gibt es kleine Boardkacheln, die alle Boards reprasentieren, auf
die die Person Zugriff hat. Uber die Ansammlung der Boardkachel, gibt es eine Suchleiste, mit der
nach Boards gesucht werden kann. Unter der Boardkachelauflistung gibt es noch einen Button, um

Boards zu erstellen. Die Ubersichtseite wurde primir fiir Laptop- und Desktopbildschirme entwickelt.

MIOR] Ubersicht ‘ oeofiete MIORI =eo A

Yannic Sieger
y.sieger@wzl.rwth-aachen.de

\ YS) - YS)

Abwesenheitszeitraum

Yannic Sieger
y.sieger@wzl.rwth-aachen.de

Anwesend
Boards durchsuchen...
Abwesenheitszeitraum

S E Seminar...
Yannic Sieger
Boards durchsuchen...

B E berq]
Yannic Sieger Seminarar...

S E Yannic Sieger

Abbildung 5.1: Miori Boards Ubersichtseite ohne Abbildung 5.2: Miori Boards Ubersichtseite mit Re-
Responsive Design sponsive Design

Wie in der Abbildung 5.1 zu sehen, ist die Ubersichtseite nicht geeignet fiir kleinere Bildschirme,

da die Personenkarte tberlauft in die Horizontale sowie die Boardkachelauflistung ebenfalls keinen

festen Rahmen hat. Ein weiterer Negativpunkt ist, dass der Button zur Boarderstellung unter der

25

5 Prototyp und Evaluation

Boardsauflistung ist, wodurch bei einer groBen Anzahl an Boards lange gescrollt werden muss, um
den Button zu erreichen.

Zu Beginn der Uberarbeitung wurde der Mobile-First Ansatz verfolgt, in dem die BildschirmgroBe
auf 360px x 640px eingestellt wurde, um die Ansicht fiir ein typisches Smartphone zu simulie-
ren, sieche 5.1. Da die Elemente bereits vorgegeben sind, muss kein neuer HTML-Code geschrieben
werden, sondern es muss nur das CSS angepasst werden, um die Ansicht responsive zu bekommen.
Dazu wurde zu Beginn die Personenkarte iiberarbeitet. Die Personenkarte nutzt bereits das Flexbox
Layout, jedoch gibt es nur zwei Kindelemente, namlich das Profilbild und die Informationen. Das
Profilbild ist neben dem Informationselement positioniert, wodurch es zu einem Overflow kommt.
Mit der Eigenschaft flex—-wrap: wrap kann dies behoben werden, wodurch bei zu geringen
Platz das Informationselement unter das Profilbild rutscht. Dadurch existiert kein Overflow in der
Horizontalen mehr. Ebenfalls wurde der Personenkarte ein Padding von 20px gegeben, damit der
Inhalt nicht direkt am Rand ist. Da das Informationselement der Personenkarte bereits kleiner als
360px groB ist, muss am Layout des Elementes nicht angepasst werden. Die Kindelemente von
dem Informationselement nutzen keine responsive Layout-Technologie sondern folgen der Standard-
Block-Darstellung. Damit es nun zu keinem Overflow kommt, wird der Name mit der Eigenschaft
word-break: break-word versehen, wodurch der Name in die nichste Zeile umbricht, wenn
kein Platz mehr ist. Die E-Mail Adresse wird mit der Eigenschaft text-overflow: ellipsis
versehen, wodurch die E-Mail Adresse abgeschnitten wird, wenn der Platz nicht ausreicht. Die An-
wesenheitselemente folgen einer festen GroBe, wodurch diese nicht angepasst werden miissen.

Da nun die Personenkarte responsive ist, wird als nachstes die Boardkachelauflistung angepasst.
Diese nutzt Flexbox und auch die Eigenschaft flex—wrap: wrap. Der Grund wieso es zu einem
Overflow kommt, liegt daran, dass die Boardkachel keine Limitierung der Breite hat, wodurch es
sich Gber den Bildschirm ausdehnt. Dies wurde behoben, indem die Boardkachel eine Breite von
100% bekommen hat, wodurch die Boardkachel nur den Platz einnimmt, den es gibt. Durch diese
Eigenschaft, passiert es jedoch, dass alle Boardkacheln immer eine ganze Reihe in der Flexbox
einnehmen, da sie ja den ganzen horizontalen Platz fiir sich beanspruchen. Damit dies nicht mehr
passiert, wird eine maximale Breite von 34 0px fiir die Boardkachel gesetzt, wodurch das Element nur
eine limitierte Breite einnimmt. Die GroBe von 340px wurde rein aus stylischen Griinden gewahlt.
Durch diese Limitierung sieht die Boardkachel bei jeder BildschirmgroBe groBer als 360px gleich aus,
da die Boardkachel immer die maximale Breite einnimmt und nur bei noch kleineren Bildschirmen
schrumpft.

Als letzte Anderung wurde der Button zur Borderstellung neu positioniert, damit dieser leichter
erreichbar ist. Dazu wurde der Button neben der Boardsuchleiste positioniert, wodurch eine Toolbar
passend zur Boardkachelauflistung entsteht. Der Button ist dabei 48px x 48px groB, wodurch
er auch auf Touchgeraten gut bedienbar ist. Die Toolbar selbst nutzt ebenfalls Flexbox, um die
Elemente nebeneinander anzuordnen. Falls der Platz nicht ausreicht, schrumpft nur die Suchleiste,
da der Button ansonsten zu klein werden wiirde und die Bedienbarkeit darunter leidet.

Durch diese Anpassungen ist die Ubersichtseite nun responsive und sieht sowohl auf kleinen Bild-

26

5 Prototyp und Evaluation

schirmen als auch auf groBen Bildschirmen gut aus, siehe Abbildung 5.2.

5.1.2 Touchgesten im Prasentationsmodus

Einer der wichtigsten Features von Miori Boards ist das Kachelwidget, bei dem jeder Nutzer des
Boards eine Kachel besitzt, um dort verschiedene Inhalte zu prasentieren. Dabei gibt es einen
Prasentationsmodus, bei dem die Kachel zentral auf dem Bildschirm liegt und der Nutzer seine
Inhalte prasentieren kann. Der Prasentationsmodus wurde primér fiir Desktop- und Laptopbildschir-
me entwickelt, bei denen der Nutzer eine Tastatur zur Verfiigung hat, um mit den Pfeiltasten die
Kacheln zu wechseln. Durch diese Implementierung ist es nicht moglich, dass Nutzer ohne Tastatur
den Prasentationsmodus bedienen konnen. Aus diesem Grund soll eine Touchgestensteuerung im-
plementiert werden, um den Prasentationsmodus auch auf Touchgeraten (und Méausen) bedienbar

zu machen.

Prasentationsmodus x

Sie kdnnen mittels der Pfeiltasten zwischen den
Elementen wechseln. Die Prasentation kann mittels ESC
oder durch Klicken auf die freie Flache beendet werden.

Abbildung 5.3: Miori Boards Préasentationsmodus

Wie in Abbilung 5.3 zu sehen, liegt die Kachel zentral auf dem Bildschirm und der Rest des Bildschirm
ist mit einem Overlay abgedunkelt, wodurch die Kachel das einzige eindeutig sichtbare Element ist.
Aufgrund der Kachelform bietet es sich an eine Swipegeste zu implementieren, um die Kachel zu
wechseln. Dabei stellt ein Swipe nach Links die linke Pfeiltaste dar und ein Swipe nach Rechts die
rechte Pfeiltaste. Durch den Aufbau des Prasentationsmodus ist bereits klar, dass die Kachel das
einzige interaktive Element ist, wodurch keine weiteren Hinweise fiir die Bedienung notwendig sind.
Fir die Touchgestenimplementierung wird die Directive v—drag verwendet und dazu wird die Funk-
tion apply () aus dem Motionplugin benutzt, um die Kachelbewegung zu animieren. Mit der Direc-
tive v—drag kann eine Funktion iibergeben werden, die bestimmt wie die Logik auszusehen hat bei
einem Drag an dem Kachelelement. Die Directive libergibt dabei ein Objekt, welches verschiedene
Attribute besitzt, die den Zustand des Elementes beschreiben. Dabei wird zuerst beobachtet, ob es
eine Bewegung in die X-Richtung oder Y-Richtung ist. Da die Kachel nur horizontal geswipt werden
soll, werden Bewegungen in die Y-Richtung ignoriert und verdndern das Element nicht. Bei Bewe-
gungen in die X-Richtung wird die Kachel mit der Funktion set () verschoben, um eine flissige

Animation zu erzeugen, die dem Finger folgt. Danach wird aus dem Objekt gepriift, ob ein Swipe

27

5 Prototyp und Evaluation

stattgefunden hat. Dabei wird der Swipezustand mit —1, 0 und 1 definiert. Bei —1 wurde ein Swipe
nach Links erkannt, bei 1 ein Swipe nach Rechts und bei 0 wurde kein Swipe erkannt. Bei der
Prifung des Zustandes konnen nun die Funktionen zum Kachelwechsel aufgerufen werden, wenn
ein Swipe erkannt wurde. AnschlieBend wird noch iiberpriift, ob noch ein Dragging stattfindet. Falls
nicht, wird die Kachel mit der Funktion apply () wieder in die Ursprungsposition animiert, um die
Kachel zuriickzusetzen.

Durch diese Implementierung ist es nun moglich, den Prasentationsmodus mithilfe einer Touchges-
te zu bedienen, wodurch Nutzer ohne Tastatur ebenfalls den Prasentationsmodus nutzen kdénnen.
Ebenfalls kdnnen Nutzer mit Maus die Kachel wechseln, indem sie die Kachel anklicken und ziehen,

um sie zu wechseln, da die Directive v—drag mit PointerEvents arbeitet.

5.2 Evaluation des Konzepts

Um das Konzept zu evaluieren wurde neben dem Prototypen in Miori Boards noch eine Benchmark-
seite erstellt, die einzelne Touchgesten und deren Funktionsweise demonstrieren. Folglich wurden
auch Responsive Design Konzepte beispielhaft gezeigt, um diese ebenfalls zu demonstrieren. Ebenso
wurden die in Kapitel 3 beschriebenen Anforderungen auf ihre Umsetzbarkeit im Prototypen und der

Benchmarkseite tiberpriift.

5.2.1 Benchmarkseite

Die prototypische Implementierung an Boards zeigt bereits, dass in einzelnen Anwendungsfallen
die Implementierungsstrategie erfolgreich funktioniert. Dies evaluiert jedoch nicht, dass das Kon-
zept allgemein funktioniert. Aus diesem Grund wurde eine Benchmarkseite erstellt, die verschiedene

Touchgesten und Responsive Design Konzepte demonstriert.

Flex Grid Flex Grid Flex Grid

Hier werden Layout Beispiele gezeigt Hier werden Layout Beispiele gezeigt Hier werden Layout Beispiele gezeigt

b b b
| B Bm B LB
= mE
X _= an an
(a) ohne Responsive Design (b) mit minmax-Funktion (c) mit Media Queries

Abbildung 5.4: Vergleich verschiedener Grid-Layouts auf der Benchmarkseite

Die Abbildung 5.4 zeigt einen Ausschnitt der Benchmarkseite. Dort wurden alle definierten Touch-
gesten aus der Tabelle 2.6 implementiert und kénnen ausprobiert werden. Die Responsive Layout-
Technologien Flexbox und Grid wurden ebenfalls implementiert und kénnen auf der Benchmarkseite

getestet werden mit verschiedenen Ansatzen diese zu benutzen. Auch wurden einzelne Strategi-

28

5 Prototyp und Evaluation

en fiir responsive Elemente eingebaut, wie das Verhalten von Bildern oder Texten ist, wenn das

Elternelement verschiedene GroBen annimmt oder wenn eine Liste in den Overflow geht.

5.2.2 Umsetzbarkeit der Anforderungen
Zuletzt wird iberpriift, ob die in Kapitel 3 beschriebenen Anforderungen im Prototypen und der

Benchmarkseite umgesetzt werden konnten.

Dabei wird mit den allgemeinen Anforderungen aus der Tabelle 3.1 angefangen. Durch die Nut-
zung von Vue.js und dem Okosystem ist der Implementierungsaufwand gering, da viele Funktiona-
litaten bereits durch Bibliotheken abgedeckt werden kénnen. Der modulare Aufbau der Komponenten
sorgt fiir eine leichte Wartbarkeit und Erweiterbarkeit der Implementierung. Ebenfalls ist die Test-
barkeit durch den modularen Aufbau moglich mit Benchmarks der Komponenten. Die benutzten
CSS-Eigenschaften und Javascript-Events sowie das Vue.js Okosystem werden von allen gingigen
Rendering Engines unterstiitzt. Mit der Verwendung von grundlegenden CSS-Eigenschaften und ele-
mentaren Javascript-Events kann eine konsistente Performance erreicht werden. Bei der iibermaBigen
Nutzung von den VueUse Bibliotheken besteht jedoch die Gefahr, dass die Performance leidet, wenn
zu viele EventListener gleichzeitig aktiv sind. Damit wurden die allgemeinen Anforderungen weites-
gehend erfiillt.

Als nachstes werden die Anforderungen der Touchgesten behandelt, die in der Tabelle 3.3 beschrieben
wurden. Bei der Implementierungsstrategie wurde darauf geachtet, nur Touchgesten zu benutzen,
die eine groBe Nutzerzahl kennen. Mithilfe von PointerEvents und VueUse Gestures Directives
sowie Composables kann die Touchgestensteuerung bereitgestellt werden. Die Bibliothek VueUse
Motion hilft dabei, dass die Touchgesten eine fliissige und natiirliche Reaktion zeigen, sowie visuelle
Indikatoren ermoglichen, um die Nutzbarkeit zu verbessern. Der Konflikt von dhnlichen Gesten kann
vermieden werden durch die Implementierung in einem Elementenscope sowie dem Deaktivieren
von Standardgesten des Browsers. Mit der Empfehlung von groBen Icons und Button steigt die
Nutzererfahrung auf Touchgeréten, sowie die Zuganglichkeit der Anwendung.Somit wurden auch
die Anforderungen der Touchgesten erfiillt.

AbschlieBend werden die Anforderungen des Responsive Designs aus der Tabelle 3.2 (iberprift. Mit
der Vorstellung von Flexbox und Grid wurden zwei dynamische Layout-Systeme angeboten, die
eine flexible Anordnung von Elementen erméglichen. Mithilfe von der Overflow-Eigenschaft kdnnen
Elemente ihre Funktionalitat behalten bei Platzmangel, sowie sich dynamisch an den Platz anpassen.
Die Verwendung von Media Queries sowie relativer Einheiten erlauben eine reaktive Anpassung der
Elemente an verschiedenen BildschirmgréBen. Durch die Empfehlung des Mobile-First Ansatzes wird
sichergestellt, dass die wichtigsten Elemente auch auf kleinen Bildschirmen Platz finden. Dank rem
und word-break ist es moglich die Lesbarkeit von Texten auf verschiedenen BildschirmgroBen zu
gewahrleisten. Somit wurden auch die Anforderungen des Responsive Designs erfiillt.

Insgesamt konnte das Konzept erfolgreich in der Benchmarkseite und dem Prototypen in Miori

Boards umgesetzt werden, wodurch die Umsetzbarkeit der Anforderungen bestatigt werden konnte.

29

6 Fazit und Ausblick

6 Fazit und Ausblick

In diesem finalen Kapitel werden die wichtigsten Erkenntnisse und Ergebnisse der Seminararbeit zu-
sammengefasst. Zudem wird ein Ausblick auf mogliche zukiinftige Entwicklungen und Erweiterungen

gegeben, die auf den in dieser Arbeit behandelten Themen aufbauen konnen.

6.1 Zusammenfassung der Ergebnisse

Ziel war es eine Implementierungsstrategie fiir die Umsetzung von Responsive Design und Touchges-
ten auf Miori Boards zu entwickeln. Mithilfe des Einsatzes von Vue.js und VueUse sowie der Strategie
fir Touchgesten und Responsive Design konnte eine solide Grundlage geschaffen werden, die eine
effiziente und benutzerfreundliche Implementierung erméglicht. Mit dem Mobile-First Ansatz sowie
der komponentenbasierten Implementierung werden bereits potenzielle Probleme verhindert, bevor
diese auftreten konnen. Es ist jedoch wichtig zu beachten, dass bei zu vielen EventListenern in einer
Ansicht die Performance beeintrachtigt werden kann. Die prototypische Umsetzung der Strategie
zeigt, dass diese an Miori Boards erfolgreich funktioniert und somit der Grundstein fir die Imple-
mentierung gelegt ist. Die entwickelte Strategie bietet damit eine passende Basis fiir zukiinftige

Projekte und kann als Leitfaden fiir die Umsetzung ahnlicher Anforderungen dienen.

6.2 Ausblick

Nun muss nur noch die tatsachliche Implementierung auf den Miori Boards erfolgen. Nach der

Implementierung gibt es noch weitere Moglichkeiten zur Erweiterung von Miori Boards.

6.2.1 Progressive Web App (PWA)

Eine mogliche Erweiterung ware die Entwicklung von Miori Boards als PWA!. PWAs ermoglichen es
den Nutzern, die Anwendung wie eine native App zu installieren und gegebenefalls auch offline zu
6ffnen. Dies konnte die Benutzererfahrung weiter verbessern und die Zuganglichkeit der Anwendung

erhohen, da nicht mehr eine Webseite sondern eine Anwendung benutzt wird [23].

6.2.2 Web- und Service-Worker

Infolge der PWA-Implementierung konnten Web- und Service-Worker genutzt werden, um Hinter-
grundprozesse zu ermoglichen. Dadurch kénnten beispielsweise Push-Benachrichtigungen implemen-
tiert werden, die den Nutzer iiber wichtige Ereignisse informieren, auch wenn die Anwendung nicht
aktiv genutzt wird [32]. Service-Worker kénnten zudem genutzt werden, um Ressourcen zu ca-
chen und so die Ladezeiten der Anwendung zu verbessern oder die Offlinenutzung der Anwendung

ermoglichen [28].

1Progressive Web App

30

Quellenverzeichnis

Quellenverzeichnis

[1] Apple. ,Gestures,” besucht am 15. Dez. 2025. Adresse: https://developer.apple.

com/design/human—-interface—-guidelines/gestures#Specifications

[2] D.C.ENGELBART, X-Y POSITION INDICATOR FOR A DISPLAY SYSTEM," US 3541541
A, Patented Nov. 17, 1970, 1970. Adresse: https://worldwide .espacenet .com/
publicationDetails/biblio?locale=de_EP&CC=US&NR=3541541

[3] Google. ,Gestures,” besucht am 15. Dez. 2025. Adresse: https://m3.material.io/

foundations/interaction/gestures

[4] Google. ,Gestures,” besucht am 15. Dez. 2025. Adresse: https://m2.material.io/

design/interaction/gestures.html#properties

[5] GPMC. ,Miori Boards,” besucht am 15. Dez. 2025. Adresse: https://www.miori .
tools/shopfloor-board/

[6] B.-J. Krings, ,New Work und die Zukunft der Arbeit," Aus Politik und Zeitgeschichte, Nr. 46/2023,
S. 04-09, 8. Nov. 2023, 1SSN: 0479-611X. besucht am 15. Dez. 2025. Adresse: https :
//www.bpb.de/shop/zeitschriften/apuz/new-work-2023/542500/new-

work—und-die—-zukunft—-der—arbeit/

[7] E. Marcotte. ,Responsive Web Design,” A List Apart, besucht am 15. Dez. 2025. Adresse:

https://alistapart.com/article/responsive-web-design/

[8] MDN. ,box-sizing," besucht am 15. Dez. 2025. Adresse: https://developer.mozilla.
org/en-US/docs/Web/CSS/box—-sizing

[9] MDN. ,calc(),” besucht am 15. Dez. 2025. Adresse: https://developer.mozilla.
org/en-US/docs/Web/CSS/calc ()

[10] MDN. ,clamp()," besucht am 15. Dez. 2025. Adresse: https://developer.mozilla.
org/en-US/docs/Web/CSS/clamp ()

[11] MDN. ,,CSS box alignment overview,” besucht am 15. Dez. 2025. Adresse: https : / /
developer.mozilla.org/en-US/docs/Web/CSS/Guides/Box_alignment/

Overview

[12] MDN. ,CSS Box Model,” besucht am 15. Dez. 2025. Adresse: https: //developer.
mozilla.org/en-US/docs/Learn/CSS/Building blocks/The_box_model

[13] MDN. ,,CSS Grid Layout,” besucht am 15. Dez. 2025. Adresse: https://developer.
mozilla.org/en-US/docs/Learn_web_development /Core/CSS_layout/
Grids

[14] MDN. ,,CSS Values and Units," besucht am 15. Dez. 2025. Adresse: https://developer.
mozilla.org/en-US/docs/Learn_web_development /Core/Styling_

basics/Values_and units

31

https://developer.apple.com/design/human-interface-guidelines/gestures#Specifications
https://developer.apple.com/design/human-interface-guidelines/gestures#Specifications
https://worldwide.espacenet.com/publicationDetails/biblio?locale=de_EP&CC=US&NR=3541541
https://worldwide.espacenet.com/publicationDetails/biblio?locale=de_EP&CC=US&NR=3541541
https://m3.material.io/foundations/interaction/gestures
https://m3.material.io/foundations/interaction/gestures
https://m2.material.io/design/interaction/gestures.html#properties
https://m2.material.io/design/interaction/gestures.html#properties
https://www.miori.tools/shopfloor-board/
https://www.miori.tools/shopfloor-board/
https://www.bpb.de/shop/zeitschriften/apuz/new-work-2023/542500/new-work-und-die-zukunft-der-arbeit/
https://www.bpb.de/shop/zeitschriften/apuz/new-work-2023/542500/new-work-und-die-zukunft-der-arbeit/
https://www.bpb.de/shop/zeitschriften/apuz/new-work-2023/542500/new-work-und-die-zukunft-der-arbeit/
https://alistapart.com/article/responsive-web-design/
https://developer.mozilla.org/en-US/docs/Web/CSS/box-sizing
https://developer.mozilla.org/en-US/docs/Web/CSS/box-sizing
https://developer.mozilla.org/en-US/docs/Web/CSS/calc()
https://developer.mozilla.org/en-US/docs/Web/CSS/calc()
https://developer.mozilla.org/en-US/docs/Web/CSS/clamp()
https://developer.mozilla.org/en-US/docs/Web/CSS/clamp()
https://developer.mozilla.org/en-US/docs/Web/CSS/Guides/Box_alignment/Overview
https://developer.mozilla.org/en-US/docs/Web/CSS/Guides/Box_alignment/Overview
https://developer.mozilla.org/en-US/docs/Web/CSS/Guides/Box_alignment/Overview
https://developer.mozilla.org/en-US/docs/Learn/CSS/Building_blocks/The_box_model
https://developer.mozilla.org/en-US/docs/Learn/CSS/Building_blocks/The_box_model
https://developer.mozilla.org/en-US/docs/Learn_web_development/Core/CSS_layout/Grids
https://developer.mozilla.org/en-US/docs/Learn_web_development/Core/CSS_layout/Grids
https://developer.mozilla.org/en-US/docs/Learn_web_development/Core/CSS_layout/Grids
https://developer.mozilla.org/en-US/docs/Learn_web_development/Core/Styling_basics/Values_and_units
https://developer.mozilla.org/en-US/docs/Learn_web_development/Core/Styling_basics/Values_and_units
https://developer.mozilla.org/en-US/docs/Learn_web_development/Core/Styling_basics/Values_and_units

Quellenverzeichnis

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

MDN. ,flex,” besucht am 15. Dez. 2025. Adresse: https://developer .mozilla.
org/en-US/docs/Web/CSS/Reference/Properties/flex

MDN. , Flexbox,” besucht am 15. Dez. 2025. Adresse: https://developer.mozilla.
org/en-US/docs/Learn_web_development/Core/CSS_layout/Flexbox

MDN. . fr," besucht am 15. Dez. 2025. Adresse: https://developer.mozilla.org/
en-US/docs/Web/CSS/fr

MDN. ,gap,” besucht am 15. Dez. 2025. Adresse: https://developer .mozilla.
org/en-US/docs/Web/CSS/gap

MDN. , minmax()," besucht am 15. Dez. 2025. Adresse: https://developer.mozilla.
org/en-US/docs/Web/CSS/Reference/Values/minmax

MDN. ,Mobile First,” besucht am 15. Dez. 2025. Adresse: https : / / developer .
mozilla.org/en-US/docs/Glossary/Mobile_First

MDN. ,overflow,” besucht am 15. Dez. 2025. Adresse: https://developer.mozilla.
org/en-US/docs/Web/CSS/overflow

MDN. ,PointerEvent,” besucht am 15. Dez. 2025. Adresse: https : / / developer .
mozilla.org/en-US/docs/Web/API/PointerEvent

MDN. ,,Progressive Web Apps,* besucht am 15. Dez. 2025. Adresse: https://developer.

mozilla.org/en-US/docs/Web/Progressive_web_apps

MDN. ,Rendering engine,” besucht am 15. Dez. 2025. Adresse: https://developer.
mozilla.org/en-US/docs/Glossary/Engine/Rendering

MDN. ,Responsive Design,” besucht am 15. Dez. 2025. Adresse: https://developer.
mozilla.org/en-US/docs/Learn_web_development/Core/CSS_layout/

Responsive_Design

MDN. ,Responsive Images,” besucht am 15. Dez. 2025. Adresse: https://developer.
mozilla.org/en-US/docs/Web/HTML/Guides/Responsive_images

MDN. ,scrollbar-gutter,” besucht am 15. Dez. 2025. Adresse: https : //developer .
mozilla.org/en-US/docs/Web/CSS/scrollbar-gutter

MDN. ,Service Workers,” besucht am 15. Dez. 2025. Adresse: https://developer.
mozilla.org/en-US/docs/Web/API/Service_Worker_ API

MDN. , Touch Events,” besucht am 15. Dez. 2025. Adresse: https : / /developer .
mozilla.org/en-US/docs/Web/API/Touch_events/Using_Touch_events

MDN. ,,User Agent,” besucht am 15. Dez. 2025. Adresse: https://developer.mozilla.
org/en-US/docs/Glossary/User_agent

32

https://developer.mozilla.org/en-US/docs/Web/CSS/Reference/Properties/flex
https://developer.mozilla.org/en-US/docs/Web/CSS/Reference/Properties/flex
https://developer.mozilla.org/en-US/docs/Learn_web_development/Core/CSS_layout/Flexbox
https://developer.mozilla.org/en-US/docs/Learn_web_development/Core/CSS_layout/Flexbox
https://developer.mozilla.org/en-US/docs/Web/CSS/fr
https://developer.mozilla.org/en-US/docs/Web/CSS/fr
https://developer.mozilla.org/en-US/docs/Web/CSS/gap
https://developer.mozilla.org/en-US/docs/Web/CSS/gap
https://developer.mozilla.org/en-US/docs/Web/CSS/Reference/Values/minmax
https://developer.mozilla.org/en-US/docs/Web/CSS/Reference/Values/minmax
https://developer.mozilla.org/en-US/docs/Glossary/Mobile_First
https://developer.mozilla.org/en-US/docs/Glossary/Mobile_First
https://developer.mozilla.org/en-US/docs/Web/CSS/overflow
https://developer.mozilla.org/en-US/docs/Web/CSS/overflow
https://developer.mozilla.org/en-US/docs/Web/API/PointerEvent
https://developer.mozilla.org/en-US/docs/Web/API/PointerEvent
https://developer.mozilla.org/en-US/docs/Web/Progressive_web_apps
https://developer.mozilla.org/en-US/docs/Web/Progressive_web_apps
https://developer.mozilla.org/en-US/docs/Glossary/Engine/Rendering
https://developer.mozilla.org/en-US/docs/Glossary/Engine/Rendering
https://developer.mozilla.org/en-US/docs/Learn_web_development/Core/CSS_layout/Responsive_Design
https://developer.mozilla.org/en-US/docs/Learn_web_development/Core/CSS_layout/Responsive_Design
https://developer.mozilla.org/en-US/docs/Learn_web_development/Core/CSS_layout/Responsive_Design
https://developer.mozilla.org/en-US/docs/Web/HTML/Guides/Responsive_images
https://developer.mozilla.org/en-US/docs/Web/HTML/Guides/Responsive_images
https://developer.mozilla.org/en-US/docs/Web/CSS/scrollbar-gutter
https://developer.mozilla.org/en-US/docs/Web/CSS/scrollbar-gutter
https://developer.mozilla.org/en-US/docs/Web/API/Service_Worker_API
https://developer.mozilla.org/en-US/docs/Web/API/Service_Worker_API
https://developer.mozilla.org/en-US/docs/Web/API/Touch_events/Using_Touch_events
https://developer.mozilla.org/en-US/docs/Web/API/Touch_events/Using_Touch_events
https://developer.mozilla.org/en-US/docs/Glossary/User_agent
https://developer.mozilla.org/en-US/docs/Glossary/User_agent

Quellenverzeichnis

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

MDN. ,,Using Media Queries,"” besucht am 15. Dez. 2025. Adresse: https://developer.
mozilla.org/en-US/docs/Web/CSS/CSS_media_queries/Using_media_

queries

MDN. ,,Using Web Workers," besucht am 15. Dez. 2025. Adresse: https://developer.
mozilla.org/en—-US/docs/Web/API /Web_Workers_API/Using_web_

workers

Microsoft. ,Ubersicht tber Windows Touchgesten,” besucht am 15. Dez. 2025. Adresse:
https ://learn.microsoft . com/de-de/windows /win32 /wintouch /

windows—-touch—-gestures—-overview

A. Petrosyan. ,Share of users worldwide accessing the internet in 2nd quarter 2025, by device,
besucht am 15. Dez. 2025. Adresse: https://www.statista.com/statistics/

1289755/internet—-access—-by-device-worldwide

StatCounter. , Distribution of mobile screen resolutions used worldwide in 2024, besucht am
15. Dez. 2025. Adresse: https://www.statista.com/statistics/1445438/

leading-mobile-screen-resolutions-worldwide/

StatCounter. ,Marktanteile der fiihrenden Betriebssysteme weltweit von Januar 2009 bis Juli

2025, besucht am 15. Dez. 2025. Adresse: https://de.statista.com/statistik/
daten/studie/157902/umfrage/marktanteil-der—-genutzten-betriebssysteme—
weltweit-seit-2009/

StatCounter. ,Marktanteile der fiihrenden mobilen Betriebssysteme an der Internetnutzung mit
Mobiltelefonen weltweit von Januar 2011 bis Juli 2025," besucht am 15. Dez. 2025. Adresse:
https://de.statista.com/statistik/daten/studie/184335/umfrage/

marktanteil-der—-mobilen-betriebssysteme-weltweit—-seit-2009/

W3C. ,Target Size (Enhanced),” besucht am 15. Dez. 2025. Adresse: https://www.w3.
org/WAI/WCAG22/Understanding/target—-size—enhanced

W3C. , Target Size (Minimum),” besucht am 15. Dez. 2025. Adresse: https://www.w3.
org/WAI/WCAG22/Understanding/target-size-minimum

E. You. ,Vuejs/core,” besucht am 15. Dez. 2025. Adresse: https://github . com/

vuejs/core

33

https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_media_queries/Using_media_queries
https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_media_queries/Using_media_queries
https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_media_queries/Using_media_queries
https://developer.mozilla.org/en-US/docs/Web/API/Web_Workers_API/Using_web_workers
https://developer.mozilla.org/en-US/docs/Web/API/Web_Workers_API/Using_web_workers
https://developer.mozilla.org/en-US/docs/Web/API/Web_Workers_API/Using_web_workers
https://learn.microsoft.com/de-de/windows/win32/wintouch/windows-touch-gestures-overview
https://learn.microsoft.com/de-de/windows/win32/wintouch/windows-touch-gestures-overview
https://www.statista.com/statistics/1289755/internet-access-by-device-worldwide
https://www.statista.com/statistics/1289755/internet-access-by-device-worldwide
https://www.statista.com/statistics/1445438/leading-mobile-screen-resolutions-worldwide/
https://www.statista.com/statistics/1445438/leading-mobile-screen-resolutions-worldwide/
https://de.statista.com/statistik/daten/studie/157902/umfrage/marktanteil-der-genutzten-betriebssysteme-weltweit-seit-2009/
https://de.statista.com/statistik/daten/studie/157902/umfrage/marktanteil-der-genutzten-betriebssysteme-weltweit-seit-2009/
https://de.statista.com/statistik/daten/studie/157902/umfrage/marktanteil-der-genutzten-betriebssysteme-weltweit-seit-2009/
https://de.statista.com/statistik/daten/studie/184335/umfrage/marktanteil-der-mobilen-betriebssysteme-weltweit-seit-2009/
https://de.statista.com/statistik/daten/studie/184335/umfrage/marktanteil-der-mobilen-betriebssysteme-weltweit-seit-2009/
https://www.w3.org/WAI/WCAG22/Understanding/target-size-enhanced
https://www.w3.org/WAI/WCAG22/Understanding/target-size-enhanced
https://www.w3.org/WAI/WCAG22/Understanding/target-size-minimum
https://www.w3.org/WAI/WCAG22/Understanding/target-size-minimum
https://github.com/vuejs/core
https://github.com/vuejs/core

Quellenverzeichnis

WZL Werkzeugmaschinenlabor
HTML HyperText Markup Language
DOM Document Object Model

CSS Cascading Style Sheets

rem root em

px pixel

fr fractional unit

API Application Programming Interface
UlEvent User Interface Event

SPA Single Page Application

SFC Single File Component

WCAG Web Content Accessibility Guidelines

PWA Progressive Web App

34

Abbildungsverzeichnis

Abbildungsverzeichnis

2.1
2.2
2.3
2.4

51
5.2
53
5.4

Miori Boards Board i 2
CSS Box Modelo 3
Horizontale Vererbungshierarchie der DOM-Events, speziell fiir Touchgesten [29][22] . 10
Liste der Pointer Events in Web-APIs [22]o 10
Miori Boards Ubersichtseite ohne Responsive Design 25
Miori Boards Ubersichtseite mit Responsive Design...............ccoceiuiieeiiiiiii. 25
Miori Boards Prasentationsmodus 27
Vergleich verschiedener Grid-Layouts auf der Benchmarkseite 28

35

Tabellenverzeichnis

Tabellenverzeichnis

2.1
2.2
2.3
2.4
2.5
2.6

3.1
3.2
3.3

Relevante Einheiten fiir responsive Design [14][17] ..., 4
Overflow-Eigenschaften im Responsive Design [21] ..., 5
Anordnungen fiir responsive Layouts [11]ooiiiiiii i 6
Flex-Skalierungs-Eigenschaften [15] 7
Grideigenschaften zur Deklarierung...... ... 8
Ubersicht der unterstiitzten Touch-Gestenl 11
Allgemeine Anforderung an der Implementierung i, 12
Anforderungen an die Implementierung des Responsive Design......................... 13
Anforderungen an die Implementierung der Touchgestensteuerung..................... 14

36

	Einleitung
	Motivation
	Problemstellung
	Ziel der Arbeit
	Aufbau der Arbeit

	Grundlagen und Stand der Technik
	Miori Boards
	Responsive (Web-) Design
	CSS Box-Model
	Media Queries
	Viewport-Meta-Tag
	Responsive Layout-Technologien
	Responsive Bilder und Medien
	Responsive Typografie

	Touchgestensteuerung
	JavaScript EventListener
	Arten von Touchgesten

	Anforderungen
	Allgemeine Anforderungen
	Anforderungen an das Responsive Design
	Anforderungen an die Touchgestensteuerung

	Implementierungsstrategie
	Verwendete Frameworks und Bibliotheken
	Vue.js
	VueUse Core, Gesture und Motion
	WZL Essentials

	Responsive Design
	Element Gestaltung
	Layout Gestaltung

	Touchgesten
	Implementierung von Touchgesten
	Nutzung und visuelle Indikatoren

	Strategie

	Prototyp und Evaluation
	Prototyp in Miori Boards
	Responsive Übersichtseite
	Touchgesten im Präsentationsmodus

	Evaluation des Konzepts
	Benchmarkseite
	Umsetzbarkeit der Anforderungen

	Fazit und Ausblick
	Zusammenfassung der Ergebnisse
	Ausblick
	Progressive Web App (PWA)
	Web- und Service-Worker

	Quellenverzeichnis
	Abkürzungsverzeichnis
	Abbildungsverzeichnis
	Tabellenverzeichnis
	Anhang

