Eidesstattliche Erklarung

Hiermit versichere ich, dass ich die Seminararbeit mit dem Thema

Entwicklung eines KI-Systems zur Schnittstellenanbindung von
Auftragseingaben aus Fremdsystemen in FLEX

selbststandig verfasst und keine anderen als die angegebenen Quellen und
Hilfsmittel benutzt habe, alle Ausfithrungen, die anderen Schriften wortlich
oder sinngemafl entnommen wurden, kenntlich gemacht sind und die Arbeit
in gleicher oder ahnlicher Fassung noch nicht Bestandteil einer Studien- oder
Priifungsleistung war.

Im Rahmen der Erstellung dieser Arbeit wurde das KI-System “GitHub Copi-
lot” unterstiitzend zur sprachlichen Uberarbeitung sowie zur fachlichen Refle-
xion und Prazisierung eigenstandig entwickelter Argumente genutzt. Dieses
System ist datenschutzkonform und kann sicher fiir vertrauliche Textpassa-
gen im Rahmen interner Zwecke der Firma INFORM verwendet werden. Eine
Ubernahme von KI-generierten Texten oder inhaltlichen Losungsvorschligen
erfolgte nicht. Sadmtliche fachlichen Aussagen, Bewertungen und Schlussfol-
gerungen wurden eigenstandig erarbeitet und verantwortet. Die Nutzung
erfolgte im Einklang mit der Zweckbestimmung des Systems sowie unter Be-
achtung datenschutz- und urheberrechtlicher Vorgaben.

Ich verpflichte mich, ein Exemplar der Seminararbeit fiinf Jahre aufzubewah-
ren und auf Verlangen dem Priifungsamt des Fachbereiches Medizintechnik
und Technomathematik auszuhandigen.

Name: Joshua Paul Humberg
Aachen, den 15.12.2025

)

erschr1ft der Studentin / des Studenten

Entwicklung eines KI-Systems zur
Schnittstellenanbindung von Auftragseingaben aus
Fremdsystemen in FLEX

im Studiengang Angewandte Mathematik und Informatik

Name: Joshua Paul Humberg
Matrikelnummer: 3651937

Professsor: Prof. Dr. Alexander Vof3
Betreuer: Kai Ebenhoh M.Sc.

Unternehmen: INFORM GmbH

5. Semester: Seminararbeit (Aachen) 15. Dezember 2025

Inhaltsverzeichnis

1 Abstract 1

2 Einleitung 1

3 Anforderungsanalyse

3.1 Funktionale Anforderungen 2
3.2 Nicht-funktionale Anforderungen

4 Methoden und Verfahren 4
4.1 Large Language Model 4
4.2 Prompt-Engineering Lo 5
4.3 RAG . . . 5
4.4 Instruction Prompt oo 6

5 Entwicklung 7
5.1 Ansatz L 7

5.1.1 Instruction-Prompt Erkenntnisse 9
5.2 Reflexion und Fokussetzung 10
5.3 Umsetzung in Visual Studio Code 11
5.3.1 Finaler Prompt o 11
5.3.2 Kontextanreicherungo 13
5.3.3 Interaktive Ausfithrung 14
54 Wahldes LLMs 15

6 Qualititssicherung 16
6.1 Bewertungsverfahreno 16
6.2 Menschliches Feedback 16
6.3 Automatische Bewertung 17
6.4 Unittests 18

7 Ausblick 19
7.1 Fine-Tuning 19

7.1.1 Abwégung Supervised Finetuning 20

7.1.2 Abwigung Reinforcement Learning from Human Feedback . . . 20

7.1.3 Finetuning Kosten 0. 21

7.2 Skalierbarkeit 22
7.3 Integration 23

8 Diskussion 23

9 Fazit

A Anhang: Konkretes Beispiel-Mapping

24

25

1 Abstract

Diese Arbeit evaluiert die Idee, eine Kl-gestiitzte Teilautomatisierung der Schnittstel-
lenentwicklung durch gezielte Kombination von Schema-Mapping® und Codegenerie-
rung zu ermoglichen. Der Fokus liegt auf der Generierung eines zuverlidssigen Mappings
aus verschiedenen Eingangsformaten auf eine feste Zielentitét sowie den dafiir erforderli-
chen Anforderungen. Ein darauf spezialisierter Agent soll Informationen aus relevanten
Feldern extrahieren und anschlieBend mithilfe probabilistischer Modellvorhersagen den
passenden Zielfeldern zuweisen. Durch manuelle Eingriffe soll das erzeugte Mapping
weiter prézisiert werden konnen. Als Bewertungskriterien werden die Einhaltung der

Feldzuordnung und sie semantische Korrektheit des Outputs herangezogen.

2 Einleitung

Die INFORM Institut fiir Operations Research und Management GmbH entwickelt Soft-
warelosungen fiir die Optimierung von Geschéftsprozessen auf Basis von Operations Re-
search und Kiinstlicher Intelligenz. IThre verschiedenen Geschéftsbereiche decken Bran-
chen wie Luftfahrt, Logistik, Finanzwesen und Telekommunikation ab, mit dem Ziel,
Planungs- und Entscheidungsprozesse zu unterstiitzen und zu verbessern. Im Geschéfts-
bereich Industrielogistik und Healthcare der INFORM GmbH werden Softwareproduk-
te entwickelt, die innerlogistische Transport- und Logistikprozesse optimieren. Dabei
gehort die Uberwachung von Transportauftrégen zu den zentralen Prozessen und wird
bei samtlichen Kunden genutzt. Diese Transportauftrage konnen direkt im System ange-
legt werden, oder sie werden aus Fremdsystemen wie SAP importiert. Fiir die Auftrags-
importe kommen aktuell manuell implementierte Schnittstellen zum Einsatz, um spe-
zifische Anwendungsfille fiir jeden Kunden abzubilden. Die empfangenen Nachrichten
unterscheiden sich bei jedem Kunden zusétzlich in ihrer Datenstruktur und Mapping-
Logik. Insgesamt existiert eine Vielzahl an Schnittstellen, deren Entwicklung und Pflege
einen entsprechend hohen Ressourcenaufwand erfordert. FLEX ist in diesem Kontext
eine Neuentwicklung des bestehenden Produkts, die sowohl in den Prozessen als auch in
den Schnittstellen weniger projektspezifische Entwicklungen benétigt und einen stan-
dardisierten Weg der Produktanpassung bereitstellen soll. Fiir die Auftragseingabe {iber
Schnittstellen sollen JavaScript basierte Mappings eingesetzt werden. Dadurch soll die
Arbeitsbelastung beim Entwicklungsprozess verringert werden. Zur Realisierung dieses
Bediirfnisses bieten sich KI-Losungen an, da sie Routineaufgaben iibernehmen kénnen
[von Richthofen et al., 2022].

!Unter Schema-Mapping versteht man die systematische Zuordnung von Feldern und Strukturen

zwischen unterschiedlichen Datenmodellen auf ein Zielschema[Fagin, 2009]

3 Anforderungsanalyse

Um eine zielgerichtete Strategie zu entwickeln, miissen zunéchst die Anforderungen an

den Agenten genau definiert werden.

3.1 Funktionale Anforderungen

Die primére Anforderung besteht darin, ein korrektes Mapping fiir einen Dokumenttyp
zu gewahrleisten, das anschlieBend auf mehrere Dokumente desselben Typs {ibertragbar

ist. Auf dieser Grundlage ergeben sich die folgenden Teilaufgaben.

e Verstidndnis der abzubildenden Entitéit
Das System muss das komplette Schema der Zielentitdt kennen. Das Schema
enthélt Informationen iiber samtliche Pflichtfelder und optionale Felder der Zie-
lentitét. Dieses Wissen muss jederzeit abrufbar sein, damit alle folgenden Schritte

sauber funktionieren.

e Verarbeitung unterschiedlicher Input-Datenformate
Das System muss verschiedene eingehende Formate (XML, JSON und Text) verar-
beiten und diese anhand eines definierten Schliisselfeldes jeweils festen Mapping-
regeln zuordnen. Das Schliisselfeld ist bei IDOC-Dateien (Eingangsformat aus
SAP) am Tag ,JCOCTYP* erkennbar.

¢ Automatische Generierung von Vorschlags-Mappings und JavaScript-
Code
Das System muss fiir relevante Felder im Input-Datensatz automatisch eine pas-
sende Zuordnung zum Feld des Entitdt-Schemas vorschlagen, basierend auf Feld-
namen, Typen, Semantik und Beispieldaten. Daraus entstehen initial fiir jeden
Mappingtyp feste Mappingregeln. Diese Regeln sollen auf ein JavaScript Templa-

te angewendet werden, um ein ausfithrbares Snippet zu Testzwecken zu erhalten.

e Verarbeitung expliziter Mappingregeln
Das System muss explizite Mappingregeln einlesen und auf die Zielentitét anwen-
den konnen. Der resultierende Output eines spezifischen Inputs muss in einem
passenden Format dargestellt werden. Dadurch sind die Feldbelegungen nachvoll-

ziehbar und es kann genau getestet werden.

e Moglichkeit zum manuellen Eingriff
Bei Abweichungen sollen manuelle Texteingaben von Experten die Mappingregeln
korrigieren. Wenn moglich, soll das System aus den manuellen Mappingvorschlagen

lernen und bei zukiinftigen Berechnungen eine héhere Prézision erreichen.

3.2 Nicht-funktionale Anforderungen

Obwohl der Agent zunéchst zur Analyse und Korrektur von Mappingstrukturen ent-
wickelt wird und noch nicht in ein produktives System integriert ist, miissen bestimmte

Qualitatskriterien bereits eingehalten werden.

e Bewertung des Mappings
Der Fokus der Arbeit liegt auf der Qualitidt des Mappings. Daher wird eine
Moglichkeit gesucht, das Mapping automatisiert zu bewerten. Zu den Bewertungs-
kriterien zéhlen Konsistenz, Reproduzierbarkeit sowie die Genauigkeit der Zuord-
nungen. Bei einem Agenten, der mit LLMs arbeitet, enstehen nicht immer repro-
duzierbare Ergebnisse, da ein LLM zwischen vielen moglichen Entscheidungspfa-
den wihlen kann. So kann es zu dem Phénomen von verschiedenen Ergebnissen
bei gleichem Prompting kommen, was bei Datenmapping unerwiinscht ist. Auf
diesen wichtigen Punkt wird im Kapitel Qualitidtssicherung genauer eingegangen.
Die Modellkorrektheit bzw. Zuverlédssigkeit muss ebenfalls sichergestellt werden
auf Grundlage der Modellgetriebenen Entwicklung (MDE). Fiir das Testen von
exemplarischen Ergebnissen werden vorhandene Integrationstests verwendet, auf

weitere Bewertungsmethoden wird auch eingegangen.

e Lernfihigkeit
Der Agent soll Riickmeldungen verarbeiten und seine Entscheidungsregeln adap-

tiv weiterentwickeln.

e Sicherheit
Die verarbeiteten Daten sollten bestmoglich keine sensiblen Informationen enthal-
ten oder es sollte eine Umgebung genutzt werden, die ausreichend Datenschutz
bietet (z.B. Copilot Enterprise).

e Laufzeit und Kosten
Die Berechnungsdauer kann zunéchst vernachléssigt werden, da der Agent in der
Entwicklungsphase nicht zur Laufzeit in einem System eingebunden ist. Die Ko-
sten des verwendeten Modells miissen zwar beriicksichtigt werden, fallen jedoch
bei ersten Testlaufen mit GPT4.1 gering aus. Der Preis betrug 4 Euro fiir 2 Millio-

nen verbrauchte Tokens (Begriff im Folgenden erlautert) in zahlreichen Testlaufen.

4 Methoden und Verfahren

Zur Umsetzung der gewiinschten Anforderungen ist zu klidren, welche Entwicklungs-
schritte und Methoden sinnvoll sind, um ein Kl-basiertes Mappingsystem zu realisie-
ren. Das Ziel ist es, ein in sich geschlossenes System zu entwerfen, das selbststdndig
arbeitet und sémtliche Anforderungen des definierten Use Cases im Datenmapping voll-
umfinglich abdeckt. Im Folgenden werden bewéhrte Vorgehensmodelle und bestehende

Entwicklungsprojekte betrachtet, um eine Umsetzungsstrategie zu entwickeln.

4.1 Large Language Model

Fiir Kl-gestiitztes Datenmapping braucht man zunéchst ein Large Language Model
(LLM), weil es semantische Zusammenhénge und Ahnlichkeiten erkennen kann
[Parciak et al., 2024]. LLMs basieren meist auf neuronalen Netzen [Vaswani et al., 2017]
und sind in der Lage, natiirliche Sprache zu verarbeiten und Wahrscheinlichkeitsvertei-
lungen fiir das néchste Token vorherzusagen [Miiller and Schneider, 2025]. Ein Token
ist dabei die Einheit, in die das LLM sadmtlichen Text aufteilt, um ihn zu verarbei-
ten [GeeksforGeeks, 2023]. Bei der Codegenerierung gehoren dazu auch Symbole wie
;' oder {}“. Da LLMs probabilistische Entscheidungen treffen, kénnen sie auch Syn-
taxvorgaben einhalten und sind fiir die Codegenerierung geeignet [Chen et al., 2021].
Dabei hiangt die Wahl des optimalen LLMs stark vom Usecase ab, weil alle Model-
le spezifische Stdrken und Schwéchen haben. Die LLMs unterscheiden sich grundle-
gend in ihrer Modellgroe (Wissensbasis), Kontextlinge (Maximale Speicherkapazitét
im kiinstlichen Gedéchtnis) und Tokenanzahl (Komplexitit der Berechnung des LLMs)
der Prompts. Insbesondere die Kontextlinge ist oft ein limitierender Faktor bei Auf-
gaben wie Schema-Mapping, da bei der Verarbeitung langer Dokumente oftmals mehr
relevante Informationen benétigt werden, als das LLM zu einem Zeitpunkt speichern
kann [Shapkin et al., 2023].

[Buss and Safari, 2025] untersuchten bereits das Kl-gestiitzte automatische Schema-
Mapping. Sie stellten fest, dass ohne menschlichen Einfluss kein funktional einwandfreies
Ergebnis automatisch generiert werden kann.

LLM-basierte Agentensysteme profitieren daher stark von hybriden Ansétzen, bei denen
menschliches Feedback und Anweisungen das LLM ergénzen. Durch Einbeziehung von
Anweisungen aus der natiirlichen Sprache, etwa durch Prompt-Engineering, kann das

LLM seine Aufgaben genauer verstehen [Neubauer, 2025].

4.2 Prompt-Engineering

Die Verwendung von Prompt Engineering ermoglicht eine hybride Entwicklung eines
Agenten, bei der die Stérken des LLM mit gezielter menschlicher Steuerung kombiniert
werden.

,Prompt Engineering bezeichnet die zielgerichtete Gestaltung von Eingabeprompts fiir
Foundation Models (Oberbegriff fiir LLMs), um deren generative Fahigkeiten fiir spe-
zifische Aufgaben und Anwendungskontexte nutzbar zu machen, ohne dabei die Mo-
dellparameter direkt zu verdandern® [Hodl, 2025][S. 29]. Dabei werden Formulierungen,
Struktur, Kontext und zusétzliche Parameter genutzt, um das Modell gezielt zu steu-
ern. Prompt Engineering spielt eine zentrale Rolle bei der praktischen Anwendung von
Large Language Models, da kleine Anderungen im Prompt oft zu deutlich unterschied-
lichen Ausgaben fiihren kénnen.

Durch gezielte Anwendung von Chain-of-Thought Prompting kann man das LLM dazu
bringen, mehr nach logischen Schliissen wie ein Mensch zu denken

[Tong and Zhang, 2024]. Ein Beispiel fiir diese Methode - auch logical reasoning genannt,
- ist ,,Lose Schritt fiir Schritt“. Dies ist ein einfacher Weg zu genaueren Antworten. Ein
mogliches Beispiel im Kontext wére: ,setze zunéchst die eindeutigen Felder und versu-

che daraus die unsicheren Felder abzuleiten*.

Eine andere Moglichkeit, um dem Sprachmodell Muster beizubringen, ist das few-
shot learning. Dabei promptet man beispielhafte Input-Output Paare, die dem Modell
als Lernmaterial dienen [Tong and Zhang, 2024]. Leider passiert hier nur In-Context-
Learning, es werden also keine Modellgewichte angepasst, und nach der Session geht
das Wissen wieder verloren. Es gibt eine weitere Moglichkeit, Trainingsbeispiele als

Lernhilfe zu nutzen, ohne den Kontext zu fluten.

4.3 RAG

Mit Retrieval-Augmented Generation (RAG) konnen externe Wissensquellen in den
Generierungsprozess eines LLM eingebunden werden. Die Technologie ermdoglicht es,
beispielsweise Mappingregeln, Schemata oder Beispieldaten in einer Datenbank abzule-
gen und bei Bedarf kontextsensitiv nachzuladen. Die Speicherung erfolgt oft in vektor-
basierten Datenbanksystemen, die fiir eine effiziente semantische Suche ausgelegt und
auf groffe Datenmengen skalierbar sind [Ma et al., 2025]. Durch Berechnung der seman-
tischen Ahnlichkeit von Anfrage und Speicher werden moglichst passende Teile aus der
Datenbank extrahiert und in den Kontext geladen [Gao et al., 2023].

Der wesentliche Vorteil von RAG besteht darin, dass der Kontext dynamisch erweiterbar
ist: Neue oder geénderte Mappingregeln, zusétzliche Beispieldateien oder aktualisierte

Schemata konnen zur Laufzeit in die Wissensbasis aufgenommen werden [Ma et al., 2025].

So kann der Agent flexibel auf Anderungen reagieren, oder sie sogar selber vornehmen.
Damit eignet sich RAG fiir Szenarien, in denen sich die zugrunde liegenden Daten héufig

andern und ein statisch trainiertes Modell schnell veralten wiirde.

In aktuellen Arbeiten wird RAG daher als zentrales Architekturprinzip betrachtet, da es
die Stdrken grofler generativer Modelle mit préziser, abrufbarer Wissensreprasentation
verbindet und so eine skalierbare, wartbare Wissensintegration ermoglicht

[Gao et al., 2023].

4.4 Instruction Prompt

Der Instruction Prompt ist die grundlegende Handlungsanweisung fiir den Agenten und
definiert sein Verhalten. Man kann hier direkt einen Teil vom Kontextspeicher fiir jeden
spater getitigten Prompt belegen. Wie Li et al. zeigen, konnen Instruction Prompts
die Einhaltung von Anweisungen stabilisieren, wobei ein vollstindig reproduzierbares

Verhalten iiber mehrere Interaktionen hinaus nur eingeschriankt belegbar ist [Li, 2024].

Fiir die Anwendung ist es entscheidend, dass der Instruction Prompt préazise formuliert
ist und dem Agenten eine Aufgabe eindeutig beschreibt. In der Regel ist ein einzelner
Agent (Single-Agent System, SAS) mit klar abgegrenzter Zusténdigkeit fiir eine spe-
zifische Aufgabe am besten geeignet, da sich sein Verhalten so konsistent bleibt und
sich leichter evaluieren ldsst [Gao et al., 2025]. Sollen hingegen mehrere, deutlich un-
terschiedliche Aufgaben oder Teilprobleme abgedeckt werden (z.B. Vorverarbeitung,
Mapping, Validierung), bietet sich der Einsatz eines Multi-Agenten-Systems (MAS)
mit spezialisierten Teilagenten an, die jeweils eigene Instruction Prompts erhalten und
iiber Schnittstellen miteinander interagieren. Der MAS Ansatz erzeugt erheblich mehr
Komplexitit und erreicht dafiir hohere Genauigkeit und Robustheit bei komplexen An-
forderungen [Gao et al., 2025].

Die beschriebenen Konzepte — grofie Sprachmodelle (LLMs)

[Bommasani et al., 2021], Prompt Engineering [Liu et al., 2023, spezialisierte Instruc-
tion Prompts sowie Retrieval-Augmented Generation (RAG)[Lewis et al., 2020] — gel-
ten in Kombination als etablierter Standard bei der Entwicklung moderner KI-Systeme.
Sie dienen dazu, den Aufgabenbereich der Modelle prazise einzugrenzen, die benttigten
Wissensquellen strukturiert bereitzustellen und das Antwortverhalten in Richtung nach-
vollziehbarer, schrittweiser Schlussfolgerungen zu steuern. Die praktische Umsetzung
des Prototyps baut konsequent auf diesen Methoden auf und iibertriagt sie auf den

doménenspezifischen Anwendungsfall des Mapping-Agents.

5 Entwicklung

In diesem Kapitel wird die konkrete Entwicklung des Kl-gestiitzten Mappingsystems
dokumentiert. Es wird dargestellt, wie die vorgestellten Methoden und Verfahren in der

Praxis angewendet und angepasst wurden.

5.1 Ansatz

Zu Beginn der Arbeit wurde eine firmeninterne Entwicklungsumgebung zur Konfigura-
tion personlicher KI-Chatbots genutzt.

Diese stellt Funktionen wie die Wahl des LLMs, des Instruction Prompts und die
Einstellung eines Kreativititsparameters (Temperatur) sowie zusétzliche Individua-
lisierungsmoglichkeiten zur Verfiigung. Die Temperatur steuert dabei den Grad der
Zufalligkeit in den Modellantworten. Niedrige Werte fithren zu eher deterministischen,
reproduzierbaren Ausgaben, wiahrend hohere Werte kreativere, aber auch weniger vor-
hersagbare Antworten begiinstigen [Holtzman et al., 2020].

Ein Vorteil dieser Umgebung liegt in der Datensicherheit, da sie in der Unternehmens-
infrastruktur betrieben wird. Somit konnten bedenkenlos Experimente durchgefiihrt
werden.

Die ersten Experimente nutzten lediglich Kontextmanipulation iiber den Instruction
Prompt. Dort wurde der Input auf XML-Dateien und der Output auf Javascript Snip-
pets ohne genaue Vorgaben festgelegt. Dem Agenten wurden zudem die Felder der

Zielentitét im Instruction Prompt mitgeteilt (Tabelle 1). .

Tabelle 1: Visualisierter Ausschnitt des Schemas CreateCustomerOrderRequest

Feld Typ required Beschreibung

startPosition string ja Code of the start position
targetPosition string ja Code of the target position

amount number nein Amount to transport

scanld string ja Optional scan ID

remark string nein Optional remark for the order
customValues object nein Generic custom values as key-value pairs

Mit diesen minimalen Anweisungen konnte der Agent eine im Prompt mitgegebene
XML Datei verarbeiten und ein erstes Snippet erzeugen.

Obwohl die generierten Outputs weder syntaktisch noch semantisch vollstandig korrekt
waren, war der Bezug zur gegebenen Anweisung erkennbar und zeigte das grundsétzliche
Potenzial des Ansatzes (Abbildung 1).

W 5110202

Here is a JavaScript snippet for mapping the XML structure to the 1acsaporder entity. | have extracted relevant fields based on the struct

function mapxmlTonacSaporder (xmiData) {
const wacSaporder = {

thnum: xmlData?.E1EDT262. TKNUM || ", // Transportnummer

orderStatus: "NEW', // Default value

tdlnr: xmlData?.E1ADRMA?.find((partner) => partner.PARTNER Q === "SP")?.PARTNER_ID || null,

zkonzern: xmlData?.E1ADRMA2. Find((partner) => partner.PARTNER_Q === "0S0")2.NAME1 || ™", // Konzern extracted from NAVE1

route: xmlData?.E1EDT26?.ROUTE || null,
kunName: xnlData?.E1ADRMA?. Find((partner) => partner.PARTNER Q =

"OTP")2.NAME1 || null, // Kundenname

kunnr: xmlData?.E1ADRMA? . find((partner) => partner.PARTNER_Q TP")2.PARTNER_ID || null, // Debitorennummer
zzabgha: xnlData?.E1TXTP6?.Find((text) => text.TDID === "2835")3.TDLINE || null, // Abgangshafen

zzbesha: xmlData?.E1TXTHG?.find((text) => text.TDII "7840")? . E1TXTPG?. TOLINE || null, // Bestimmungshafen
zztramn: xnlData?.E1EDT222.SHTYP BEZ || null, // Transportmittelname

zzlads: xmlData? .E1EDT1?.find((edt) => edt.QUALF === "063")?.ISDD 2 new Date("${xmlData.ELEDT10.find((edt) => edt.QUALF
carrierNote: xmlData?.EATXTHG? .Find((note) => note.TDID === "2238")2.EATXTP62.TDLINE || null, // Carrier note
land1: xmlData?.E1ADRMA?.Find((partner) => partner.PARTNER_Q === "OTP")2.COUNTRY1 || null, // Landerschlussel
zvdat: xmlData?.EDI_DC4@ .CREDAT ? new Date("${xmlData.EDI DC4@.CREDAT}T${xmlData.EDI_DC48.CRETIM}") : null, // Versandd
recentlychanged: false, // Default nothull
numberofUpdates: @, // Default nothull

15

return wacSaporder;

b

Notes:

1. The snippet assumes xn10a¢a follows JSON-like representation parsed from XML.

2. Default and notNull fields like recentlychanged and orderstatus are statically set per schema requirements.
3. Checks for existence (2.) and type (find) are used to handle optional fields and segments.

4. Date parsing relies on the provided date and time format.

This snippet may require additional testing to ensure compatibility. Let me know if you need further clarification or adjustments!

Abbildung 1: Diese erste Antwort verdeutlicht das grundsétzliche Potenzial des Ansat-
zes. Die JavaScript-Syntax wurde korrekt eingehalten und das erzeugte Ausgabeformat
weicht nur geringfiigig vom gewiinschten Zielschema ab, obwohl noch kein Template
vorgegeben war. Zudem wurden Begriindungen fiir die Feldzuordnungen geliefert, auch

wenn diese inhaltlich teilweise noch nicht korrekt waren

Es wurde jedoch schnell eine Limitierung der Inputlédnge durch die vom LLM abhéngige
KontextgroBe identifiziert. Aufgrund der Grole der eingegebenen XML-Dateien wurde
das Kontextfenster unabhéngig vom ausgewéhlten LLM {iberschritten, was zu einer lan-
gen Rechenzeit ohne Ergebnis fithrte. Die meisten Informationen des Inputs sind zwar
irrelevant, aber alle relevanten Felder miissen trotzdem erkannt und ausgelesen werden
konnen. Daher setzt die Umsetzung der Aufgabe eine intelligente Kontextverwaltung
voraus. Dafiir wurde eine externe Datenbank als RAG-System angebunden. Die Doku-
menteninhalte konnen bei dieser Technologie mittels Suche anhand der semantischen
Ahnlichkeit abgerufen werden. Die RAG-Anbindung war fiir die ersten Experimente
mit wenigen Dokumenten vollkommen ausreichend, es konnte jede Query sowie ih-
re Riickgabewerte eingesehen werden. Mit der Skalierung auf mehrere Dokumente im
RAG wurden jedoch Schwachstellen identifiziert. So war etwa keine zuverléssige Doku-
mentsuche anhand des Dateinamens moglich, sodass das im Prompt explizit genannte
Dokumente nicht in allen Fillen tatséichlich vom System herangezogen wurde. Die ver-
wendete RAG-Technologie war nur fiir einen semantischen Vergleich der Anfrage mit
den Inhalten, aber nicht mit den Namen der Dokumente ausgelegt. Um die Anforderung
des Mappings umzusetzen, muss jedoch eine bestimmte Datei als Eingabe genutzt wer-
den konnen, da sich die Zuordnung immer an der konkreten Eingabestruktur orientiert.
Somit war diese Umgebung nicht génzlich fiir die Anforderung geeignet. Es konnten

jedoch wichtige Erkenntnisse {iber die praktische Umsetzung gewonnen werden:

5.1.1 Instruction-Prompt Erkenntnisse

Schon nach wenigen Tests wurde festgestellt, dass kleine Anpassungen im Instruction-
Prompt das Ergebnis erheblich beeinflussen kénnen und seine Konfiguration daher ein
entscheidender Schritt in der Losungsfindung ist. Auf Basis verschiedener getesteter
Instruction-Prompts wurden folgende Erkenntnisse fiir eine systematische Weiterent-

wicklung gezogen:

e Input-/Output festlegen Der Prompt muss die erwarteten Eingabeformate und
das gewiinschte Ausgabeformat klar definieren, um dem Agenten Orientierung
zu bieten. Aus Experimenten sowie einer externen Quelle geht hervor, dass die
Einhaltung der Syntax am zuverldssigsten durch ein vorgegebenes Template und
Beispiele im Kontext erreicht wird [Reynolds and McDonell, 2021].

¢ Handlungsablauf Der Prompt muss den generellen Handlungsablauf des Agen-
ten Schritt fiir Schritt nach dem Chain-of-Thought Prinzip beschreiben, um eine
konsistente und methodische Vorgehensweise zu gewéhrleisten. Soll innerhalb des
RAG-Mechanismus auf Dateien zugegriffen werden, miissen die dafiir geltenden
Regeln explizit beschrieben werden.
In Experimenten ohne klar vorgegebenen Handlungsablauf traten vermehrt Hal-
luzinationen und inkonsistente Ergebnisse auf oder der Ablageort benotigter Da-
teien wurde nicht gefunden. Die logischen Schritte zur Ergebnisfindung miissen

daher explizit im Prompt vorgegeben werden.

e Sonderfille Ausnahmefille und Randbedingungen miissen antizipiert und mit
expliziten Handlungsanweisungen versehen werden, um Robustheit zu sichern.
Im konkreten Anwendungsfall ist der Umgang mit nicht gesetzten Pflichtfel-
dern und moglichen Zusatzfeldern ein zu behandelnder Ausnahmefall, dessen Ver-
nachlassigung dazu fithrte, dass generierte Zielobjekte entweder formell ungiiltig

waren oder relevante Zusatzinformationen verloren gingen.

e Spezialisierung Ein Agent sollte auf eine spezifische Fahigkeit oder Aufgabe
spezialisiert sein, anstatt mehrere Use Cases zu vereinen. Dies erhoht die Trans-
parenz und vereinfacht die Weiterentwicklung.

In den ersten Tests wurde dieser Aspekt nicht beriicksichtigt: Der Agent soll-
te gleichzeitig das Mapping entwerfen und JavaScript-Code generieren. Dadurch
war die Nachvollziehbarkeit des Outputs eingeschréankt und mogliche Fehlerursa-
chen wurden nur schwer erkannt. Als Konsequenz wurden feste Mapping-Regeln
als Zwischenschritt eingefiihrt, sodass die Codegenerierung erst auf Basis eines

zuvor validierten Mappings erfolgt.

e Formulierung Alle Anweisungen miissen prazise und eindeutig formuliert sein,
um Interpretationsspielrdume und damit verbundene Fehlerquellen zu minimieren

[White et al., 2023].

e Prignanz Ein {iberméfig langer und detaillierter Prompt kann die Ergebnisqua-
litdt verschlechtern, da er zu Redundanzen und Ablenkungen fiihrt
[Chatterjee, 2025]. Die Formulierung sollte prézise und auf das Wesentliche redu-
ziert sein, um diese Halluzinationen zu vermeiden und Kontextspeicher einzuspa-

remn.

5.2 Reflexion und Fokussetzung

In Anbetracht der gewonnenen Erkenntnisse durch die ersten Experimente und der

erkannten Schwachstelle der RAG-Suche war eine Neuausrichtung erforderlich.

In den ersten Experimenten wurde der Agent als ganzheitlicher Schnittstellengenera-
tor konzipiert: Er sollte eine Eingabedateien analysieren, daraus ein Mapping ableiten
und dieses direkt in lauffihigen FLEX-spezifischen JavaScript-Code iiberfiithren, der
anschliefend in der AWS-Laufzeitumgebung getestet wurde. Diese Herangehensweise
erwies sich jedoch als problematisch, weil Fehlerquellen aus Mapping, Codegenerierung
und Zielumgebung miteinander vermischt wurden. Zusétzlich erschwerte die langsame
Ausfithrung und die nur indirekte Einsicht tiber Serverlogs die Analyse der Ergebnis-
se. Dadurch waren Transparenz und Nachvollziehbarkeit der Einzelschritte stark einge-
schrinkt und die gezielte Weiterentwicklung des Mappings wurde behindert. Aus diesen
Schwachstellen wurde die Konsequenz gezogen, Parsing, Mapping und Codegenerierung
klar zu trennen und den Fokus der Arbeit zunéichst auf ein fachlich valides, lokal test-
bares Mapping zu legen, bevor die eigentliche Laufzeitintegration in FLEX betrachtet

wird.

Die Fokussierung auf die Laufzeitintegration stellte somit einen Schritt vor der eigentli-
chen Kernaufgabe dar — der Erstellung eines korrekten und nachvollziehbaren Mappings.
Daher wurde der Fokus der Arbeit bewusst auf die Entwicklung eines zuverliassigen
und validen Mappings eingegrenzt. Dieses Mapping wird weiterhin in ausfithrbarem
Code abgebildet, allerdings zunéchst in einer vereinfachten, lokal testbaren Syntax
(JavaScript-Snippets in der HTML-Testumgebung), bevor eine spétere Ubersetzung in
das endgiiltige FLEX-Kommando erfolgen kann. Auflerdem musste aufgrund der einge-
schrinkten RAG-Suche eine Umgebung mit speziell dafiir ausgelegter RAG-Integration

genutzt werden.

10

5.3 Umsetzung in Visual Studio Code

Nach den ersten Experimenten in der firmeninternen Umgebung wurden die weiteren
Untersuchungen zum Mappingsystem in Visual Studio Code durchgefiihrt. Dort kam
GitHub Copilot als LLM-basierter Assistent zum FEinsatz, der im Wesentlichen die

gleichen Konfigurationsmoglichkeiten wie die vorherige Umsetzung anbietet.

Zusétzlich konnte standardméflig eine gezielte Dateisuche durchgefiithrt werden, wo-
durch die vorherige Problematik behoben wurde. Dariiber hinaus gestaltete sich die
Navigation und Entwicklung in der Entwicklungsumgebung als benutzerfreundlich, da
Kontext und Chat in einer Oberfliche integriert sind. Grundsétzlich wurde der glei-
che Ansatz von Instruction Prompt und interner RAG-Anbindung genutzt. Eine ent-
scheidende zusétzliche Moglichkeit liegt aber in der eigenstéindigen Manipulation von
Kontext-Dateien und die damit einhergehende Realisierbarkeit einer iterativen Verbes-

serung durch Feedback.

5.3.1 Finaler Prompt

Der Finale Prompt ergibt sich aus den zuvor gesammelten Anforderungen und Metho-

den. Zunéchst wird in der Einleitung die Spezialisierung des Agenten klargestellt:

(B

Du bist ein spezialisierter Mapping-Agent. Deine Aufgabe ist es, Felder beliebi-
ger XML- oder JSON-Eingaben auf ein vorgegebenes Entitdtschema abzubilden.
Fiir jedes Zielfeld wéhlst du anhand von Feldnamen, Struktur, Kontext und dei-
nem vorhandenen Wissen das passendste Eingabefeld aus und begriindest deine

Zuordnung, wenn sie nicht eindeutig ist.

Nachdem ausfiihrliche Experimente gezeigt haben, dass eine Best-Practice bei der Agen-
tenkonfiguration die Definition eines festen Ablaufplans darstellt, wurde dies auch um-
gesetzt. Unter Beriicksichtigung der genannten Erkenntisse beziiglich Pragnanz und
Formulierung wurde die generelle Vorgehensweise im Instruction Prompt final wie
folgt definiert:

Analysiere die Struktur des eingehenden Objekts. Nutze vorhandene Mapping-
Regeln, wo sie definiert sind, und leite fiir alle iibrigen Felder auf Basis von
Feldnamen, Struktur, Kontext und deinem Wissen sinnvolle Zuordnungen ab.
Nutze Feedback, um dein Mapping-Wissen und deine Heuristiken schrittweise
zu verbessern. Ziel ist es, alle Felder des Entitdtschemas moglichst sinnvoll und

vollsténdig zu belegen — auch bei unbekannten oder neuen Formaten.

11

Fiir das Eingangsformat XML wurden die Anweisungen sowie die erwarteten Input-/

Output Formate nochmal prézisiert, damit die Vorgehensweise eindeutig ist:

Erweiterung (IDoc-spezifische Regeln):

1. Bestimme den IDOCTYP aus dem XML.

2. Lade die zugehorige Mapping-Regeldatei, lege fiir neue oder unbekannte
IDOCTYPS neue Regeldateien an, die du nach Feedback weiter verfeinerst.

3. Wende diese Regeln beim Feld-Mapping auf JavaScript-Templates an

Es fehlte noch eine genauere Anleitung zum Erstellen neuer Mapping-Regeln, was den
Kern der Aufgabe des Agenten darstellt. Diese Regeln sind zwar umfangreicher defi-
niert, lassen sich aber auf diese Prinzipien zuriickfithren:

Die Orientierung am Zielschema (CreateCustomerOrderRequest) bildet die Grundlage
fiir die heuristischen Zuordnungen, da das Schema neben den Feldnamen und Datenty-
pen auch kurze Beschreibungen zur Bedeutung der Felder enthélt (Tabelle 1, S.7). In
Kombination mit den Feldnamen und Datentypen der jeweiligen Eingabe kénnen die
verfiigharen Moglichkeiten zur Belegung jedes Feldes schon eingegrenzt werden.
Zudem muss der Agent aus allen bestehenden Beispielen und Regeln zusétzliche Schliisse
ziehen und diese auf neue Formate anwenden.

Im Falle einer Unsicherheit soll dies auch klar kommuniziert werden. Statt willkiirlich
Felder zu belegen, sollen mehrere Moglichkeiten gegeben und auf diese Weise eine hohere
Transparenz erreicht werden.

Menschliches Feedback iiber den Chat soll flexibel in das System einfliefen. Auf diese
Weise soll die Zuordnung schrittweise verbessert werden kénnen.

Um Sonderfille abzudecken, wurden unbekannte Zusatzfelder zundchst unverdndert
in das Zielobjekt iibernommen, wahrend Pflichtfelder bei fehlender Belegung mit klar
erkennbaren Defaultwerten versehen wurden, um in jedem Fall ein formal valides Zielob-
jekt zu erzeugen. Dieses Verhalten ist anpassbar, fiir die durchgefiihrten Tests erwiesen

sich Defaultwerte jedoch als zweckméfig, um fehlende Pflichtfelder zu identifizieren.

Durch die Ablage des Prompts im Projektkontext konnte sein Inhalt durch Promptein-
gaben (im Kapitel Kontextanreicherung erldutert) iterativ auf Basis der gewonnenen
Erkenntnisse und Testergebnisse angepasst werden. Konkret wurden nach fehlgeschla-
genen oder unvollstdndigen Mappings zusédtzliche Regeln und Prézisierungen ergénzt
- die Verpflichtung zur Nutzung expliziter Mapping-Regeldateien, Anweisungen zum
Umgang mit Pflicht- und Zusatzfeldern, ein fest definierter Handlungsablauf sowie
Anhaltspunkte zur Verbesserung des Initialmappings. Diese schrittweisen Anderungen

fithrten dazu, dass der Agent sukzessive weniger Halluzinationen zeigte und die Felder

12

des CreateCustomerOrderRequest nachvollziehbarer belegte. Auf diese Weise entstand
eine Evolution der Konfiguration, durch die der Agent immer genauer auf seine spezi-

fische Mappingaufgabe kalibriert wurde.

5.3.2 Kontextanreicherung

Die Kontextanbindung ist in VS Code ohne grofien Initialaufwand iiber das integrierte
RAG-System moglich. Alle relevanten Dateien liegen im selben Projektverzeichnis und
sind damit fiir den Agenten zuginglich. Uber die semantische Suche wurden mit hoher
Trefferquote gegebene Dateien bei Bedarf in den Kontext geladen. Die Limitierung der
Kontextgrofle aufgrund langer Inputdateien konnte so gelost werden. Die zuvor aus-
gefithrte Evolution der Konfiguration resultiert aus der zusétzlichen Moglichkeit zur
direkten Kontextmanipulation durch Nutzereingaben.

Ein kleines Hindernis stellte die Berechtigung des Agenten auf automatischen Zugriff
auf den Projektordner aus Datenschutzgriinden dar. Er musste oft mehrfach aufgefor-
dert werden, die Dateien zu laden, was den Entwicklungsprozess verlangsamte.

Dies konnte aber durch folgendes Statement im Instruction Prompt grofitenteils um-
gangen werden, sodass zu Beginn eines neuen Chats nur noch eine Bestétigung notig

ist.

Du darfst auf alle Dateien im Ordner ,, Agent_Files® zugreifen und sollst zu Beginn

eines neuen Chats einmal kurz nachfragen, ob dieser Zugriff erlaubt ist.

Es gibt zusétzlich die Moglichkeit, einzelne Dateien explizit in den Kontext zu laden.

Folglich lag der Fokus weniger auf der technischen Einbindung und stéirker auf der
inhaltlichen Auswahl eines sinnvollen Kontexts.

Es ist unerlésslich, als zentralen Ausgangspunkt den Instruction Prompt einzubinden.
Zu Beginn wurde eine Input-XML sowie das Kommando-Schema mitgegeben. Darauthin
wurden erste Mappingregeln im CSV Format generiert, mit Hilfe derer ein erster JSON-
Output erstellt wurde. Auf diesen Grundlagen aufbauend wurde der Kontext durch
weitere Befehle iterativ weiterentwickelt. Fine Speicherung von neuen Regeldateien und

Outputs erfolgt dank dieser Anweisung immer automatisch.

Neue oder gednderte Mapping-Regeln sollen automatisch als CSV im Ordner
,mappingregeln“ gespeichert werden. Fiir jedes bearbeitete Eingabebeispiel ist
automatisch ein entsprechender Output im Zielschema als JSON im Ordner ,,Out-

puts® abzulegen (Dateiname analog zur Inputdatei).

Je mehr Beispiele vorliegen, desto mehr Orientierungsmoglichkeiten stehen dem Agen-

13

ten zur Verfiigung. Letztlich wurde sich auf folgende erweiterbare Struktur festgelegt.

~ AGENT_FILES
> Inputs

mappingregeln

>
> Outputs
>

Scnpt_Templates

Command_schema

InstructionPrompt.md
» test_mapping.htmil

ValidationPrompt.md

Abbildung 2: Ordnerstruktur im Projektkontext. Die Inputs enthalten Eingangsdo-
kumente und in den Outputs werden die generierten Skripte gespeichert. Im Kapitel
Qualitatssicherung wird naher auf den Hintergrund des Htmls und ValidationPrompts

eingegangen.

5.3.3 Interaktive Ausfithrung

Um den Agenten zur Ausfithrung der Aufgabe zu veranlassen, muss stets ein Prompt
in VS Code angestoflen werden. Es wurde sich auf zwei verschiedene Arten von Anwei-

sungen festgelegt.

Zum einen soll der Agent eine eingehende Datei beliebigen Formates direkt in ein JSON-
Objekt der Zielentitét iiberfithren kénnen. Dies ist vor allem bei der Entwicklungsphase

eine praktische Moglichkeit, um ohne Aufwand direkt im Chat ein Mapping zu testen.

Fiir die angestrebte Losung der Schnittstellen soll jedoch nicht fiir jedes einzelne Ein-
gangsdokument eine direkte Berechnung durch das LLM erfolgen. Dies wére einerseits
zu rechenintensiv und andererseits nicht zuverléssig einsetzbar, da ein LLM ein pro-
babilistisches Modell bleibt und selbst bei einem optimierten Instruction Prompt noch
mit Halluzinationen und potenziell fehlerhaften Ergebnissen zu rechnen ist.

Daher wurde der Standardmodus des Agenten so konfiguriert, dass er wiederverwend-

bare Javascript-Mappings erzeugt. Diese Mappings orientierten sich zunéchst an einer

14

vereinfachten, testbaren Syntax. Zunéchst wurde die in FLEX produktiv eingesetz-
te, lauffahige Syntax iibernommen. Aufgrund der in AWS eingeschréankten Testbarkeit
war jedoch eine leicht abgewandelte Syntax erforderlich, um die Tests auf der lokalen
HTML-Seite effizienter und schneller durchfithren zu kénnen. Anhand der iterativ ent-
wickelten deterministischen Mappings und eines Javascript-Templates wird fiir jeden
Dokumenttypen statt fiir jede Datei ein Script erstellt. Die Scripte werden anschlie-
Bend fiir gleichartige Dokumente wiederverwendet. Im Anhang A wird ein konkretes

Mapping gezeigt.

5.4 'Wahl des LLMs

Dariiber hinaus wurde im Rahmen der Testlaufe auch die Auswahl des zugrunde lie-
genden LLMs untersucht, da sich dabei neue Erkenntnisse ergaben.

Obwohl das in Visual Studio Code verwendete Sprachmodell grundsitzlich flexibel
gewahlt werden kann, zeigte sich in den Experimenten insbesondere GPT-4.1 als zu-
verléssig, da es die vorgegebenen Templates konsistent einhielt.

Bei der Nutzung der neueren Variante GPT-5.1 (Preview) traten hingegen vermehrt
Verstofle gegen die Templatevorgaben auf. Das Modell halluzinierte vermeintlich not-
wendige Hilfsfunktionen, welche die Ausfiihrbarkeit der erzeugten Skripte eher beein-
trachtigten. Dieses Verhalten ist im Kontext der Arbeit unerwiinscht, weshalb im Fol-
genden mit GPT-4.1 gearbeitet wurde. Eine ausfiihrliche Auswahl und Bewertung des
am besten geeigneten LLMs fiir das Schema-Mapping, insbesondere im Hinblick auf
semantische Ahnlichkeiten, konnte im begrenzten Zeitrahmen und durch mangelnde

Validierungsdaten nicht vorgenommen werden.

15

6 Qualitiatssicherung

Die ausfiihrlich durchgefithrte Qualitétssicherung setzt sich aus mehreren Schichten
zusammen, die kombiniert eine genaue Bewertung der Mappings sowie der Codegene-
rierung moglich machen. Dabei wurde besonders Wert auf die semantische Korrektheit
gelegt. Die syntaktische Korrektheit war durch die Verwendung fester Script-Templates
in der Regel sichergestellt und stellte eine vergleichsweise kleine Herausforderung dar.
Zunachst wird auf verbreitete Bewertungsverfahren eingegangen und ihre Umsetzbar-
keit diskutiert.

6.1 Bewertungsverfahren

Die testbasierte Bewertung zeichnet sich durch einen handgeschriebenen Testsatz
fiir jedes Problem aus. Mit ausreichender Testabdeckung kann so eine Funktion sicher-
gestellt werden [?], jedoch ist der Initialaufwand fiir die Unittests sehr hoch. Da sich

FLEX noch nicht im produktiven Einsatz ist, existieren keine echten Beispiele.

Eine weitere, besonders im KI-Kontext verbreitete Methode ist die tokenbasierte Be-
wertung. Dabei wird der generierte Code mithilfe eines Tokenizers in Tokens zerlegt
und mit einer bekannten Musterlosung verglichen. Bewertet wird dann die Anzahl der
abweichenden Tokens im Output [Tong and Zhang, 2024]. Dieses Verfahren setzt jedoch
valide Ergebnisse in tokenisierter Form voraus, sodass es im Rahmen dieser Arbeit nicht

eingesetzt werden konnte.

Da sowohl testbasierte als auch tokenbasierte Bewertungsverfahren im vorliegenden Use
Case nur eingeschriankt einsetzbar sind, wurde ein mehrstufiges Qualitétssicherungskon-
zept entwickelt, das menschliches Feedback, eine automatische Validierungsschicht und

exemplarische Unittests kombiniert.

6.2 Menschliches Feedback

Die hybride Entwicklung kombiniert automatisierte Vorschldge des Mapping-Agents
mit gezielter menschlicher Uberpriifung. Fachliche Riickmeldungen werden genutzt, um
Fehler und unerwiinschtes Verhalten zu identifizieren und die Mapping-Regeln itera-
tiv zu verfeinern. Konkret werden neue Initialmappings manuell gepriift. Auf Basis
dieser Priifung wird dem Agenten mitgeteilt, welches Zielfeld aus welcher Quelle be-
legt sein soll und welche Zuordnung fehlerhaft war. Diese Riickmeldung flielt anschlie-
Bend in die Aktualisierung der Mapping-Regel fiir den spezifischen Dokumententyp ein.
Durch diese wiederholte Schleife aus Agentenvorschlag, automatischer Validierung und

menschlichem Feedback entsteht ein kontinuierlicher Verbesserungsprozess. Die hybride

16

Entwicklung erhoht damit sowohl die semantische Korrektheit der Mappings und bietet

zusitzliche Sicherheit gegeniiber einer rein automatisierten Losung.

Um diese manuelle Uberpriifung zu ergénzen und zu entlasten, wurde zusitzlich eine

automatische Bewertungsschicht in Form eines Validierungs-Agenten eingefiihrt.

6.3 Automatische Bewertung

Zusatzlich wurde eine automatisierte Validierungsschicht iiber einen unabhéngigen zwei-
ten Agenten im ,,ValidationPrompt.md* definiert, um die Ergebnisqualitdt der Code-

generierung abzusichern.

Eine vollstindig automatisierte Bewertung des Mappings ist im betrachteten Use Case
nicht moglich, da zuvor unbekannte Zusammenhénge ermittelt werden, fiir die kein Vali-
dierungsdatensatz existiert. Stattdessen unterstiitzt der Validierungs-Agent die hybride
Entwicklung, indem er fiir jedes generierte Snippet priift, ob die definierten Mapping-
Regeln eingehalten werden und der Output das Zielschema erfiillt.

Um diese Genauigkeit zu erreichen, priift der Validierungsagent fiir jedes generierte

Snippet die Einhaltung folgender Kriterien:

e Er kontrolliert feldweise, ob das vom Mapping-Agenten erzeugte Ergebnis die

vorliegenden Mapping-Regeln korrekt einhélt.

e Zusitzlich stellt er sicher, dass der Output ein syntaktisch giiltiges Objekt der
Zielentitdt CreateCustomerOrderRequest darstellt und damit das zugrun-
de liegende Schema erfiillt. Wenn in angewendeten Mapping-Regeln Pflichtfelder
nicht gesetzt werden, macht der Agent darauf aufmerksam und sichert so das

Mapping ab.

In den durchgefiihrten Tests hat der Validierungs-Agent alle generierten Ergebnisse
akzeptiert, was darauf schlieffen liasst, dass die Codegenerierung auf Basis definierter
Vorlagen (JavaScript-Template und Mapping-Regeln) mit hoher Genauigkeit funktio-
niert.

Natiirlich kann auch dieser Agent halluzinieren, er stellt jedoch einen wichtigen Schritt

hin zu einem syntaktisch validen Output dar.

Neben dieser agentenbasierten Bewertung wurden dariiber hinaus klassische Unittests

eingesetzt, um das Verhalten der generierten Mappings zu iiberpriifen.

17

6.4 Unittests

Zur Bewertung der Qualitét der generierten Objekte wurden acht bestehende Unittests
aus Kundenumgebungen mit den generierten Ergebnissen verglichen und daraus die
initiale Genauigkeit der Ubereinstimmung mit den Testergebnissen fiir jedes gesetzte
Feld berechnet.

Fiir die Ausfithrung der JavaScript-Snippets wurde eine separate Umgebung bendotigt.
Diese wurde als einfache HTML-Seite implementiert, welche die generierten JavaScript-
Snippets ausfithren kann. Die Snippets konnen als Eingabe ausschliellich JSON ver-
arbeiten, da sich eine direkte Verarbeitung von XML in JavaScript ohne zusétzliche
Bibliotheken im Browser als nicht praktikabel erwies. Daher musste das XML zunéchst
in einem separaten Schritt in ein JSON-Objekt iiberfithrt werden. Daraus resultiert
eine klare Trennung von Parsing- und Mapping-Schicht, was die unabhéngige Testbar-
keit verbessert [Parnas, 1972]. Exemplarisch wurden Tests aus drei unterschiedlichen
Kundenumgebungen bestmoglich aufbereitet, damit sie auf das neue Entitédtsschema
anwendbar sind. Die Kundenumgebungen nutzen stark angepasste Varianten der behan-
delten Entitat. Viele der gepriiften Felder sind daher Sonderfille, die im urspriinglichen
FLEX-Schema nicht enthalten sind. Dadurch schneiden diese Testfélle im Initialmap-

ping tendenziell schwécher ab.

Im Durchschnitt wurden die 20 manuell betrachteten Felder initial mit einer Genauig-
keit von 30% wie im Test erwartet belegt.

Diese niedrige Trefferquote resultiert jedoch gréfitenteils aus der eingeschriankten Test-
barkeit. Es wurde festgestellt, dass fiinf erwartete Feldwerte im Input gar nicht vorhan-
den waren und stattdessen durch Defaultwerte oder zuséitzliche Logik belegt werden.
Unter Beriicksichtigung dieses Umstands erhoht sich die erzielte Genauigkeit bereits
auf 6/15 = 40%.

Die verbleibenden Felder aus den Inputs wurden zunéchst nicht korrekt erkannt, da
sie unter einem anderen Feldnamen erwartet wurden oder eine Transformation wie das
Aufteilen des Codes durch einen Bindestrich vorausgesetzt wurde. Die dafiir notwendi-
ge Logik ist im Input nicht enthalten. Nach einer Iteration, in der diese Feinheiten per
Prompt erldutert wurden und der Agent daraufhin die entsprechenden Regeln sowie
Skripte angepasst hat, konnten diese Felder wie erwartet zugeordnet werden. Unter der
idealisierten Annahme, dass menschliches Feedback fehlerfrei ist, liefle sich theoretisch
nach geniigend Iterationen eine Genauigkeit von 100% erreichen.

Die beschriebenen Tests decken nur eine begrenzte Anzahl von Beispielen ab und priifen
jeweils nur einen Teil der Felder der Zielentitdt. Daher sind sie im Sinne einer um-
fassenden Testabdeckung nicht vollstandig aussagekriftig. Sie sind jedoch die einzige

verfiighare Moglichkeit, erwartete Ergebnisse zu testen, und illustrieren exemplarisch

18

die Funktionsweise des Initialmappings und die Verbesserung durch iteratives Feedback.

Insgesamt entsteht durch die Kombination aus einer hybriden, iterativen Entwicklung
der Mappingregeln sowie internem Validierungs-Agenten und zusétzlichen exemplari-
schen Integrationstests ein mehrstufiges Qualitidtssicherungs-Konzept: auf der einen
Ebene wird die fachliche Korrektheit des Mappings durch einen Menschen validiert;
auf der anderen Ebene wird die Einhaltung dieses Mappings innerhalb der Agentenum-

gebung bei der Anwendung auf das JavaScript-Template tiberpriift.

7 Ausblick

Es existieren neben den angewendeten Verfahren weitere Moglichkeiten, ein LLM dau-
erhaft auf den speziellen Use Case des Schema-Mappings zu spezialisieren. Aufgrund
des hohen zeitlichen Aufwands wurden diese Ansétze nicht umgesetzt, sondern lediglich
konzeptionell betrachtet. Damit ist die Losung mit vertretbarem Aufwand realisierbar,
gleichzeitig bleibt ausreichend Spielraum fiir spétere Erweiterungen und Verbesserun-

gen.

Eine mogliche Verbesserung stellt das so genannte Fine-Tuning dar, mit dem die Ge-
nauigkeit des Initialmappings weiter erhoht werden kann, weshalb es im Folgenden

vorgestellt wird.

7.1 Fine-Tuning

Fine-Tuning ist ein Verfahren des Maschinellen Lernens, bei dem ein vortrainiertes
LLM mit einem doménenspezifischen Trainingsdatensatz weitertrainiert wird, um seine
Gewichte an einen speziellen Usecase anzupassen [Devlin et al., 2019]. Ein genau abge-
stimmtes LLM kann einen komplexen Prompt in seinem Fachgebiet deutlich schneller
und mit niedrigerer Fehlerquote beantworten als ein lediglich mit Few-Shot-learning
trainiertes Modell (Abbildung 4).

Method | MNLI-m (Val. Ace/%) RTE (Val. Acc./%)

GPT-3 Few-Shot 40.6 69.0
GPT-3 Fine-Tuned 89.5 854

Abbildung 3: Fine-Tuning erzielt hohere Validierungsgenauigkeit als Few-Shot-

Learning auf mehreren Datensitzen [Hu et al., 2021]

Es existieren verschiedene Fine-Tuning-Varianten, die unterschiedliche Anspriiche an

Rechenleistung sowie passend zugeschnittene Trainingssétze haben [OpenAl, 2023] und

19

damit unterschiedlich hohe Kosten verursachen. Daher ist eine Analyse des Aufwand-
Nutzen-Verhéltnisses vor der Durchfithrung angebracht. Im Folgenden werden die in die-
sem Kontext naheliegendsten Varianten sowie ihr moglicher Mehrwert fiir das Schema-

Mapping dargestellt.

7.1.1 Abwigung Supervised Finetuning

Ein gingiges Fine-Tuning-Verfahren ist das supervised Fine-Tuning (SFT), da es auf
klar definierten Eingabe-Ausgabe-Paaren basiert und somit eine direkte Optimierung
auf korrekte Schema-Mappings ermoglichen wiirde [OpenAl, 2023]. In einem stabilen
Umfeld mit weitgehend unverédnderten Formaten koénnte ein so spezialisiertes Modell
das Initialmapping die Fehlerrate deutlich reduzieren. Im betrachteten Use Case dndern
sich die Eingabeformate jedoch regelméflig, und fiir neue Varianten liegen zunéchst kei-
ne verldsslichen Validierungsdaten in ausreichender Menge vor. Damit fehlt die zen-
trale Voraussetzung fiir SFT: ein umfangreicher, konsistenter Trainingsdatensatz mit
korrekten Mappings. Ein derartiges Datenset miisste erst mit erheblichem manuellem
Aufwand aufgebaut und kontinuierlich nachgepflegt werden, was den erwarteten Nutzen
des Fine-Tunings fiir das Schema-Mapping wirtschaftlich relativiert. Das SFT wiirde
hingegen eine genauere Einhaltung der Templates ermoglichen, da es vorgegebene For-
mate préizise einhalten kann [OpenAl, 2023]. Dieses Teilproblem der Codegenerierung
wurde jedoch ohne Fine-Tuning schon ausreichend eingehalten.

Ein weiteres verbreitetes Verfahren ist das Reinforcement Learning.

7.1.2 Abwigung Reinforcement Learning from Human Feedback

Reinforcement Learning lédsst sich als ,a way of programming agents by reward and
punishment without needing to specify how the task is to be achieved“ beschreiben
[Kaelbling et al., 1996]. RLHF ersetzt dabei kein SFT, sondern baut auf einem be-
reits trainierten Modell auf und optimiert dessen Verhalten iiber Belohnungssignale.
Daraus geht hervor, dass sich RLHF als nachgelagerter Optimierungsschritt fiir den
Use Case anbietet, da es keine zusétzlichen expliziten Zielausgaben bendétigt. Die Spe-
zialisierung Reinforcement Learning from Human Feedback (RLHF) koénnte im Kon-
text der hybriden Entwicklung genutzt werden, um Mapping-Entscheidungen auf Basis
von Belohnungssignalen schrittweise zu verbessern und als Resultat fiir neue oder sich
andernde Typen genauere Initialmappings gewéhrleisten. Im vorliegenden Anwendungs-
fall wird ohnehin mit menschlichen Interaktionen gearbeitet, weshalb sich das RLHF
grundsétzlich anbieten wiirde. Dabei wird das Fine-Tuning eher als langfristiger iterati-
ver Prozess angesehen, bei dem zunehmend Feedback gesammelt wird und das Mapping
dadurch genauere Ergebnisse erzielen kann. Die Anforderungen fiir eine mogliche Um-

setzung werden im Folgenden diskutiert.

20

7.1.3 Finetuning Kosten

Die Umsetzung des RLHF baut auf der des Supervised Finetunings auf, es wird aber
zusétzlich eine Préferenzschicht trainiert, in die das menschliche Feedback einflief3t
[Dai and Pan, 2023]. Eine genaue Betrachtung der Kosten wiirde den Rahmen der Ar-
beit sprengen, daher wird im Folgenden eine grobe Abschétzung der Kosten fiir das
SEF'T vorgenommen und dann in Bezug zum RLHF gesetzt. Die Hauptfaktoren in der
Kostenberechnung des Supervised Fine-Tuning sind die Parameteranzahl des LLMs
und die Tokenanzahl des Trainingssatzes. Ein Parameter wird typischerweise in halber
Gleitkommaprézision (FP16) gespeichert, was einem Speicherbedarf von 2 Byte pro
Parameter entspricht [NVIDIA, 2018]. Dariiber hinaus existieren weitere Ansétze zur
Reduktion der benttigten Rechenleistung, aber oft auch der Effizienz, wie beispielsweise
LoRA [Hu et al., 2021], auf die im Rahmen dieser Arbeit jedoch nicht niher eingegan-

gen wird.

Eine fiir Modelltraining ausgelegte high-end GPU wie die NVIDIA A100-GPU erreicht
ungefihr 3,12*10* Floating-Point Operations Per Second (FLOPS) pro Sekunde im
FP16 Modus [NVIDIA, 2020]. Es wird angenommen, die Kosten einer A100 GPU lie-
gen bei 3,5 Euro pro Stunde, was ein realistischer Durchschnittspreis bei Cloudanbietern
ist [GetDeploying, 2025].

Im Folgenden wird eine grobe Vergleichsrechnung fiir die Kosten des FP16 Fine-Tunings
vom verwendeten LLM Gpt 4.1 sowie von neueren state-of-the-art Modellen mit jeweils
10 Millionen Trainingstoken durchgefiihrt. Auf Basis publizierter Modelle wie GPT-3
mit 175 Milliarden Parametern [Brown et al., 2020] und aktueller Ubersichtsarbeiten zu
Large Language Models [Zhao et al., 2023] erscheint es plausibel, fiir moderne state-of-
the-art Modelle wie Gpt 5.1 , Gemini 3 oder Grok 5 von Parameteranzahlen im Bereich
von mehreren Billionen auszugehen. Die Parameteranzahl von Gpt 4.1 ist ebenfalls nicht
offiziell dokumentiert und wird hier auf eine Billionen geschétzt. Fiir die Berechnung
wird die Formel FLOPS & 6 - Nparameter * NToken Denutzt [Kaplan et al., 2020]:

Kostenabschitzung FP16 fiir GPT 4.1 mit 10?2 Parametern
FLOPs-Bedarf:
FLOPs~6-10"%-10" = 610"

Rechenzeit:

FLOPs 6- 101

= ~1,92-10°s &~ 53,3 Stund
312 - 1012 FLOPS/S 312 - 1012 , S , unden

Bei beispielhaften Kosten von 3,50 Euro pro GPU-Stunde ergébe sich:

53,3h - 3,50 /h ~ 187 Euro

21

Kostenabschitzung FP16 fiir modernes Modell mit 5 - 10'? Parametern
FLOPs-Bedarf:
FLOPs~6-5-10"-10" = 3-10%

Rechenzeit:

FLOPs _3.10%
312- 102 FLOPs/s 312 10!2

~ 9,62 -10°s ~ 267,3 Stunden

Bei denselben Cloudkosten ergibt sich:

267,3h - 3,50 /h ~ 936 Euro

Die nétigen Rechenkosten fiir das Fine-Tuning mit einem Datensatz von 10 Millio-
nen Trainingstokens liegen somit nicht im extrem hohen Bereich, sondern bewegen sich
in einer Groflenordnung, die fiir Unternehmen mit Cloud-Budget wirtschaftlich reali-
sierbar ist. Die vorgenommenen Berechnungen erfassen ausschlielich die Rechenkosten
fiir das SFT und beriicksichtigen nicht den Aufwand fiir die Aufbereitung der Trai-
ningsdaten. Bei der Durchfithrung von RLHF liegen die Kosten bei gleicher Anzahl an
Trainingstokens mindestens in derselben Groflenordnung. In der Praxis fallen durch
manuelle Bewertungen zusétzlich Personalkosten an, sodass RLHF teurer ist als rei-
nes SFT. Insgesamt ist die Durchfithrung von RLHF damit finanziell und technisch
anspruchsvoll und erfordert weitergehende Vorbereitungen, wéhrend folgende Weiter-

entwicklungen mit deutlich geringerem Aufwand realisierbar sind.

7.2 Skalierbarkeit

Auflerdem konnten folgende Funktionen erweitert werden, um den Agenten auf mehr

Aufgaben zu skalieren und ihn nutzerfreundlicher zu gestalten.

e Durch eine mogliche Erweiterung der Eingabe von weiteren Entitdten aus Fremd-
systemen kann die Wiederverwendbarkeit des Mapping-Agenten iiber den spezi-

fischen Usecase erhoht werden.

e Eine andere Skalierung stellt die Moglichkeit zur Spracheingabe von Feedback

dar, sodass die Nutzung erleichtert wird.

e Auflerdem kann im verwendeten Copilot durch zusétzliche Einstellungen die au-
tomatische Kontextsuche verbessert werden, was zu einer einfacheren Bedienung

mit weniger notwendigen Prompteingaben fiihrt.

22

7.3 Integration

Die Arbeit wurde mit dem Ziel der Schnittstellenanbindung fiir FLEX konzipiert, ein
naheliegender néchster Schritt ist daher die Integration ins Laufzeitsystem. Zunichst
miissen die generierten Skripte der Syntax der FLEX-REST-API entsprechen, was
durch angepasste Skript-Templates umgesetzt werden kann, sodass die bereitgestell-
te API diese Skripte ausfithren kann. Der Hauptaufwand der Integration liegt in der
notwendigen Interaktion des Agenten mit dem System. Es ist eine Regelung erforderlich,
die eingehende Dateien eindeutig den jeweils zustdndigen Mappingskripten zuordnet.
Bei unbekannten Typen muss der Agent die eingehende Datei erhalten und ein Initial-
mapping generieren. Der generierte Output wird im System abgelegt werden und es ist
fiir Nutzer eine Umgebung bereitzustellen, in der sie Feedback mitteilen konnen. Dieses
Feedback sollte zunéchst verpflichtend sein, um Fehler zu minimieren. Grundsétzlich
erfolgt die technische Integration dabei iiber Schnittstellen zwischen Agent und FLEX-
Laufzeitsystem. Zudem werfen diese Anforderungen Datenschutzfragen auf, die das zu-

grunde liegende LLM erfiillen muss.

8 Diskussion

Im Rahmen der Arbeit wurden folgende Ziele erreicht. Der prototypische Ansatz zeigt,
dass sich Mappingskripte auf Basis fester Vorgaben schnell und zuverléssig erzeugen
lassen. Anderungen in zugrunde liegenden Regeln werden vom Agenten erkannt und
resultieren in entsprechend angepassten Skripten, ohne dass die Logik manuell neu
implementiert werden muss. Die Entwicklung verschiebt den Fokus von technischen
Details der Schnittstellenimplementierung hin zur fachlichen Bedeutung der Mappings.
Der Agent besitzt das Potenzial, Wissen zu vorhandenen Zusammenhéngen zuverlissig
auf neue Dateitypen anzuwenden. Durch Fine-Tuning kann das Initialmapping noch
verbessert werden. Insgesamt erscheint damit auch eine zukiinftige Integration in das
FLEX-Laufzeitsystem prinzipiell realistisch.

Gleichzeitig ist die Generierungsfahigkeit des Agenten weitgehend auf vorhandenes Wis-
sen und explizit vorgegebene Regeln beschrinkt. In praktischen Anwendungsfallen wird
héufig kundenspezifische Logik benotigt oder die Ziel-Feldnamen unterscheiden sich
gianzlich von den entsprechenden Quell-Feldnamen, sodass die Beziehungen nicht oh-
ne weiteres automatisch abgeleitet werden konnen. Daher ist eine menschliche Un-
terstiitzung erforderlich, die nicht ableitbare fachliche Logik beisteuert. Dariiber hin-
aus besteht ein Konsistenzrisiko: leicht variierende Nutzereingaben fithren nicht immer
zu identischen Ergebnissen, weshalb standardisierte Prompts und feste Arbeitsablaufe
erforderlich sind. Schliellich miissen in einer praktischen Umsetzung auch Integrations-

aufwand und API-Kosten beriicksichtigt werden.

23

9 Fazit

Durch eine prézise Beschreibung des Usecases sowie expliziten Vorgaben wurde der
Agent zielgerichtet konfiguriert und liefert mit menschlicher Uberwachung zuverlissige
Ergebnisse.

Bei der Integration in ein reales System muss der entstehende Integrationsaufwand ge-
gen die resultierende Effizienzsteigerung abgewogen werden.

Bei dynamischen Systemen wie FLEX ist ein Mehrwert zu erwarten, da Schnittstellen
einen hohen Anteil am Entwicklungsaufwand haben und fortlaufend angepasst werden
miissen. In diesem Kontext kann ein Mapping-Agent wiederkehrende Anpassungen un-
terstiitzen und so den Aufwand langfristig reduzieren.

Jedoch stellt die Losung keine vollautomatisierte Schnittstellengenerierung dar, weil
eine menschliche Komponente in der Validierungsschicht fiir eine hochstmégliche Si-

cherheit eingebunden werden muss.

24

[

wt

11

13

15

17

19

21

23

25

27

29

31

33

A Anhang: Konkretes Beispiel-Mapping

<SHPMNTO5 >
<IDOC BEGIN="1">
<EDI_DC40 SEGMENT="1">
<IDOCTYP>SHPMNTO05</IDOCTYP>
<l-- ... wettere Felder ... -->
</EDI_DC40>
<E1EDT20 SEGMENT="1">
<TKNUM>BD26TONNER</TKNUM>
<SHTYP>0001</SHTYP>
<TPBEZ>WA4_DATUM_UHRZEIT</TPBEZ>
<E1EDL20 SEGMENT="1">
<VBELN>9102031925</VBELN>
<LGNUM>102</LGNUM>
<ROUTE>GL_LP</ROUTE>
<l-- ... wettere Felder ... -->
<E1EDL37 SEGMENT="1">
<EXIDV>30101056</EXIDV>
<VEGR1>PICK</VEGR1>
<E1EDL44 SEGMENT="1">
<VELIN>1</VELIN>
<VBELN>9102031925</VBELN>
<POSNR>1</POSNR>
<EXIDV>30101056</EXIDV>

<VEMNG>1.00000000000000</VEMNG>

<VEMEH>ST</VEMEH>
<MATNR>KBOOO1</MATNR>
<CHARG>UN00042895</CHARG>
</E1EDL44>
</E1EDL37>
</E1EDL20>
</E1EDT20>
</1ID0OC>
</SHPMNTO5>

Listing 1: Auszug einer XML-Eingangsdatei vom IDOCTYP SHPMNTO05

25

11

13

TargetField;SourcePath;Comment ;DefaultValue

startPosition;E1EDL20.LGNUM;Alternativ NAME2 oder EXIDV/EXIDV2 je nach Use
Case;DEFAULT

targetPosition;E1EDL20.ROUTE; Alternativ LGNUM oder EXIDV/EXIDV2 je nach Use
Case; DEFAULT

transportType; E1EDL20.ROUTE;Route als Transporttyp, falls leer Default
DEFAULT

processConfiguration; ;Kein Wert im XML, fester Default;DEFAULT

amount ; ;Kein Wert im XML, fester Default;DEFAULT

transportID;E1EDL37.EXIDV2|E1EDL37 .EXIDV|E1EDL44 .EXIDV; TransportID wie ScanID

priority;;Standardprioritaet, kann durch VSBED=JIT ueberschrieben werden

latestEnd; ;Nicht direkt belegbar

earliestStart; ;Nicht direkt belegbar

remark; ;Nicht direkt belegbar

scanld;E1EDL37.EXIDV2|E1EDL37.EXIDV|E1EDL44.EXIDV;Bevorzugt EXIDV2, sonst
EXIDV, sonst EXIDV aus E1EDL44

customValues.referenceNumber; E1EDL20.VBELN ; Referenznummer aus VBELN

Listing 2: Mappingregeln fiir IDOCTYP SHPMNTO05 wurden anhand eines anderen
XMLs desselben IDOCTYPs generiert. Die Regeln wurden durch eine Feedbackiteration
préazisiert, konkret wurden die Regeln fiir customValues.referenceNumber und

transportID manuell ergénzt.

26

10

12

14

16

18

20

22

// Annahme: mappedJson ist das Ergebnis wvon zml2js.
parseString (zml)
var edi = mappedJson.SHPMNTOS5.IDOC.EDI_DC40;
var eledl20 = mappedJson.SHPMNTO5.IDOC.E1EDT20.E1EDL20;
var eledl37Arr = Array.isArray(eledl20.E1EDL37) 7 eledl20.
E1EDL37 : [eledl120.E1EDL371];
// Hilfsfunktion fuer Default-Werte
function notNull(val, def) {

return (val !== undefined && val !== null && val !== "") 7
val : def;
X
// TODO: Hier die feldspeztifische Mappinglogik einfuegen (
startPostition, targetPosition, ...)
var entity = {

startPosition: startPosition,
targetPosition: targetPosition,
transportType: transportType,
processConfiguration: processConfiguration,
amount: amount,
priority: priority,
latestEnd: latestEnd,
earliestStart: earliestStart,
remark: remark,
scanld: scanld,
customValues: customValues

s

return JSON.stringify(entity, null, 2);

Listing 3: Vorgegebenes Script-Template fiir XML-Format. Es erwartet, dass das
XML bereits in JSON geparsed wurde. Die Umwandlung erfolgt in einer separaten
Parsingschicht der Testumgebung

27

11

13

15

17

19

21

23

25

27

29

31

33

// SHPMNTO05 Mapping Script (strict, only per mapping rules)
// Input: mappedJson = result of zml2js.parseString (zml)

function notNull(val, def) {
return (val !'== undefined && val !'== null && val !== "") ?
val : def;

// Defenstive: always check for existence

var idoc = mappedJson?.SHPMNTO057.IDOC || {};

var eledl20 = idoc.E1EDT207.E1EDL20 || {3};

var eledl37Arr = Array.isArray(eledl20.E1EDL37) 7 eledl20.
E1EDL37 : (el1edl120.E1EDL37 7 [eledl120.E1EDL37] : [1);

var eledl37 = eledl37Arr.find(x => x7.EXIDV2) || eledl37Arr [0O]
[{};

var eledl44 = e1edl377.E1EDL44 || {};

// —--- Mapping strictly per CSV ---

var entity = {

startPosition: notNull(eledl20.LGNUM, "DEFAULT"),

targetPosition: notNull(eledl20.ROUTE, "DEFAULT"),

transportID: notNull(eledl37.EXIDV2, notNull(eledl37.EXIDV,
notNull (eledl44 .EXIDV, null))),

transportType: notNull(eledl20.ROUTE, "DEFAULT"),

processConfiguration: "DEFAULT",

amount: "DEFAULT",

priority: null,

latestEnd: null,

earliestStart: null,

remark: null,

scanId: notNull(eledl37.EXIDV2, notNull(eledl37.EXIDV,
notNull (eledl44.EXIDV, null))),

customValues: {

referenceNumber: notNull(eledl20.VBELN, null)

};

return JSON.stringify(entity, null, 2);

Listing 4: Vom Agenten generiertes Mapping-Skript fiir SHPMNTO05 aus Template und
Mappingregeln

28

"startPosition": "102",

"targetPosition": "GL_LP",

"transportType": "GL_LP",

"processConfiguration": "DEFAULT",

"amount": "DEFAULT",

"priority": null,

"latestEnd": null,

"earliestStart": null,

"remark": null,

"scanId": "30101056",

"transportID": "30101056",

"customValues": {
"referenceNumber": "9102031925"

}

Listing 5: Resultierendes Entitétsbjekt nach Ausfithrung auf lokaler HTML-Seite: Das
XML wurde zuvor in JSON geparsed und anschlieBend an das Skript iibergeben. Nicht
alle Felder der Zielentitdt werden aus dem XML belegt, die leeren Pflichfelder sind
DEFAULT und die restlichen sind null.

29

Literatur

[Bommasani et al., 2021] Bommasani, R., Hudson, D. A.; and Adeli, E. (2021). On
the opportunities and risks of foundation models. arXiv preprint arXiv:2108.07258.
URL: https://arxiv.org/abs/2108.07258.

[Brown et al., 2020] Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., et al.
(2020). Language models are few-shot learners. Advances in Neural Information
Processing Systems, 33:1877-1901. URL: https://arxiv.org/abs/2005.14165.

[Buss and Safari, 2025] Buss, C. and Safari, M. (2025). Towards scalable schema map-
ping using large language models. arXiw preprint arXiw:2505.24716. URL: htt-
ps://arxiv.org/pdf/2505.24716, Accessed: 2025-12-09.

[Chatterjee, 2025] Chatterjee, S. (2025). The impact of prompt bloat on llm output
quality. URL: https://home.mlops.community/public/blogs/the-impact-of-prompt-
bloat-on-llm-output-quality, Accessed: 2025-12-11, Blogartikel, MLOps Community.

[Chen et al., 2021] Chen, M., Tworek, J., Jun, H., and Yuan, Q. (2021). Evaluating
large language models trained on code. arXiv preprint arXiw:2107.053374. URL:
https://arxiv.org/abs/2107.03374.

[Dai and Pan, 2023] Dai, J. and Pan, X. (2023). Safe rlhf: Safe reinforcement learning
from human feedback. URL: https://arxiv.org/pdf/2310.12773.

[Devlin et al., 2019] Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2019). Bert:
Pre-training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805. URL: https://arxiv.org/abs/1810.04805.

[Fagin, 2009] Fagin, R. (2009). Schema mapping creation and data exchange.
In Conceptual Modeling: Foundations and Applications. Springer. URL:
https://link.springer.com/chapter/10.1007/978-3-642-02463-4,2.

[Gao et al., 2025] Gao, M., Li, Y., Liu, B., Yu, Y., Wang, P., Lin, C.-Y., and Lai, F. (2025).
Single-agent or multi-agent systems? why not both? arXww preprint arXiw:2505.18286.
URL: https://arxiv.org/abs/2505.18286.

[Gao et al., 2023] Gao, Y., Zhang, H., Han, X., Liu, Z., and Sun, M. (2023). Retrieval-
augmented generation for large language models: A survey. arXw preprint ar-
Xiv:2305.18657. URL: https://arxiv.org/abs/2305.18657, Accessed: 2025-12-09.

[GeeksforGeeks, 2023] GeeksforGeeks (2023). Tokenization in natural language pro-
cessing. URL: https://www.geeksforgeeks.org/nlp/tokenization-in-natural-language-

processing-nlp/.

30

|GetDeploying, 2025] GetDeploying (2025). Nvidia al00 gpu pricing and specifications.
URL: https://getdeploying.com/gpus/nvidia-a100.

[Holtzman et al., 2020] Holtzman, A., Buys, J., Du, L., Forbes, M., and Choi, Y. (2020).
The curious case of neural text degeneration. In International Conference on Learning
Representations (ICLR). URL: https://arxiv.org/abs/1904.09751.

[Hu et al., 2021] Hu, E. J., Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y., and Wang, S. (2021).
Lora: Low-rank adaptation of large language models. arXiv preprint arXiv:2106.09685.
URL: https://arxiv.org/abs/2106.09685, Accessed: 2025-12-09.

[Hodl, 2025] Hodl, J. (2025). Generative kiinstliche intelligenz - in-
dividualisierte anpassung durch prompt engineering. URL: htt-
ps://opus.campus02.at/files/1213/AC17639779.pdf, Accessed: 2025-12-11.

[Kaelbling et al., 1996] Kaelbling, L. P., Littman, M. L., and Moore, A. W. (1996). Re-
inforcement learning: A survey. Journal of Artificial Intelligence Research, 4:237-285.
URL: https://www.jair.org/index.php/jair/article/view/10166,/24110.

[Kaplan et al., 2020] Kaplan, J., McCandlish, S., Henighan, T., Brown, T. B., Chess,
B., Child, R., Gray, S., Radford, A., Wu, J., and Amodei, D. (2020). Scaling
laws for neural language models. arXiv preprint arXiw:2001.08361. URL: htt-
ps://arxiv.org/abs/2001.08361.

[Lewis et al., 2020] Lewis, P., Perez, E., Piktus, A., Petroni, F., Karpukhin, V., Goy-
al, N., Kittler, H., Lewis, M., Yih, W.-t., Rocktéschel, T., Riedel, S., and Kie-
la, D. (2020). Retrieval-augmented generation for knowledge-intensive NLP tasks.
In Advances in Neural Information Processing Systems (NeurIPS). URL: htt-
ps://arxiv.org/abs/2005.11401.

[Li, 2024] Li, K. (2024). Measuring and controlling instruction (in)stability in language
model dialogs. URL: https://arxiv.org/abs/2402.10962, Accessed: 2025-12-11.

[Liu et al., 2023] Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H., and Neubig, G.
(2023). Pre-train, prompt, and predict: A systematic survey of prompting methods
in natural language processing. ACM Computing Surveys, 55(9):1-35. URL: htt-
ps://arxiv.org/abs/2107.13586.

[Ma et al., 2025] Ma, L., Zhang, R., Han, Y., Yu, S., Wang, Z., Ning, Z., Zhang, J., and
Xu, P. (2025). A comprehensive survey on vector database: Storage and retrieval tech-
niques. arXiw preprint arXiv:2310.11703. URL: https://arxiv.org/html/2310.11703v2.

31

[Miiller and Schneider, 2025] Miiller, T. and Schneider, A. (2025). Next-token prediction
in large language models: Probabilistic foundations. Der Radiologe, 65(12):1010-1020.
URL: https://link.springer.com/article/10.1007 /s00117-025-01427-z.

[Neubauer, 2025] Neubauer, F. (2025). Ai-assisted json schema creation and mapping.
arXiv preprint arXiv:2508.05192. URL: https://www.arxiv.org/pdf/2508.05192, Ac-
cessed: 2025-12-09.

[INVIDIA, 2018] NVIDIA (2018). Mixed precision training. URL:
https://docs.nvidia.com/deeplearning /performance /mixed-precision-

training /index.html.

INVIDIA, 2020] NVIDIA (2020). Nvidia al00 tensor core gpu architec-
ture. URL: https://www.nvidia.com/content /dam/en-zz/Solutions/Data-
Center/al100/pdf/nvidia-al00-datasheet.pdf.

[OpenAl, 2023] OpenAl (2023). Fine-tuning language models. URL:
https://platform.openai.com/docs/guides/fine-tuning.

[Parciak et al., 2024] Parciak, M., Vandervoort, B., and Neeven, F. (2024). Schema
matching with large language models: An experimental study. arXiv preprint ar-
Xiv:2407.11852. URL: https://arxiv.org/abs/2407.11852.

[Parnas, 1972] Parnas, D. L. (1972). On the criteria to be used in decomposing sy-
stems into modules. Communications of the ACM, 15(12):1053-1058. URL: htt-
ps://dl.acm.org/doi/10.1145/361598.361623.

[Reynolds and McDonell, 2021] Reynolds, L. and McDonell, K. (2021). Prompt program-
ming for large language models: Beyond the few-shot paradigm. arXiv preprint ar-
Xiw:2102.07350. URL: https://arxiv.org/abs/2102.07350.

[Shapkin et al., 2023] Shapkin, A., Litvinov, D., Zharov, Y., Bogomolov, E., and Ga-
limzyanov, T. (2023). Dynamic retrieval-augmented generation. arXiv preprint ar-
Xiv:2312.08976. URL: https://arxiv.org/abs/2312.08976.

[Tong and Zhang, 2024] Tong, W. and Zhang, T. (2024). Codejudge: Evaluating code
generation with large language models. arXiv preprint arXiw:2410.02184. URL: htt-
ps://arxiv.org/pdf/2410.02184, Accessed: 2025-12-09.

[Vaswani et al., 2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Go-
mez, A. N., Kaiser, L., and Polosukhin, I. (2017). Attention is all you need. In Advances
in Neural Information Processing Systems. URL: https://arxiv.org/abs/1706.03762.

32

[von Richthofen et al., 2022] von Richthofen, A., Ogolla, F. O., and Send, H. (2022). How
artificial intelligence affects knowledge work: A qualitative study of ai adoption in orga-
nizations. Information, 13(4):199. URL: https://www.mdpi.com/2078-2489/13/4/199.

[White et al., 2023] White, J. et al. (2023). A prompt pattern catalog to enhance prompt
engineering with chatgpt. arXiv. URL: https://arxiv.org/abs/2302.11382.

[Zhao et al., 2023] Zhao, W. X., Liu, J., et al. (2023). A survey of large language models.
arXiv preprint arXiv:2303.18223. URL: https://arxiv.org/abs/2303.18223.

33

	Abstract
	Einleitung
	Anforderungsanalyse
	Funktionale Anforderungen
	Nicht-funktionale Anforderungen

	Methoden und Verfahren
	Large Language Model
	Prompt-Engineering
	RAG
	Instruction Prompt

	Entwicklung
	Ansatz
	Instruction-Prompt Erkenntnisse

	Reflexion und Fokussetzung
	Umsetzung in Visual Studio Code
	Finaler Prompt
	Kontextanreicherung
	Interaktive Ausführung

	Wahl des LLMs

	Qualitätssicherung
	Bewertungsverfahren
	Menschliches Feedback
	Automatische Bewertung
	Unittests

	Ausblick
	Fine-Tuning
	Abwägung Supervised Finetuning
	Abwägung Reinforcement Learning from Human Feedback
	Finetuning Kosten

	Skalierbarkeit
	Integration

	Diskussion
	Fazit
	Anhang: Konkretes Beispiel-Mapping

