
Eidesstattliche Erklärung

Hiermit versichere ich, dass ich die Seminararbeit mit dem Thema

Entwicklung eines KI-Systems zur Schnittstellenanbindung von
Auftragseingaben aus Fremdsystemen in FLEX

selbstständig verfasst und keine anderen als die angegebenen Quellen und
Hilfsmittel benutzt habe, alle Ausführungen, die anderen Schriften wörtlich
oder sinngemäß entnommen wurden, kenntlich gemacht sind und die Arbeit
in gleicher oder ähnlicher Fassung noch nicht Bestandteil einer Studien- oder
Prüfungsleistung war.
Im Rahmen der Erstellung dieser Arbeit wurde das KI-System “GitHub Copi-
lot” unterstützend zur sprachlichen Überarbeitung sowie zur fachlichen Refle-
xion und Präzisierung eigenständig entwickelter Argumente genutzt. Dieses
System ist datenschutzkonform und kann sicher für vertrauliche Textpassa-
gen im Rahmen interner Zwecke der Firma INFORM verwendet werden. Eine
Übernahme von KI-generierten Texten oder inhaltlichen Lösungsvorschlägen
erfolgte nicht. Sämtliche fachlichen Aussagen, Bewertungen und Schlussfol-
gerungen wurden eigenständig erarbeitet und verantwortet. Die Nutzung
erfolgte im Einklang mit der Zweckbestimmung des Systems sowie unter Be-
achtung datenschutz- und urheberrechtlicher Vorgaben.
Ich verpflichte mich, ein Exemplar der Seminararbeit fünf Jahre aufzubewah-
ren und auf Verlangen dem Prüfungsamt des Fachbereiches Medizintechnik
und Technomathematik auszuhändigen.

Name: Joshua Paul Humberg
Aachen, den 15.12.2025

Unterschrift der Studentin / des Studenten

Entwicklung eines KI-Systems zur

Schnittstellenanbindung von Auftragseingaben aus

Fremdsystemen in FLEX

im Studiengang Angewandte Mathematik und Informatik

Name: Joshua Paul Humberg

Matrikelnummer: 3651937

Professsor: Prof. Dr. Alexander Voß

Betreuer: Kai Ebenhöh M.Sc.

Unternehmen: INFORM GmbH

5. Semester: Seminararbeit (Aachen) 15. Dezember 2025

Inhaltsverzeichnis

1 Abstract 1

2 Einleitung 1

3 Anforderungsanalyse 2

3.1 Funktionale Anforderungen . 2

3.2 Nicht-funktionale Anforderungen . 3

4 Methoden und Verfahren 4

4.1 Large Language Model . 4

4.2 Prompt-Engineering . 5

4.3 RAG . 5

4.4 Instruction Prompt . 6

5 Entwicklung 7

5.1 Ansatz . 7

5.1.1 Instruction-Prompt Erkenntnisse 9

5.2 Reflexion und Fokussetzung . 10

5.3 Umsetzung in Visual Studio Code . 11

5.3.1 Finaler Prompt . 11

5.3.2 Kontextanreicherung . 13

5.3.3 Interaktive Ausführung . 14

5.4 Wahl des LLMs . 15

6 Qualitätssicherung 16

6.1 Bewertungsverfahren . 16

6.2 Menschliches Feedback . 16

6.3 Automatische Bewertung . 17

6.4 Unittests . 18

7 Ausblick 19

7.1 Fine-Tuning . 19

7.1.1 Abwägung Supervised Finetuning 20

7.1.2 Abwägung Reinforcement Learning from Human Feedback . . . 20

7.1.3 Finetuning Kosten . 21

7.2 Skalierbarkeit . 22

7.3 Integration . 23

8 Diskussion 23

3

9 Fazit 24

A Anhang: Konkretes Beispiel-Mapping 25

1 Abstract

Diese Arbeit evaluiert die Idee, eine KI-gestützte Teilautomatisierung der Schnittstel-

lenentwicklung durch gezielte Kombination von Schema-Mapping1 und Codegenerie-

rung zu ermöglichen. Der Fokus liegt auf der Generierung eines zuverlässigen Mappings

aus verschiedenen Eingangsformaten auf eine feste Zielentität sowie den dafür erforderli-

chen Anforderungen. Ein darauf spezialisierter Agent soll Informationen aus relevanten

Feldern extrahieren und anschließend mithilfe probabilistischer Modellvorhersagen den

passenden Zielfeldern zuweisen. Durch manuelle Eingriffe soll das erzeugte Mapping

weiter präzisiert werden können. Als Bewertungskriterien werden die Einhaltung der

Feldzuordnung und sie semantische Korrektheit des Outputs herangezogen.

2 Einleitung

Die INFORM Institut für Operations Research und Management GmbH entwickelt Soft-

warelösungen für die Optimierung von Geschäftsprozessen auf Basis von Operations Re-

search und Künstlicher Intelligenz. Ihre verschiedenen Geschäftsbereiche decken Bran-

chen wie Luftfahrt, Logistik, Finanzwesen und Telekommunikation ab, mit dem Ziel,

Planungs- und Entscheidungsprozesse zu unterstützen und zu verbessern. Im Geschäfts-

bereich Industrielogistik und Healthcare der INFORM GmbH werden Softwareproduk-

te entwickelt, die innerlogistische Transport- und Logistikprozesse optimieren. Dabei

gehört die Überwachung von Transportaufträgen zu den zentralen Prozessen und wird

bei sämtlichen Kunden genutzt. Diese Transportaufträge können direkt im System ange-

legt werden, oder sie werden aus Fremdsystemen wie SAP importiert. Für die Auftrags-

importe kommen aktuell manuell implementierte Schnittstellen zum Einsatz, um spe-

zifische Anwendungsfälle für jeden Kunden abzubilden. Die empfangenen Nachrichten

unterscheiden sich bei jedem Kunden zusätzlich in ihrer Datenstruktur und Mapping-

Logik. Insgesamt existiert eine Vielzahl an Schnittstellen, deren Entwicklung und Pflege

einen entsprechend hohen Ressourcenaufwand erfordert. FLEX ist in diesem Kontext

eine Neuentwicklung des bestehenden Produkts, die sowohl in den Prozessen als auch in

den Schnittstellen weniger projektspezifische Entwicklungen benötigt und einen stan-

dardisierten Weg der Produktanpassung bereitstellen soll. Für die Auftragseingabe über

Schnittstellen sollen JavaScript basierte Mappings eingesetzt werden. Dadurch soll die

Arbeitsbelastung beim Entwicklungsprozess verringert werden. Zur Realisierung dieses

Bedürfnisses bieten sich KI-Lösungen an, da sie Routineaufgaben übernehmen können

[von Richthofen et al., 2022].

1Unter Schema-Mapping versteht man die systematische Zuordnung von Feldern und Strukturen

zwischen unterschiedlichen Datenmodellen auf ein Zielschema[Fagin, 2009]

1

3 Anforderungsanalyse

Um eine zielgerichtete Strategie zu entwickeln, müssen zunächst die Anforderungen an

den Agenten genau definiert werden.

3.1 Funktionale Anforderungen

Die primäre Anforderung besteht darin, ein korrektes Mapping für einen Dokumenttyp

zu gewährleisten, das anschließend auf mehrere Dokumente desselben Typs übertragbar

ist. Auf dieser Grundlage ergeben sich die folgenden Teilaufgaben.

• Verständnis der abzubildenden Entität

Das System muss das komplette Schema der Zielentität kennen. Das Schema

enthält Informationen über sämtliche Pflichtfelder und optionale Felder der Zie-

lentität. Dieses Wissen muss jederzeit abrufbar sein, damit alle folgenden Schritte

sauber funktionieren.

• Verarbeitung unterschiedlicher Input-Datenformate

Das System muss verschiedene eingehende Formate (XML, JSON und Text) verar-

beiten und diese anhand eines definierten Schlüsselfeldes jeweils festen Mapping-

regeln zuordnen. Das Schlüsselfeld ist bei IDOC-Dateien (Eingangsformat aus

SAP) am Tag
”
ICOCTYP“ erkennbar.

• Automatische Generierung von Vorschlags-Mappings und JavaScript-

Code

Das System muss für relevante Felder im Input-Datensatz automatisch eine pas-

sende Zuordnung zum Feld des Entität-Schemas vorschlagen, basierend auf Feld-

namen, Typen, Semantik und Beispieldaten. Daraus entstehen initial für jeden

Mappingtyp feste Mappingregeln. Diese Regeln sollen auf ein JavaScript Templa-

te angewendet werden, um ein ausführbares Snippet zu Testzwecken zu erhalten.

• Verarbeitung expliziter Mappingregeln

Das System muss explizite Mappingregeln einlesen und auf die Zielentität anwen-

den können. Der resultierende Output eines spezifischen Inputs muss in einem

passenden Format dargestellt werden. Dadurch sind die Feldbelegungen nachvoll-

ziehbar und es kann genau getestet werden.

• Möglichkeit zum manuellen Eingriff

Bei Abweichungen sollen manuelle Texteingaben von Experten die Mappingregeln

korrigieren. Wenn möglich, soll das System aus den manuellen Mappingvorschlägen

lernen und bei zukünftigen Berechnungen eine höhere Präzision erreichen.

2

3.2 Nicht-funktionale Anforderungen

Obwohl der Agent zunächst zur Analyse und Korrektur von Mappingstrukturen ent-

wickelt wird und noch nicht in ein produktives System integriert ist, müssen bestimmte

Qualitätskriterien bereits eingehalten werden.

• Bewertung des Mappings

Der Fokus der Arbeit liegt auf der Qualität des Mappings. Daher wird eine

Möglichkeit gesucht, das Mapping automatisiert zu bewerten. Zu den Bewertungs-

kriterien zählen Konsistenz, Reproduzierbarkeit sowie die Genauigkeit der Zuord-

nungen. Bei einem Agenten, der mit LLMs arbeitet, enstehen nicht immer repro-

duzierbare Ergebnisse, da ein LLM zwischen vielen möglichen Entscheidungspfa-

den wählen kann. So kann es zu dem Phänomen von verschiedenen Ergebnissen

bei gleichem Prompting kommen, was bei Datenmapping unerwünscht ist. Auf

diesen wichtigen Punkt wird im Kapitel Qualitätssicherung genauer eingegangen.

Die Modellkorrektheit bzw. Zuverlässigkeit muss ebenfalls sichergestellt werden

auf Grundlage der Modellgetriebenen Entwicklung (MDE). Für das Testen von

exemplarischen Ergebnissen werden vorhandene Integrationstests verwendet, auf

weitere Bewertungsmethoden wird auch eingegangen.

• Lernfähigkeit

Der Agent soll Rückmeldungen verarbeiten und seine Entscheidungsregeln adap-

tiv weiterentwickeln.

• Sicherheit

Die verarbeiteten Daten sollten bestmöglich keine sensiblen Informationen enthal-

ten oder es sollte eine Umgebung genutzt werden, die ausreichend Datenschutz

bietet (z.B. Copilot Enterprise).

• Laufzeit und Kosten

Die Berechnungsdauer kann zunächst vernachlässigt werden, da der Agent in der

Entwicklungsphase nicht zur Laufzeit in einem System eingebunden ist. Die Ko-

sten des verwendeten Modells müssen zwar berücksichtigt werden, fallen jedoch

bei ersten Testläufen mit GPT4.1 gering aus. Der Preis betrug 4 Euro für 2 Millio-

nen verbrauchte Tokens (Begriff im Folgenden erläutert) in zahlreichen Testläufen.

3

4 Methoden und Verfahren

Zur Umsetzung der gewünschten Anforderungen ist zu klären, welche Entwicklungs-

schritte und Methoden sinnvoll sind, um ein KI-basiertes Mappingsystem zu realisie-

ren. Das Ziel ist es, ein in sich geschlossenes System zu entwerfen, das selbstständig

arbeitet und sämtliche Anforderungen des definierten Use Cases im Datenmapping voll-

umfänglich abdeckt. Im Folgenden werden bewährte Vorgehensmodelle und bestehende

Entwicklungsprojekte betrachtet, um eine Umsetzungsstrategie zu entwickeln.

4.1 Large Language Model

Für KI-gestütztes Datenmapping braucht man zunächst ein Large Language Model

(LLM), weil es semantische Zusammenhänge und Ähnlichkeiten erkennen kann

[Parciak et al., 2024]. LLMs basieren meist auf neuronalen Netzen [Vaswani et al., 2017]

und sind in der Lage, natürliche Sprache zu verarbeiten und Wahrscheinlichkeitsvertei-

lungen für das nächste Token vorherzusagen [Müller and Schneider, 2025]. Ein Token

ist dabei die Einheit, in die das LLM sämtlichen Text aufteilt, um ihn zu verarbei-

ten [GeeksforGeeks, 2023]. Bei der Codegenerierung gehören dazu auch Symbole wie

”
;“ oder

”
{}“. Da LLMs probabilistische Entscheidungen treffen, können sie auch Syn-

taxvorgaben einhalten und sind für die Codegenerierung geeignet [Chen et al., 2021].

Dabei hängt die Wahl des optimalen LLMs stark vom Usecase ab, weil alle Model-

le spezifische Stärken und Schwächen haben. Die LLMs unterscheiden sich grundle-

gend in ihrer Modellgröße (Wissensbasis), Kontextlänge (Maximale Speicherkapazität

im künstlichen Gedächtnis) und Tokenanzahl (Komplexität der Berechnung des LLMs)

der Prompts. Insbesondere die Kontextlänge ist oft ein limitierender Faktor bei Auf-

gaben wie Schema-Mapping, da bei der Verarbeitung langer Dokumente oftmals mehr

relevante Informationen benötigt werden, als das LLM zu einem Zeitpunkt speichern

kann [Shapkin et al., 2023].

[Buss and Safari, 2025] untersuchten bereits das KI-gestützte automatische Schema-

Mapping. Sie stellten fest, dass ohne menschlichen Einfluss kein funktional einwandfreies

Ergebnis automatisch generiert werden kann.

LLM-basierte Agentensysteme profitieren daher stark von hybriden Ansätzen, bei denen

menschliches Feedback und Anweisungen das LLM ergänzen. Durch Einbeziehung von

Anweisungen aus der natürlichen Sprache, etwa durch Prompt-Engineering, kann das

LLM seine Aufgaben genauer verstehen [Neubauer, 2025].

4

4.2 Prompt-Engineering

Die Verwendung von Prompt Engineering ermöglicht eine hybride Entwicklung eines

Agenten, bei der die Stärken des LLM mit gezielter menschlicher Steuerung kombiniert

werden.

”
Prompt Engineering bezeichnet die zielgerichtete Gestaltung von Eingabeprompts für

Foundation Models (Oberbegriff für LLMs), um deren generative Fähigkeiten für spe-

zifische Aufgaben und Anwendungskontexte nutzbar zu machen, ohne dabei die Mo-

dellparameter direkt zu verändern“ [Hödl, 2025][S. 29]. Dabei werden Formulierungen,

Struktur, Kontext und zusätzliche Parameter genutzt, um das Modell gezielt zu steu-

ern. Prompt Engineering spielt eine zentrale Rolle bei der praktischen Anwendung von

Large Language Models, da kleine Änderungen im Prompt oft zu deutlich unterschied-

lichen Ausgaben führen können.

Durch gezielte Anwendung von Chain-of-Thought Prompting kann man das LLM dazu

bringen, mehr nach logischen Schlüssen wie ein Mensch zu denken

[Tong and Zhang, 2024]. Ein Beispiel für diese Methode - auch logical reasoning genannt

- ist
”
Löse Schritt für Schritt“. Dies ist ein einfacher Weg zu genaueren Antworten. Ein

mögliches Beispiel im Kontext wäre:
”
setze zunächst die eindeutigen Felder und versu-

che daraus die unsicheren Felder abzuleiten“.

Eine andere Möglichkeit, um dem Sprachmodell Muster beizubringen, ist das few-

shot learning. Dabei promptet man beispielhafte Input-Output Paare, die dem Modell

als Lernmaterial dienen [Tong and Zhang, 2024]. Leider passiert hier nur In-Context-

Learning, es werden also keine Modellgewichte angepasst, und nach der Session geht

das Wissen wieder verloren. Es gibt eine weitere Möglichkeit, Trainingsbeispiele als

Lernhilfe zu nutzen, ohne den Kontext zu fluten.

4.3 RAG

Mit Retrieval-Augmented Generation (RAG) können externe Wissensquellen in den

Generierungsprozess eines LLM eingebunden werden. Die Technologie ermöglicht es,

beispielsweise Mappingregeln, Schemata oder Beispieldaten in einer Datenbank abzule-

gen und bei Bedarf kontextsensitiv nachzuladen. Die Speicherung erfolgt oft in vektor-

basierten Datenbanksystemen, die für eine effiziente semantische Suche ausgelegt und

auf große Datenmengen skalierbar sind [Ma et al., 2025]. Durch Berechnung der seman-

tischen Ähnlichkeit von Anfrage und Speicher werden möglichst passende Teile aus der

Datenbank extrahiert und in den Kontext geladen [Gao et al., 2023].

Der wesentliche Vorteil von RAG besteht darin, dass der Kontext dynamisch erweiterbar

ist: Neue oder geänderte Mappingregeln, zusätzliche Beispieldateien oder aktualisierte

Schemata können zur Laufzeit in die Wissensbasis aufgenommen werden [Ma et al., 2025].

5

So kann der Agent flexibel auf Änderungen reagieren, oder sie sogar selber vornehmen.

Damit eignet sich RAG für Szenarien, in denen sich die zugrunde liegenden Daten häufig

ändern und ein statisch trainiertes Modell schnell veralten würde.

In aktuellen Arbeiten wird RAG daher als zentrales Architekturprinzip betrachtet, da es

die Stärken großer generativer Modelle mit präziser, abrufbarer Wissensrepräsentation

verbindet und so eine skalierbare, wartbare Wissensintegration ermöglicht

[Gao et al., 2023].

4.4 Instruction Prompt

Der Instruction Prompt ist die grundlegende Handlungsanweisung für den Agenten und

definiert sein Verhalten. Man kann hier direkt einen Teil vom Kontextspeicher für jeden

später getätigten Prompt belegen. Wie Li et al. zeigen, können Instruction Prompts

die Einhaltung von Anweisungen stabilisieren, wobei ein vollständig reproduzierbares

Verhalten über mehrere Interaktionen hinaus nur eingeschränkt belegbar ist [Li, 2024].

Für die Anwendung ist es entscheidend, dass der Instruction Prompt präzise formuliert

ist und dem Agenten eine Aufgabe eindeutig beschreibt. In der Regel ist ein einzelner

Agent (Single-Agent System, SAS) mit klar abgegrenzter Zuständigkeit für eine spe-

zifische Aufgabe am besten geeignet, da sich sein Verhalten so konsistent bleibt und

sich leichter evaluieren lässt [Gao et al., 2025]. Sollen hingegen mehrere, deutlich un-

terschiedliche Aufgaben oder Teilprobleme abgedeckt werden (z.B. Vorverarbeitung,

Mapping, Validierung), bietet sich der Einsatz eines Multi-Agenten-Systems (MAS)

mit spezialisierten Teilagenten an, die jeweils eigene Instruction Prompts erhalten und

über Schnittstellen miteinander interagieren. Der MAS Ansatz erzeugt erheblich mehr

Komplexität und erreicht dafür höhere Genauigkeit und Robustheit bei komplexen An-

forderungen [Gao et al., 2025].

Die beschriebenen Konzepte – große Sprachmodelle (LLMs)

[Bommasani et al., 2021], Prompt Engineering [Liu et al., 2023], spezialisierte Instruc-

tion Prompts sowie Retrieval-Augmented Generation (RAG)[Lewis et al., 2020] – gel-

ten in Kombination als etablierter Standard bei der Entwicklung moderner KI-Systeme.

Sie dienen dazu, den Aufgabenbereich der Modelle präzise einzugrenzen, die benötigten

Wissensquellen strukturiert bereitzustellen und das Antwortverhalten in Richtung nach-

vollziehbarer, schrittweiser Schlussfolgerungen zu steuern. Die praktische Umsetzung

des Prototyps baut konsequent auf diesen Methoden auf und überträgt sie auf den

domänenspezifischen Anwendungsfall des Mapping-Agents.

6

5 Entwicklung

In diesem Kapitel wird die konkrete Entwicklung des KI-gestützten Mappingsystems

dokumentiert. Es wird dargestellt, wie die vorgestellten Methoden und Verfahren in der

Praxis angewendet und angepasst wurden.

5.1 Ansatz

Zu Beginn der Arbeit wurde eine firmeninterne Entwicklungsumgebung zur Konfigura-

tion persönlicher KI-Chatbots genutzt.

Diese stellt Funktionen wie die Wahl des LLMs, des Instruction Prompts und die

Einstellung eines Kreativitätsparameters (Temperatur) sowie zusätzliche Individua-

lisierungsmöglichkeiten zur Verfügung. Die Temperatur steuert dabei den Grad der

Zufälligkeit in den Modellantworten. Niedrige Werte führen zu eher deterministischen,

reproduzierbaren Ausgaben, während höhere Werte kreativere, aber auch weniger vor-

hersagbare Antworten begünstigen [Holtzman et al., 2020].

Ein Vorteil dieser Umgebung liegt in der Datensicherheit, da sie in der Unternehmens-

infrastruktur betrieben wird. Somit konnten bedenkenlos Experimente durchgeführt

werden.

Die ersten Experimente nutzten lediglich Kontextmanipulation über den Instruction

Prompt. Dort wurde der Input auf XML-Dateien und der Output auf Javascript Snip-

pets ohne genaue Vorgaben festgelegt. Dem Agenten wurden zudem die Felder der

Zielentität im Instruction Prompt mitgeteilt (Tabelle 1). .

Tabelle 1: Visualisierter Ausschnitt des Schemas CreateCustomerOrderRequest

Feld Typ required Beschreibung

startPosition string ja Code of the start position

targetPosition string ja Code of the target position

amount number nein Amount to transport

scanId string ja Optional scan ID

remark string nein Optional remark for the order

customValues object nein Generic custom values as key-value pairs

Mit diesen minimalen Anweisungen konnte der Agent eine im Prompt mitgegebene

XML Datei verarbeiten und ein erstes Snippet erzeugen.

Obwohl die generierten Outputs weder syntaktisch noch semantisch vollständig korrekt

waren, war der Bezug zur gegebenen Anweisung erkennbar und zeigte das grundsätzliche

Potenzial des Ansatzes (Abbildung 1).

7

Abbildung 1: Diese erste Antwort verdeutlicht das grundsätzliche Potenzial des Ansat-

zes. Die JavaScript-Syntax wurde korrekt eingehalten und das erzeugte Ausgabeformat

weicht nur geringfügig vom gewünschten Zielschema ab, obwohl noch kein Template

vorgegeben war. Zudem wurden Begründungen für die Feldzuordnungen geliefert, auch

wenn diese inhaltlich teilweise noch nicht korrekt waren

Es wurde jedoch schnell eine Limitierung der Inputlänge durch die vom LLM abhängige

Kontextgröße identifiziert. Aufgrund der Größe der eingegebenen XML-Dateien wurde

das Kontextfenster unabhängig vom ausgewählten LLM überschritten, was zu einer lan-

gen Rechenzeit ohne Ergebnis führte. Die meisten Informationen des Inputs sind zwar

irrelevant, aber alle relevanten Felder müssen trotzdem erkannt und ausgelesen werden

können. Daher setzt die Umsetzung der Aufgabe eine intelligente Kontextverwaltung

voraus. Dafür wurde eine externe Datenbank als RAG-System angebunden. Die Doku-

menteninhalte können bei dieser Technologie mittels Suche anhand der semantischen

Ähnlichkeit abgerufen werden. Die RAG-Anbindung war für die ersten Experimente

mit wenigen Dokumenten vollkommen ausreichend, es konnte jede Query sowie ih-

re Rückgabewerte eingesehen werden. Mit der Skalierung auf mehrere Dokumente im

RAG wurden jedoch Schwachstellen identifiziert. So war etwa keine zuverlässige Doku-

mentsuche anhand des Dateinamens möglich, sodass das im Prompt explizit genannte

Dokumente nicht in allen Fällen tatsächlich vom System herangezogen wurde. Die ver-

wendete RAG-Technologie war nur für einen semantischen Vergleich der Anfrage mit

den Inhalten, aber nicht mit den Namen der Dokumente ausgelegt. Um die Anforderung

des Mappings umzusetzen, muss jedoch eine bestimmte Datei als Eingabe genutzt wer-

den können, da sich die Zuordnung immer an der konkreten Eingabestruktur orientiert.

Somit war diese Umgebung nicht gänzlich für die Anforderung geeignet. Es konnten

jedoch wichtige Erkenntnisse über die praktische Umsetzung gewonnen werden:

8

5.1.1 Instruction-Prompt Erkenntnisse

Schon nach wenigen Tests wurde festgestellt, dass kleine Anpassungen im Instruction-

Prompt das Ergebnis erheblich beeinflussen können und seine Konfiguration daher ein

entscheidender Schritt in der Lösungsfindung ist. Auf Basis verschiedener getesteter

Instruction-Prompts wurden folgende Erkenntnisse für eine systematische Weiterent-

wicklung gezogen:

• Input-/Output festlegen Der Prompt muss die erwarteten Eingabeformate und

das gewünschte Ausgabeformat klar definieren, um dem Agenten Orientierung

zu bieten. Aus Experimenten sowie einer externen Quelle geht hervor, dass die

Einhaltung der Syntax am zuverlässigsten durch ein vorgegebenes Template und

Beispiele im Kontext erreicht wird [Reynolds and McDonell, 2021].

• Handlungsablauf Der Prompt muss den generellen Handlungsablauf des Agen-

ten Schritt für Schritt nach dem Chain-of-Thought Prinzip beschreiben, um eine

konsistente und methodische Vorgehensweise zu gewährleisten. Soll innerhalb des

RAG-Mechanismus auf Dateien zugegriffen werden, müssen die dafür geltenden

Regeln explizit beschrieben werden.

In Experimenten ohne klar vorgegebenen Handlungsablauf traten vermehrt Hal-

luzinationen und inkonsistente Ergebnisse auf oder der Ablageort benötigter Da-

teien wurde nicht gefunden. Die logischen Schritte zur Ergebnisfindung müssen

daher explizit im Prompt vorgegeben werden.

• Sonderfälle Ausnahmefälle und Randbedingungen müssen antizipiert und mit

expliziten Handlungsanweisungen versehen werden, um Robustheit zu sichern.

Im konkreten Anwendungsfall ist der Umgang mit nicht gesetzten Pflichtfel-

dern und möglichen Zusatzfeldern ein zu behandelnder Ausnahmefall, dessen Ver-

nachlässigung dazu führte, dass generierte Zielobjekte entweder formell ungültig

waren oder relevante Zusatzinformationen verloren gingen.

• Spezialisierung Ein Agent sollte auf eine spezifische Fähigkeit oder Aufgabe

spezialisiert sein, anstatt mehrere Use Cases zu vereinen. Dies erhöht die Trans-

parenz und vereinfacht die Weiterentwicklung.

In den ersten Tests wurde dieser Aspekt nicht berücksichtigt: Der Agent soll-

te gleichzeitig das Mapping entwerfen und JavaScript-Code generieren. Dadurch

war die Nachvollziehbarkeit des Outputs eingeschränkt und mögliche Fehlerursa-

chen wurden nur schwer erkannt. Als Konsequenz wurden feste Mapping-Regeln

als Zwischenschritt eingeführt, sodass die Codegenerierung erst auf Basis eines

zuvor validierten Mappings erfolgt.

9

• Formulierung Alle Anweisungen müssen präzise und eindeutig formuliert sein,

um Interpretationsspielräume und damit verbundene Fehlerquellen zu minimieren

[White et al., 2023].

• Prägnanz Ein übermäßig langer und detaillierter Prompt kann die Ergebnisqua-

lität verschlechtern, da er zu Redundanzen und Ablenkungen führt

[Chatterjee, 2025]. Die Formulierung sollte präzise und auf das Wesentliche redu-

ziert sein, um diese Halluzinationen zu vermeiden und Kontextspeicher einzuspa-

ren.

5.2 Reflexion und Fokussetzung

In Anbetracht der gewonnenen Erkenntnisse durch die ersten Experimente und der

erkannten Schwachstelle der RAG-Suche war eine Neuausrichtung erforderlich.

In den ersten Experimenten wurde der Agent als ganzheitlicher Schnittstellengenera-

tor konzipiert: Er sollte eine Eingabedateien analysieren, daraus ein Mapping ableiten

und dieses direkt in lauffähigen FLEX-spezifischen JavaScript-Code überführen, der

anschließend in der AWS-Laufzeitumgebung getestet wurde. Diese Herangehensweise

erwies sich jedoch als problematisch, weil Fehlerquellen aus Mapping, Codegenerierung

und Zielumgebung miteinander vermischt wurden. Zusätzlich erschwerte die langsame

Ausführung und die nur indirekte Einsicht über Serverlogs die Analyse der Ergebnis-

se. Dadurch waren Transparenz und Nachvollziehbarkeit der Einzelschritte stark einge-

schränkt und die gezielte Weiterentwicklung des Mappings wurde behindert. Aus diesen

Schwachstellen wurde die Konsequenz gezogen, Parsing, Mapping und Codegenerierung

klar zu trennen und den Fokus der Arbeit zunächst auf ein fachlich valides, lokal test-

bares Mapping zu legen, bevor die eigentliche Laufzeitintegration in FLEX betrachtet

wird.

Die Fokussierung auf die Laufzeitintegration stellte somit einen Schritt vor der eigentli-

chen Kernaufgabe dar – der Erstellung eines korrekten und nachvollziehbaren Mappings.

Daher wurde der Fokus der Arbeit bewusst auf die Entwicklung eines zuverlässigen

und validen Mappings eingegrenzt. Dieses Mapping wird weiterhin in ausführbarem

Code abgebildet, allerdings zunächst in einer vereinfachten, lokal testbaren Syntax

(JavaScript-Snippets in der HTML-Testumgebung), bevor eine spätere Übersetzung in

das endgültige FLEX-Kommando erfolgen kann. Außerdem musste aufgrund der einge-

schränkten RAG-Suche eine Umgebung mit speziell dafür ausgelegter RAG-Integration

genutzt werden.

10

5.3 Umsetzung in Visual Studio Code

Nach den ersten Experimenten in der firmeninternen Umgebung wurden die weiteren

Untersuchungen zum Mappingsystem in Visual Studio Code durchgeführt. Dort kam

GitHub Copilot als LLM-basierter Assistent zum Einsatz, der im Wesentlichen die

gleichen Konfigurationsmöglichkeiten wie die vorherige Umsetzung anbietet.

Zusätzlich konnte standardmäßig eine gezielte Dateisuche durchgeführt werden, wo-

durch die vorherige Problematik behoben wurde. Darüber hinaus gestaltete sich die

Navigation und Entwicklung in der Entwicklungsumgebung als benutzerfreundlich, da

Kontext und Chat in einer Oberfläche integriert sind. Grundsätzlich wurde der glei-

che Ansatz von Instruction Prompt und interner RAG-Anbindung genutzt. Eine ent-

scheidende zusätzliche Möglichkeit liegt aber in der eigenständigen Manipulation von

Kontext-Dateien und die damit einhergehende Realisierbarkeit einer iterativen Verbes-

serung durch Feedback.

5.3.1 Finaler Prompt

Der Finale Prompt ergibt sich aus den zuvor gesammelten Anforderungen und Metho-

den. Zunächst wird in der Einleitung die Spezialisierung des Agenten klargestellt:

Du bist ein spezialisierter Mapping-Agent. Deine Aufgabe ist es, Felder beliebi-

ger XML- oder JSON-Eingaben auf ein vorgegebenes Entitätschema abzubilden.

Für jedes Zielfeld wählst du anhand von Feldnamen, Struktur, Kontext und dei-

nem vorhandenen Wissen das passendste Eingabefeld aus und begründest deine

Zuordnung, wenn sie nicht eindeutig ist.

Nachdem ausführliche Experimente gezeigt haben, dass eine Best-Practice bei der Agen-

tenkonfiguration die Definition eines festen Ablaufplans darstellt, wurde dies auch um-

gesetzt. Unter Berücksichtigung der genannten Erkenntisse bezüglich Prägnanz und

Formulierung wurde die generelle Vorgehensweise im Instruction Prompt final wie

folgt definiert:

Analysiere die Struktur des eingehenden Objekts. Nutze vorhandene Mapping-

Regeln, wo sie definiert sind, und leite für alle übrigen Felder auf Basis von

Feldnamen, Struktur, Kontext und deinem Wissen sinnvolle Zuordnungen ab.

Nutze Feedback, um dein Mapping-Wissen und deine Heuristiken schrittweise

zu verbessern. Ziel ist es, alle Felder des Entitätschemas möglichst sinnvoll und

vollständig zu belegen – auch bei unbekannten oder neuen Formaten.

11

Für das Eingangsformat XML wurden die Anweisungen sowie die erwarteten Input-/

Output Formate nochmal präzisiert, damit die Vorgehensweise eindeutig ist:

Erweiterung (IDoc-spezifische Regeln):

1. Bestimme den IDOCTYP aus dem XML.

2. Lade die zugehörige Mapping-Regeldatei, lege für neue oder unbekannte

IDOCTYPS neue Regeldateien an, die du nach Feedback weiter verfeinerst.

3. Wende diese Regeln beim Feld-Mapping auf JavaScript-Templates an

Es fehlte noch eine genauere Anleitung zum Erstellen neuer Mapping-Regeln, was den

Kern der Aufgabe des Agenten darstellt. Diese Regeln sind zwar umfangreicher defi-

niert, lassen sich aber auf diese Prinzipien zurückführen:

Die Orientierung am Zielschema (CreateCustomerOrderRequest) bildet die Grundlage

für die heuristischen Zuordnungen, da das Schema neben den Feldnamen und Datenty-

pen auch kurze Beschreibungen zur Bedeutung der Felder enthält (Tabelle 1, S.7). In

Kombination mit den Feldnamen und Datentypen der jeweiligen Eingabe können die

verfügbaren Möglichkeiten zur Belegung jedes Feldes schon eingegrenzt werden.

Zudem muss der Agent aus allen bestehenden Beispielen und Regeln zusätzliche Schlüsse

ziehen und diese auf neue Formate anwenden.

Im Falle einer Unsicherheit soll dies auch klar kommuniziert werden. Statt willkürlich

Felder zu belegen, sollen mehrere Möglichkeiten gegeben und auf diese Weise eine höhere

Transparenz erreicht werden.

Menschliches Feedback über den Chat soll flexibel in das System einfließen. Auf diese

Weise soll die Zuordnung schrittweise verbessert werden können.

Um Sonderfälle abzudecken, wurden unbekannte Zusatzfelder zunächst unverändert

in das Zielobjekt übernommen, während Pflichtfelder bei fehlender Belegung mit klar

erkennbaren Defaultwerten versehen wurden, um in jedem Fall ein formal valides Zielob-

jekt zu erzeugen. Dieses Verhalten ist anpassbar, für die durchgeführten Tests erwiesen

sich Defaultwerte jedoch als zweckmäßig, um fehlende Pflichtfelder zu identifizieren.

Durch die Ablage des Prompts im Projektkontext konnte sein Inhalt durch Promptein-

gaben (im Kapitel Kontextanreicherung erläutert) iterativ auf Basis der gewonnenen

Erkenntnisse und Testergebnisse angepasst werden. Konkret wurden nach fehlgeschla-

genen oder unvollständigen Mappings zusätzliche Regeln und Präzisierungen ergänzt

- die Verpflichtung zur Nutzung expliziter Mapping-Regeldateien, Anweisungen zum

Umgang mit Pflicht- und Zusatzfeldern, ein fest definierter Handlungsablauf sowie

Anhaltspunkte zur Verbesserung des Initialmappings. Diese schrittweisen Änderungen

führten dazu, dass der Agent sukzessive weniger Halluzinationen zeigte und die Felder

12

des CreateCustomerOrderRequest nachvollziehbarer belegte. Auf diese Weise entstand

eine Evolution der Konfiguration, durch die der Agent immer genauer auf seine spezi-

fische Mappingaufgabe kalibriert wurde.

5.3.2 Kontextanreicherung

Die Kontextanbindung ist in VS Code ohne großen Initialaufwand über das integrierte

RAG-System möglich. Alle relevanten Dateien liegen im selben Projektverzeichnis und

sind damit für den Agenten zugänglich. Über die semantische Suche wurden mit hoher

Trefferquote gegebene Dateien bei Bedarf in den Kontext geladen. Die Limitierung der

Kontextgröße aufgrund langer Inputdateien konnte so gelöst werden. Die zuvor aus-

geführte Evolution der Konfiguration resultiert aus der zusätzlichen Möglichkeit zur

direkten Kontextmanipulation durch Nutzereingaben.

Ein kleines Hindernis stellte die Berechtigung des Agenten auf automatischen Zugriff

auf den Projektordner aus Datenschutzgründen dar. Er musste oft mehrfach aufgefor-

dert werden, die Dateien zu laden, was den Entwicklungsprozess verlangsamte.

Dies konnte aber durch folgendes Statement im Instruction Prompt größtenteils um-

gangen werden, sodass zu Beginn eines neuen Chats nur noch eine Bestätigung nötig

ist.

Du darfst auf alle Dateien im Ordner
”
Agent Files“ zugreifen und sollst zu Beginn

eines neuen Chats einmal kurz nachfragen, ob dieser Zugriff erlaubt ist.

Es gibt zusätzlich die Möglichkeit, einzelne Dateien explizit in den Kontext zu laden.

Folglich lag der Fokus weniger auf der technischen Einbindung und stärker auf der

inhaltlichen Auswahl eines sinnvollen Kontexts.

Es ist unerlässlich, als zentralen Ausgangspunkt den Instruction Prompt einzubinden.

Zu Beginn wurde eine Input-XML sowie das Kommando-Schema mitgegeben. Daraufhin

wurden erste Mappingregeln im CSV Format generiert, mit Hilfe derer ein erster JSON-

Output erstellt wurde. Auf diesen Grundlagen aufbauend wurde der Kontext durch

weitere Befehle iterativ weiterentwickelt. Eine Speicherung von neuen Regeldateien und

Outputs erfolgt dank dieser Anweisung immer automatisch.

Neue oder geänderte Mapping-Regeln sollen automatisch als CSV im Ordner

”
mappingregeln“ gespeichert werden. Für jedes bearbeitete Eingabebeispiel ist

automatisch ein entsprechender Output im Zielschema als JSON im Ordner
”
Out-

puts“ abzulegen (Dateiname analog zur Inputdatei).

Je mehr Beispiele vorliegen, desto mehr Orientierungsmöglichkeiten stehen dem Agen-

13

ten zur Verfügung. Letztlich wurde sich auf folgende erweiterbare Struktur festgelegt.

Abbildung 2: Ordnerstruktur im Projektkontext. Die Inputs enthalten Eingangsdo-

kumente und in den Outputs werden die generierten Skripte gespeichert. Im Kapitel

Qualitätssicherung wird näher auf den Hintergrund des Htmls und ValidationPrompts

eingegangen.

5.3.3 Interaktive Ausführung

Um den Agenten zur Ausführung der Aufgabe zu veranlassen, muss stets ein Prompt

in VS Code angestoßen werden. Es wurde sich auf zwei verschiedene Arten von Anwei-

sungen festgelegt.

Zum einen soll der Agent eine eingehende Datei beliebigen Formates direkt in ein JSON-

Objekt der Zielentität überführen können. Dies ist vor allem bei der Entwicklungsphase

eine praktische Möglichkeit, um ohne Aufwand direkt im Chat ein Mapping zu testen.

Für die angestrebte Lösung der Schnittstellen soll jedoch nicht für jedes einzelne Ein-

gangsdokument eine direkte Berechnung durch das LLM erfolgen. Dies wäre einerseits

zu rechenintensiv und andererseits nicht zuverlässig einsetzbar, da ein LLM ein pro-

babilistisches Modell bleibt und selbst bei einem optimierten Instruction Prompt noch

mit Halluzinationen und potenziell fehlerhaften Ergebnissen zu rechnen ist.

Daher wurde der Standardmodus des Agenten so konfiguriert, dass er wiederverwend-

bare Javascript-Mappings erzeugt. Diese Mappings orientierten sich zunächst an einer

14

vereinfachten, testbaren Syntax. Zunächst wurde die in FLEX produktiv eingesetz-

te, lauffähige Syntax übernommen. Aufgrund der in AWS eingeschränkten Testbarkeit

war jedoch eine leicht abgewandelte Syntax erforderlich, um die Tests auf der lokalen

HTML-Seite effizienter und schneller durchführen zu können. Anhand der iterativ ent-

wickelten deterministischen Mappings und eines Javascript-Templates wird für jeden

Dokumenttypen statt für jede Datei ein Script erstellt. Die Scripte werden anschlie-

ßend für gleichartige Dokumente wiederverwendet. Im Anhang A wird ein konkretes

Mapping gezeigt.

5.4 Wahl des LLMs

Darüber hinaus wurde im Rahmen der Testläufe auch die Auswahl des zugrunde lie-

genden LLMs untersucht, da sich dabei neue Erkenntnisse ergaben.

Obwohl das in Visual Studio Code verwendete Sprachmodell grundsätzlich flexibel

gewählt werden kann, zeigte sich in den Experimenten insbesondere GPT-4.1 als zu-

verlässig, da es die vorgegebenen Templates konsistent einhielt.

Bei der Nutzung der neueren Variante GPT-5.1 (Preview) traten hingegen vermehrt

Verstöße gegen die Templatevorgaben auf. Das Modell halluzinierte vermeintlich not-

wendige Hilfsfunktionen, welche die Ausführbarkeit der erzeugten Skripte eher beein-

trächtigten. Dieses Verhalten ist im Kontext der Arbeit unerwünscht, weshalb im Fol-

genden mit GPT-4.1 gearbeitet wurde. Eine ausführliche Auswahl und Bewertung des

am besten geeigneten LLMs für das Schema-Mapping, insbesondere im Hinblick auf

semantische Ähnlichkeiten, konnte im begrenzten Zeitrahmen und durch mangelnde

Validierungsdaten nicht vorgenommen werden.

15

6 Qualitätssicherung

Die ausführlich durchgeführte Qualitätssicherung setzt sich aus mehreren Schichten

zusammen, die kombiniert eine genaue Bewertung der Mappings sowie der Codegene-

rierung möglich machen. Dabei wurde besonders Wert auf die semantische Korrektheit

gelegt. Die syntaktische Korrektheit war durch die Verwendung fester Script-Templates

in der Regel sichergestellt und stellte eine vergleichsweise kleine Herausforderung dar.

Zunächst wird auf verbreitete Bewertungsverfahren eingegangen und ihre Umsetzbar-

keit diskutiert.

6.1 Bewertungsverfahren

Die testbasierte Bewertung zeichnet sich durch einen handgeschriebenen Testsatz

für jedes Problem aus. Mit ausreichender Testabdeckung kann so eine Funktion sicher-

gestellt werden [?], jedoch ist der Initialaufwand für die Unittests sehr hoch. Da sich

FLEX noch nicht im produktiven Einsatz ist, existieren keine echten Beispiele.

Eine weitere, besonders im KI-Kontext verbreitete Methode ist die tokenbasierte Be-

wertung. Dabei wird der generierte Code mithilfe eines Tokenizers in Tokens zerlegt

und mit einer bekannten Musterlösung verglichen. Bewertet wird dann die Anzahl der

abweichenden Tokens im Output [Tong and Zhang, 2024]. Dieses Verfahren setzt jedoch

valide Ergebnisse in tokenisierter Form voraus, sodass es im Rahmen dieser Arbeit nicht

eingesetzt werden konnte.

Da sowohl testbasierte als auch tokenbasierte Bewertungsverfahren im vorliegenden Use

Case nur eingeschränkt einsetzbar sind, wurde ein mehrstufiges Qualitätssicherungskon-

zept entwickelt, das menschliches Feedback, eine automatische Validierungsschicht und

exemplarische Unittests kombiniert.

6.2 Menschliches Feedback

Die hybride Entwicklung kombiniert automatisierte Vorschläge des Mapping-Agents

mit gezielter menschlicher Überprüfung. Fachliche Rückmeldungen werden genutzt, um

Fehler und unerwünschtes Verhalten zu identifizieren und die Mapping-Regeln itera-

tiv zu verfeinern. Konkret werden neue Initialmappings manuell geprüft. Auf Basis

dieser Prüfung wird dem Agenten mitgeteilt, welches Zielfeld aus welcher Quelle be-

legt sein soll und welche Zuordnung fehlerhaft war. Diese Rückmeldung fließt anschlie-

ßend in die Aktualisierung der Mapping-Regel für den spezifischen Dokumententyp ein.

Durch diese wiederholte Schleife aus Agentenvorschlag, automatischer Validierung und

menschlichem Feedback entsteht ein kontinuierlicher Verbesserungsprozess. Die hybride

16

Entwicklung erhöht damit sowohl die semantische Korrektheit der Mappings und bietet

zusätzliche Sicherheit gegenüber einer rein automatisierten Lösung.

Um diese manuelle Überprüfung zu ergänzen und zu entlasten, wurde zusätzlich eine

automatische Bewertungsschicht in Form eines Validierungs-Agenten eingeführt.

6.3 Automatische Bewertung

Zusätzlich wurde eine automatisierte Validierungsschicht über einen unabhängigen zwei-

ten Agenten im
”
ValidationPrompt.md“ definiert, um die Ergebnisqualität der Code-

generierung abzusichern.

Eine vollständig automatisierte Bewertung des Mappings ist im betrachteten Use Case

nicht möglich, da zuvor unbekannte Zusammenhänge ermittelt werden, für die kein Vali-

dierungsdatensatz existiert. Stattdessen unterstützt der Validierungs-Agent die hybride

Entwicklung, indem er für jedes generierte Snippet prüft, ob die definierten Mapping-

Regeln eingehalten werden und der Output das Zielschema erfüllt.

Um diese Genauigkeit zu erreichen, prüft der Validierungsagent für jedes generierte

Snippet die Einhaltung folgender Kriterien:

• Er kontrolliert feldweise, ob das vom Mapping-Agenten erzeugte Ergebnis die

vorliegenden Mapping-Regeln korrekt einhält.

• Zusätzlich stellt er sicher, dass der Output ein syntaktisch gültiges Objekt der

Zielentität CreateCustomerOrderRequest darstellt und damit das zugrun-

de liegende Schema erfüllt. Wenn in angewendeten Mapping-Regeln Pflichtfelder

nicht gesetzt werden, macht der Agent darauf aufmerksam und sichert so das

Mapping ab.

In den durchgeführten Tests hat der Validierungs-Agent alle generierten Ergebnisse

akzeptiert, was darauf schließen lässt, dass die Codegenerierung auf Basis definierter

Vorlagen (JavaScript-Template und Mapping-Regeln) mit hoher Genauigkeit funktio-

niert.

Natürlich kann auch dieser Agent halluzinieren, er stellt jedoch einen wichtigen Schritt

hin zu einem syntaktisch validen Output dar.

Neben dieser agentenbasierten Bewertung wurden darüber hinaus klassische Unittests

eingesetzt, um das Verhalten der generierten Mappings zu überprüfen.

17

6.4 Unittests

Zur Bewertung der Qualität der generierten Objekte wurden acht bestehende Unittests

aus Kundenumgebungen mit den generierten Ergebnissen verglichen und daraus die

initiale Genauigkeit der Übereinstimmung mit den Testergebnissen für jedes gesetzte

Feld berechnet.

Für die Ausführung der JavaScript-Snippets wurde eine separate Umgebung benötigt.

Diese wurde als einfache HTML-Seite implementiert, welche die generierten JavaScript-

Snippets ausführen kann. Die Snippets können als Eingabe ausschließlich JSON ver-

arbeiten, da sich eine direkte Verarbeitung von XML in JavaScript ohne zusätzliche

Bibliotheken im Browser als nicht praktikabel erwies. Daher musste das XML zunächst

in einem separaten Schritt in ein JSON-Objekt überführt werden. Daraus resultiert

eine klare Trennung von Parsing- und Mapping-Schicht, was die unabhängige Testbar-

keit verbessert [Parnas, 1972]. Exemplarisch wurden Tests aus drei unterschiedlichen

Kundenumgebungen bestmöglich aufbereitet, damit sie auf das neue Entitätsschema

anwendbar sind. Die Kundenumgebungen nutzen stark angepasste Varianten der behan-

delten Entität. Viele der geprüften Felder sind daher Sonderfälle, die im ursprünglichen

FLEX-Schema nicht enthalten sind. Dadurch schneiden diese Testfälle im Initialmap-

ping tendenziell schwächer ab.

Im Durchschnitt wurden die 20 manuell betrachteten Felder initial mit einer Genauig-

keit von 30% wie im Test erwartet belegt.

Diese niedrige Trefferquote resultiert jedoch größtenteils aus der eingeschränkten Test-

barkeit. Es wurde festgestellt, dass fünf erwartete Feldwerte im Input gar nicht vorhan-

den waren und stattdessen durch Defaultwerte oder zusätzliche Logik belegt werden.

Unter Berücksichtigung dieses Umstands erhöht sich die erzielte Genauigkeit bereits

auf 6/15 = 40%.

Die verbleibenden Felder aus den Inputs wurden zunächst nicht korrekt erkannt, da

sie unter einem anderen Feldnamen erwartet wurden oder eine Transformation wie das

Aufteilen des Codes durch einen Bindestrich vorausgesetzt wurde. Die dafür notwendi-

ge Logik ist im Input nicht enthalten. Nach einer Iteration, in der diese Feinheiten per

Prompt erläutert wurden und der Agent daraufhin die entsprechenden Regeln sowie

Skripte angepasst hat, konnten diese Felder wie erwartet zugeordnet werden. Unter der

idealisierten Annahme, dass menschliches Feedback fehlerfrei ist, ließe sich theoretisch

nach genügend Iterationen eine Genauigkeit von 100% erreichen.

Die beschriebenen Tests decken nur eine begrenzte Anzahl von Beispielen ab und prüfen

jeweils nur einen Teil der Felder der Zielentität. Daher sind sie im Sinne einer um-

fassenden Testabdeckung nicht vollständig aussagekräftig. Sie sind jedoch die einzige

verfügbare Möglichkeit, erwartete Ergebnisse zu testen, und illustrieren exemplarisch

18

die Funktionsweise des Initialmappings und die Verbesserung durch iteratives Feedback.

Insgesamt entsteht durch die Kombination aus einer hybriden, iterativen Entwicklung

der Mappingregeln sowie internem Validierungs-Agenten und zusätzlichen exemplari-

schen Integrationstests ein mehrstufiges Qualitätssicherungs-Konzept: auf der einen

Ebene wird die fachliche Korrektheit des Mappings durch einen Menschen validiert;

auf der anderen Ebene wird die Einhaltung dieses Mappings innerhalb der Agentenum-

gebung bei der Anwendung auf das JavaScript-Template überprüft.

7 Ausblick

Es existieren neben den angewendeten Verfahren weitere Möglichkeiten, ein LLM dau-

erhaft auf den speziellen Use Case des Schema-Mappings zu spezialisieren. Aufgrund

des hohen zeitlichen Aufwands wurden diese Ansätze nicht umgesetzt, sondern lediglich

konzeptionell betrachtet. Damit ist die Lösung mit vertretbarem Aufwand realisierbar,

gleichzeitig bleibt ausreichend Spielraum für spätere Erweiterungen und Verbesserun-

gen.

Eine mögliche Verbesserung stellt das so genannte Fine-Tuning dar, mit dem die Ge-

nauigkeit des Initialmappings weiter erhöht werden kann, weshalb es im Folgenden

vorgestellt wird.

7.1 Fine-Tuning

Fine-Tuning ist ein Verfahren des Maschinellen Lernens, bei dem ein vortrainiertes

LLM mit einem domänenspezifischen Trainingsdatensatz weitertrainiert wird, um seine

Gewichte an einen speziellen Usecase anzupassen [Devlin et al., 2019]. Ein genau abge-

stimmtes LLM kann einen komplexen Prompt in seinem Fachgebiet deutlich schneller

und mit niedrigerer Fehlerquote beantworten als ein lediglich mit Few-Shot-learning

trainiertes Modell (Abbildung 4).

Abbildung 3: Fine-Tuning erzielt höhere Validierungsgenauigkeit als Few-Shot-

Learning auf mehreren Datensätzen [Hu et al., 2021]

Es existieren verschiedene Fine-Tuning-Varianten, die unterschiedliche Ansprüche an

Rechenleistung sowie passend zugeschnittene Trainingssätze haben [OpenAI, 2023] und

19

damit unterschiedlich hohe Kosten verursachen. Daher ist eine Analyse des Aufwand-

Nutzen-Verhältnisses vor der Durchführung angebracht. Im Folgenden werden die in die-

sem Kontext naheliegendsten Varianten sowie ihr möglicher Mehrwert für das Schema-

Mapping dargestellt.

7.1.1 Abwägung Supervised Finetuning

Ein gängiges Fine-Tuning-Verfahren ist das supervised Fine-Tuning (SFT), da es auf

klar definierten Eingabe-Ausgabe-Paaren basiert und somit eine direkte Optimierung

auf korrekte Schema-Mappings ermöglichen würde [OpenAI, 2023]. In einem stabilen

Umfeld mit weitgehend unveränderten Formaten könnte ein so spezialisiertes Modell

das Initialmapping die Fehlerrate deutlich reduzieren. Im betrachteten Use Case ändern

sich die Eingabeformate jedoch regelmäßig, und für neue Varianten liegen zunächst kei-

ne verlässlichen Validierungsdaten in ausreichender Menge vor. Damit fehlt die zen-

trale Voraussetzung für SFT: ein umfangreicher, konsistenter Trainingsdatensatz mit

korrekten Mappings. Ein derartiges Datenset müsste erst mit erheblichem manuellem

Aufwand aufgebaut und kontinuierlich nachgepflegt werden, was den erwarteten Nutzen

des Fine-Tunings für das Schema-Mapping wirtschaftlich relativiert. Das SFT würde

hingegen eine genauere Einhaltung der Templates ermöglichen, da es vorgegebene For-

mate präzise einhalten kann [OpenAI, 2023]. Dieses Teilproblem der Codegenerierung

wurde jedoch ohne Fine-Tuning schon ausreichend eingehalten.

Ein weiteres verbreitetes Verfahren ist das Reinforcement Learning.

7.1.2 Abwägung Reinforcement Learning from Human Feedback

Reinforcement Learning lässt sich als
”
a way of programming agents by reward and

punishment without needing to specify how the task is to be achieved“ beschreiben

[Kaelbling et al., 1996]. RLHF ersetzt dabei kein SFT, sondern baut auf einem be-

reits trainierten Modell auf und optimiert dessen Verhalten über Belohnungssignale.

Daraus geht hervor, dass sich RLHF als nachgelagerter Optimierungsschritt für den

Use Case anbietet, da es keine zusätzlichen expliziten Zielausgaben benötigt. Die Spe-

zialisierung Reinforcement Learning from Human Feedback (RLHF) könnte im Kon-

text der hybriden Entwicklung genutzt werden, um Mapping-Entscheidungen auf Basis

von Belohnungssignalen schrittweise zu verbessern und als Resultat für neue oder sich

ändernde Typen genauere Initialmappings gewährleisten. Im vorliegenden Anwendungs-

fall wird ohnehin mit menschlichen Interaktionen gearbeitet, weshalb sich das RLHF

grundsätzlich anbieten würde. Dabei wird das Fine-Tuning eher als langfristiger iterati-

ver Prozess angesehen, bei dem zunehmend Feedback gesammelt wird und das Mapping

dadurch genauere Ergebnisse erzielen kann. Die Anforderungen für eine mögliche Um-

setzung werden im Folgenden diskutiert.

20

7.1.3 Finetuning Kosten

Die Umsetzung des RLHF baut auf der des Supervised Finetunings auf, es wird aber

zusätzlich eine Präferenzschicht trainiert, in die das menschliche Feedback einfließt

[Dai and Pan, 2023]. Eine genaue Betrachtung der Kosten würde den Rahmen der Ar-

beit sprengen, daher wird im Folgenden eine grobe Abschätzung der Kosten für das

SFT vorgenommen und dann in Bezug zum RLHF gesetzt. Die Hauptfaktoren in der

Kostenberechnung des Supervised Fine-Tuning sind die Parameteranzahl des LLMs

und die Tokenanzahl des Trainingssatzes. Ein Parameter wird typischerweise in halber

Gleitkommapräzision (FP16) gespeichert, was einem Speicherbedarf von 2 Byte pro

Parameter entspricht [NVIDIA, 2018]. Darüber hinaus existieren weitere Ansätze zur

Reduktion der benötigten Rechenleistung, aber oft auch der Effizienz, wie beispielsweise

LoRA [Hu et al., 2021], auf die im Rahmen dieser Arbeit jedoch nicht näher eingegan-

gen wird.

Eine für Modelltraining ausgelegte high-end GPU wie die NVIDIA A100-GPU erreicht

ungefähr 3,12*1014 Floating-Point Operations Per Second (FLOPS) pro Sekunde im

FP16 Modus [NVIDIA, 2020]. Es wird angenommen, die Kosten einer A100 GPU lie-

gen bei 3,5 Euro pro Stunde, was ein realistischer Durchschnittspreis bei Cloudanbietern

ist [GetDeploying, 2025].

Im Folgenden wird eine grobe Vergleichsrechnung für die Kosten des FP16 Fine-Tunings

vom verwendeten LLM Gpt 4.1 sowie von neueren state-of-the-art Modellen mit jeweils

10 Millionen Trainingstoken durchgeführt. Auf Basis publizierter Modelle wie GPT-3

mit 175 Milliarden Parametern [Brown et al., 2020] und aktueller Übersichtsarbeiten zu

Large Language Models [Zhao et al., 2023] erscheint es plausibel, für moderne state-of-

the-art Modelle wie Gpt 5.1 , Gemini 3 oder Grok 5 von Parameteranzahlen im Bereich

von mehreren Billionen auszugehen. Die Parameteranzahl von Gpt 4.1 ist ebenfalls nicht

offiziell dokumentiert und wird hier auf eine Billionen geschätzt. Für die Berechnung

wird die Formel FLOPs ≈ 6 ·NParameter ·NToken benutzt [Kaplan et al., 2020]:

Kostenabschätzung FP16 für GPT 4.1 mit 1012 Parametern

FLOPs-Bedarf:

FLOPs ≈ 6 · 1012 · 107 = 6 · 1019

Rechenzeit:

FLOPs

312 · 1012 FLOPs/s
=

6 · 1019

312 · 1012
≈ 1,92 · 105 s ≈ 53,3 Stunden

Bei beispielhaften Kosten von 3,50 Euro pro GPU-Stunde ergäbe sich:

53,3 h · 3,50 /h ≈ 187 Euro

21

Kostenabschätzung FP16 für modernes Modell mit 5 · 1012 Parametern

FLOPs-Bedarf:

FLOPs ≈ 6 · 5 · 1012 · 107 = 3 · 1020

Rechenzeit:

FLOPs

312 · 1012 FLOPs/s
=

3 · 1020

312 · 1012
≈ 9,62 · 105 s ≈ 267,3 Stunden

Bei denselben Cloudkosten ergibt sich:

267,3 h · 3,50 /h ≈ 936 Euro

Die nötigen Rechenkosten für das Fine-Tuning mit einem Datensatz von 10 Millio-

nen Trainingstokens liegen somit nicht im extrem hohen Bereich, sondern bewegen sich

in einer Größenordnung, die für Unternehmen mit Cloud-Budget wirtschaftlich reali-

sierbar ist. Die vorgenommenen Berechnungen erfassen ausschließlich die Rechenkosten

für das SFT und berücksichtigen nicht den Aufwand für die Aufbereitung der Trai-

ningsdaten. Bei der Durchführung von RLHF liegen die Kosten bei gleicher Anzahl an

Trainingstokens mindestens in derselben Größenordnung. In der Praxis fallen durch

manuelle Bewertungen zusätzlich Personalkosten an, sodass RLHF teurer ist als rei-

nes SFT. Insgesamt ist die Durchführung von RLHF damit finanziell und technisch

anspruchsvoll und erfordert weitergehende Vorbereitungen, während folgende Weiter-

entwicklungen mit deutlich geringerem Aufwand realisierbar sind.

7.2 Skalierbarkeit

Außerdem könnten folgende Funktionen erweitert werden, um den Agenten auf mehr

Aufgaben zu skalieren und ihn nutzerfreundlicher zu gestalten.

• Durch eine mögliche Erweiterung der Eingabe von weiteren Entitäten aus Fremd-

systemen kann die Wiederverwendbarkeit des Mapping-Agenten über den spezi-

fischen Usecase erhöht werden.

• Eine andere Skalierung stellt die Möglichkeit zur Spracheingabe von Feedback

dar, sodass die Nutzung erleichtert wird.

• Außerdem kann im verwendeten Copilot durch zusätzliche Einstellungen die au-

tomatische Kontextsuche verbessert werden, was zu einer einfacheren Bedienung

mit weniger notwendigen Prompteingaben führt.

22

7.3 Integration

Die Arbeit wurde mit dem Ziel der Schnittstellenanbindung für FLEX konzipiert, ein

naheliegender nächster Schritt ist daher die Integration ins Laufzeitsystem. Zunächst

müssen die generierten Skripte der Syntax der FLEX-REST-API entsprechen, was

durch angepasste Skript-Templates umgesetzt werden kann, sodass die bereitgestell-

te API diese Skripte ausführen kann. Der Hauptaufwand der Integration liegt in der

notwendigen Interaktion des Agenten mit dem System. Es ist eine Regelung erforderlich,

die eingehende Dateien eindeutig den jeweils zuständigen Mappingskripten zuordnet.

Bei unbekannten Typen muss der Agent die eingehende Datei erhalten und ein Initial-

mapping generieren. Der generierte Output wird im System abgelegt werden und es ist

für Nutzer eine Umgebung bereitzustellen, in der sie Feedback mitteilen können. Dieses

Feedback sollte zunächst verpflichtend sein, um Fehler zu minimieren. Grundsätzlich

erfolgt die technische Integration dabei über Schnittstellen zwischen Agent und FLEX-

Laufzeitsystem. Zudem werfen diese Anforderungen Datenschutzfragen auf, die das zu-

grunde liegende LLM erfüllen muss.

8 Diskussion

Im Rahmen der Arbeit wurden folgende Ziele erreicht. Der prototypische Ansatz zeigt,

dass sich Mappingskripte auf Basis fester Vorgaben schnell und zuverlässig erzeugen

lassen. Änderungen in zugrunde liegenden Regeln werden vom Agenten erkannt und

resultieren in entsprechend angepassten Skripten, ohne dass die Logik manuell neu

implementiert werden muss. Die Entwicklung verschiebt den Fokus von technischen

Details der Schnittstellenimplementierung hin zur fachlichen Bedeutung der Mappings.

Der Agent besitzt das Potenzial, Wissen zu vorhandenen Zusammenhängen zuverlässig

auf neue Dateitypen anzuwenden. Durch Fine-Tuning kann das Initialmapping noch

verbessert werden. Insgesamt erscheint damit auch eine zukünftige Integration in das

FLEX-Laufzeitsystem prinzipiell realistisch.

Gleichzeitig ist die Generierungsfähigkeit des Agenten weitgehend auf vorhandenes Wis-

sen und explizit vorgegebene Regeln beschränkt. In praktischen Anwendungsfällen wird

häufig kundenspezifische Logik benötigt oder die Ziel-Feldnamen unterscheiden sich

gänzlich von den entsprechenden Quell-Feldnamen, sodass die Beziehungen nicht oh-

ne weiteres automatisch abgeleitet werden können. Daher ist eine menschliche Un-

terstützung erforderlich, die nicht ableitbare fachliche Logik beisteuert. Darüber hin-

aus besteht ein Konsistenzrisiko: leicht variierende Nutzereingaben führen nicht immer

zu identischen Ergebnissen, weshalb standardisierte Prompts und feste Arbeitsabläufe

erforderlich sind. Schließlich müssen in einer praktischen Umsetzung auch Integrations-

aufwand und API-Kosten berücksichtigt werden.

23

9 Fazit

Durch eine präzise Beschreibung des Usecases sowie expliziten Vorgaben wurde der

Agent zielgerichtet konfiguriert und liefert mit menschlicher Überwachung zuverlässige

Ergebnisse.

Bei der Integration in ein reales System muss der entstehende Integrationsaufwand ge-

gen die resultierende Effizienzsteigerung abgewogen werden.

Bei dynamischen Systemen wie FLEX ist ein Mehrwert zu erwarten, da Schnittstellen

einen hohen Anteil am Entwicklungsaufwand haben und fortlaufend angepasst werden

müssen. In diesem Kontext kann ein Mapping-Agent wiederkehrende Anpassungen un-

terstützen und so den Aufwand langfristig reduzieren.

Jedoch stellt die Lösung keine vollautomatisierte Schnittstellengenerierung dar, weil

eine menschliche Komponente in der Validierungsschicht für eine höchstmögliche Si-

cherheit eingebunden werden muss.

24

A Anhang: Konkretes Beispiel-Mapping

1 <SHPMNT05 >

<IDOC BEGIN="1">

3 <EDI_DC40 SEGMENT="1">

<IDOCTYP >SHPMNT05 </IDOCTYP >

5 <!-- ... weitere Felder ... -->

</EDI_DC40 >

7 <E1EDT20 SEGMENT="1">

<TKNUM>BD26TONNER </TKNUM>

9 <SHTYP >0001</SHTYP >

<TPBEZ>WA4_DATUM_UHRZEIT </TPBEZ>

11 <E1EDL20 SEGMENT="1">

<VBELN >9102031925 </VBELN>

13 <LGNUM >102</LGNUM >

<ROUTE >GL_LP</ROUTE>

15 <!-- ... weitere Felder ... -->

<E1EDL37 SEGMENT="1">

17 <EXIDV >30101056 </EXIDV >

<VEGR1>PICK</VEGR1>

19 <E1EDL44 SEGMENT="1">

<VELIN >1</VELIN >

21 <VBELN >9102031925 </VBELN >

<POSNR >1</POSNR >

23 <EXIDV >30101056 </EXIDV >

<VEMNG >1.00000000000000 </VEMNG>

25 <VEMEH >ST</VEMEH >

<MATNR >KB0001 </MATNR>

27 <CHARG >UN00042895 </CHARG >

</E1EDL44 >

29 </E1EDL37 >

</E1EDL20 >

31 </E1EDT20 >

</IDOC>

33 </SHPMNT05 >

Listing 1: Auszug einer XML-Eingangsdatei vom IDOCTYP SHPMNT05

25

1 TargetField;SourcePath;Comment;DefaultValue

startPosition;E1EDL20.LGNUM;Alternativ NAME2 oder EXIDV/EXIDV2 je nach Use

Case;DEFAULT

3 targetPosition;E1EDL20.ROUTE;Alternativ LGNUM oder EXIDV/EXIDV2 je nach Use

Case;DEFAULT

transportType;E1EDL20.ROUTE;Route als Transporttyp, falls leer Default;

DEFAULT

5 processConfiguration;;Kein Wert im XML, fester Default;DEFAULT

amount;;Kein Wert im XML, fester Default;DEFAULT

7 transportID;E1EDL37.EXIDV2|E1EDL37.EXIDV|E1EDL44.EXIDV;TransportID wie ScanID

;

priority;;Standardprioritaet, kann durch VSBED=JIT ueberschrieben werden;

9 latestEnd;;Nicht direkt belegbar;

earliestStart;;Nicht direkt belegbar;

11 remark;;Nicht direkt belegbar;

scanId;E1EDL37.EXIDV2|E1EDL37.EXIDV|E1EDL44.EXIDV;Bevorzugt EXIDV2, sonst

EXIDV, sonst EXIDV aus E1EDL44;

13 customValues.referenceNumber;E1EDL20.VBELN;Referenznummer aus VBELN;

Listing 2: Mappingregeln für IDOCTYP SHPMNT05 wurden anhand eines anderen

XMLs desselben IDOCTYPs generiert. Die Regeln wurden durch eine Feedbackiteration

präzisiert, konkret wurden die Regeln für customValues.referenceNumber und

transportID manuell ergänzt.

26

// Annahme: mappedJson ist das Ergebnis von xml2js.

parseString(xml)

2 var edi = mappedJson.SHPMNT05.IDOC.EDI_DC40;

var e1edl20 = mappedJson.SHPMNT05.IDOC.E1EDT20.E1EDL20;

4 var e1edl37Arr = Array.isArray(e1edl20.E1EDL37) ? e1edl20.

E1EDL37 : [e1edl20.E1EDL37];

// Hilfsfunktion fuer Default -Werte

6 function notNull(val , def) {

return (val !== undefined && val !== null && val !== "") ?

val : def;

8 }

// TODO: Hier die feldspezifische Mappinglogik einfuegen (

startPosition , targetPosition , ...)

10 var entity = {

startPosition: startPosition ,

12 targetPosition: targetPosition ,

transportType: transportType ,

14 processConfiguration: processConfiguration ,

amount: amount ,

16 priority: priority ,

latestEnd: latestEnd ,

18 earliestStart: earliestStart ,

remark: remark ,

20 scanId: scanId ,

customValues: customValues

22 };

return JSON.stringify(entity , null , 2);

Listing 3: Vorgegebenes Script-Template für XML-Format. Es erwartet, dass das

XML bereits in JSON geparsed wurde. Die Umwandlung erfolgt in einer separaten

Parsingschicht der Testumgebung

27

1 // SHPMNT05 Mapping Script (strict , only per mapping rules)

// Input: mappedJson = result of xml2js.parseString(xml)

3

function notNull(val , def) {

5 return (val !== undefined && val !== null && val !== "") ?

val : def;

}

7

// Defensive: always check for existence

9 var idoc = mappedJson ?. SHPMNT05 ?.IDOC || {};

var e1edl20 = idoc.E1EDT20 ?. E1EDL20 || {};

11 var e1edl37Arr = Array.isArray(e1edl20.E1EDL37) ? e1edl20.

E1EDL37 : (e1edl20.E1EDL37 ? [e1edl20.E1EDL37] : []);

var e1edl37 = e1edl37Arr.find(x => x?. EXIDV2) || e1edl37Arr [0]

|| {};

13 var e1edl44 = e1edl37 ?. E1EDL44 || {};

15 // --- Mapping strictly per CSV ---

var entity = {

17 startPosition: notNull(e1edl20.LGNUM , "DEFAULT"),

targetPosition: notNull(e1edl20.ROUTE , "DEFAULT"),

19 transportID: notNull(e1edl37.EXIDV2 , notNull(e1edl37.EXIDV ,

notNull(e1edl44.EXIDV , null))),

transportType: notNull(e1edl20.ROUTE , "DEFAULT"),

21 processConfiguration: "DEFAULT",

amount: "DEFAULT",

23 priority: null ,

latestEnd: null ,

25 earliestStart: null ,

remark: null ,

27 scanId: notNull(e1edl37.EXIDV2 , notNull(e1edl37.EXIDV ,

notNull(e1edl44.EXIDV , null))),

customValues: {

29 referenceNumber: notNull(e1edl20.VBELN , null)

}

31 };

33 return JSON.stringify(entity , null , 2);

Listing 4: Vom Agenten generiertes Mapping-Skript für SHPMNT05 aus Template und

Mappingregeln

28

1 {

"startPosition": "102",

3 "targetPosition": "GL_LP",

"transportType": "GL_LP",

5 "processConfiguration": "DEFAULT",

"amount": "DEFAULT",

7 "priority": null ,

"latestEnd": null ,

9 "earliestStart": null ,

"remark": null ,

11 "scanId": "30101056",

"transportID": "30101056",

13 "customValues": {

"referenceNumber": "9102031925"

15 }

}

Listing 5: Resultierendes Entitätsbjekt nach Ausführung auf lokaler HTML-Seite: Das

XML wurde zuvor in JSON geparsed und anschließend an das Skript übergeben. Nicht

alle Felder der Zielentität werden aus dem XML belegt, die leeren Pflichfelder sind

DEFAULT und die restlichen sind null.

29

Literatur

[Bommasani et al., 2021] Bommasani, R., Hudson, D. A., and Adeli, E. (2021). On

the opportunities and risks of foundation models. arXiv preprint arXiv:2108.07258.

URL: https://arxiv.org/abs/2108.07258.

[Brown et al., 2020] Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., et al.

(2020). Language models are few-shot learners. Advances in Neural Information

Processing Systems, 33:1877–1901. URL: https://arxiv.org/abs/2005.14165.

[Buss and Safari, 2025] Buss, C. and Safari, M. (2025). Towards scalable schema map-

ping using large language models. arXiv preprint arXiv:2505.24716. URL: htt-

ps://arxiv.org/pdf/2505.24716, Accessed: 2025-12-09.

[Chatterjee, 2025] Chatterjee, S. (2025). The impact of prompt bloat on llm output

quality. URL: https://home.mlops.community/public/blogs/the-impact-of-prompt-

bloat-on-llm-output-quality, Accessed: 2025-12-11, Blogartikel, MLOps Community.

[Chen et al., 2021] Chen, M., Tworek, J., Jun, H., and Yuan, Q. (2021). Evaluating

large language models trained on code. arXiv preprint arXiv:2107.03374. URL:

https://arxiv.org/abs/2107.03374.

[Dai and Pan, 2023] Dai, J. and Pan, X. (2023). Safe rlhf: Safe reinforcement learning

from human feedback. URL: https://arxiv.org/pdf/2310.12773.

[Devlin et al., 2019] Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2019). Bert:

Pre-training of deep bidirectional transformers for language understanding. arXiv

preprint arXiv:1810.04805. URL: https://arxiv.org/abs/1810.04805.

[Fagin, 2009] Fagin, R. (2009). Schema mapping creation and data exchange.

In Conceptual Modeling: Foundations and Applications. Springer. URL:

https://link.springer.com/chapter/10.1007/978-3-642-02463-412.

[Gao et al., 2025] Gao, M., Li, Y., Liu, B., Yu, Y., Wang, P., Lin, C.-Y., and Lai, F. (2025).

Single-agent or multi-agent systems? why not both? arXiv preprint arXiv:2505.18286.

URL: https://arxiv.org/abs/2505.18286.

[Gao et al., 2023] Gao, Y., Zhang, H., Han, X., Liu, Z., and Sun, M. (2023). Retrieval-

augmented generation for large language models: A survey. arXiv preprint ar-

Xiv:2305.18657. URL: https://arxiv.org/abs/2305.18657, Accessed: 2025-12-09.

[GeeksforGeeks, 2023] GeeksforGeeks (2023). Tokenization in natural language pro-

cessing. URL: https://www.geeksforgeeks.org/nlp/tokenization-in-natural-language-

processing-nlp/.

30

[GetDeploying, 2025] GetDeploying (2025). Nvidia a100 gpu pricing and specifications.

URL: https://getdeploying.com/gpus/nvidia-a100.

[Holtzman et al., 2020] Holtzman, A., Buys, J., Du, L., Forbes, M., and Choi, Y. (2020).

The curious case of neural text degeneration. In International Conference on Learning

Representations (ICLR). URL: https://arxiv.org/abs/1904.09751.

[Hu et al., 2021] Hu, E. J., Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y., and Wang, S. (2021).

Lora: Low-rank adaptation of large language models. arXiv preprint arXiv:2106.09685.

URL: https://arxiv.org/abs/2106.09685, Accessed: 2025-12-09.

[Hödl, 2025] Hödl, J. (2025). Generative künstliche intelligenz – in-

dividualisierte anpassung durch prompt engineering. URL: htt-

ps://opus.campus02.at/files/1213/AC17639779.pdf, Accessed: 2025-12-11.

[Kaelbling et al., 1996] Kaelbling, L. P., Littman, M. L., and Moore, A. W. (1996). Re-

inforcement learning: A survey. Journal of Artificial Intelligence Research, 4:237–285.

URL: https://www.jair.org/index.php/jair/article/view/10166/24110.

[Kaplan et al., 2020] Kaplan, J., McCandlish, S., Henighan, T., Brown, T. B., Chess,

B., Child, R., Gray, S., Radford, A., Wu, J., and Amodei, D. (2020). Scaling

laws for neural language models. arXiv preprint arXiv:2001.08361. URL: htt-

ps://arxiv.org/abs/2001.08361.

[Lewis et al., 2020] Lewis, P., Perez, E., Piktus, A., Petroni, F., Karpukhin, V., Goy-

al, N., Küttler, H., Lewis, M., Yih, W.-t., Rocktäschel, T., Riedel, S., and Kie-

la, D. (2020). Retrieval-augmented generation for knowledge-intensive NLP tasks.

In Advances in Neural Information Processing Systems (NeurIPS). URL: htt-

ps://arxiv.org/abs/2005.11401.

[Li, 2024] Li, K. (2024). Measuring and controlling instruction (in)stability in language

model dialogs. URL: https://arxiv.org/abs/2402.10962, Accessed: 2025-12-11.

[Liu et al., 2023] Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H., and Neubig, G.

(2023). Pre-train, prompt, and predict: A systematic survey of prompting methods

in natural language processing. ACM Computing Surveys, 55(9):1–35. URL: htt-

ps://arxiv.org/abs/2107.13586.

[Ma et al., 2025] Ma, L., Zhang, R., Han, Y., Yu, S., Wang, Z., Ning, Z., Zhang, J., and

Xu, P. (2025). A comprehensive survey on vector database: Storage and retrieval tech-

niques. arXiv preprint arXiv:2310.11703. URL: https://arxiv.org/html/2310.11703v2.

31

[Müller and Schneider, 2025] Müller, T. and Schneider, A. (2025). Next-token prediction

in large language models: Probabilistic foundations. Der Radiologe, 65(12):1010–1020.

URL: https://link.springer.com/article/10.1007/s00117-025-01427-z.

[Neubauer, 2025] Neubauer, F. (2025). Ai-assisted json schema creation and mapping.

arXiv preprint arXiv:2508.05192. URL: https://www.arxiv.org/pdf/2508.05192, Ac-

cessed: 2025-12-09.

[NVIDIA, 2018] NVIDIA (2018). Mixed precision training. URL:

https://docs.nvidia.com/deeplearning/performance/mixed-precision-

training/index.html.

[NVIDIA, 2020] NVIDIA (2020). Nvidia a100 tensor core gpu architec-

ture. URL: https://www.nvidia.com/content/dam/en-zz/Solutions/Data-

Center/a100/pdf/nvidia-a100-datasheet.pdf.

[OpenAI, 2023] OpenAI (2023). Fine-tuning language models. URL:

https://platform.openai.com/docs/guides/fine-tuning.

[Parciak et al., 2024] Parciak, M., Vandervoort, B., and Neeven, F. (2024). Schema

matching with large language models: An experimental study. arXiv preprint ar-

Xiv:2407.11852. URL: https://arxiv.org/abs/2407.11852.

[Parnas, 1972] Parnas, D. L. (1972). On the criteria to be used in decomposing sy-

stems into modules. Communications of the ACM, 15(12):1053–1058. URL: htt-

ps://dl.acm.org/doi/10.1145/361598.361623.

[Reynolds and McDonell, 2021] Reynolds, L. and McDonell, K. (2021). Prompt program-

ming for large language models: Beyond the few-shot paradigm. arXiv preprint ar-

Xiv:2102.07350. URL: https://arxiv.org/abs/2102.07350.

[Shapkin et al., 2023] Shapkin, A., Litvinov, D., Zharov, Y., Bogomolov, E., and Ga-

limzyanov, T. (2023). Dynamic retrieval-augmented generation. arXiv preprint ar-

Xiv:2312.08976. URL: https://arxiv.org/abs/2312.08976.

[Tong and Zhang, 2024] Tong, W. and Zhang, T. (2024). Codejudge: Evaluating code

generation with large language models. arXiv preprint arXiv:2410.02184. URL: htt-

ps://arxiv.org/pdf/2410.02184, Accessed: 2025-12-09.

[Vaswani et al., 2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Go-

mez, A. N., Kaiser, L., and Polosukhin, I. (2017). Attention is all you need. In Advances

in Neural Information Processing Systems. URL: https://arxiv.org/abs/1706.03762.

32

[von Richthofen et al., 2022] von Richthofen, A., Ogolla, F. O., and Send, H. (2022). How

artificial intelligence affects knowledge work: A qualitative study of ai adoption in orga-

nizations. Information, 13(4):199. URL: https://www.mdpi.com/2078-2489/13/4/199.

[White et al., 2023] White, J. et al. (2023). A prompt pattern catalog to enhance prompt

engineering with chatgpt. arXiv. URL: https://arxiv.org/abs/2302.11382.

[Zhao et al., 2023] Zhao, W. X., Liu, J., et al. (2023). A survey of large language models.

arXiv preprint arXiv:2303.18223. URL: https://arxiv.org/abs/2303.18223.

33

	Abstract
	Einleitung
	Anforderungsanalyse
	Funktionale Anforderungen
	Nicht-funktionale Anforderungen

	Methoden und Verfahren
	Large Language Model
	Prompt-Engineering
	RAG
	Instruction Prompt

	Entwicklung
	Ansatz
	Instruction-Prompt Erkenntnisse

	Reflexion und Fokussetzung
	Umsetzung in Visual Studio Code
	Finaler Prompt
	Kontextanreicherung
	Interaktive Ausführung

	Wahl des LLMs

	Qualitätssicherung
	Bewertungsverfahren
	Menschliches Feedback
	Automatische Bewertung
	Unittests

	Ausblick
	Fine-Tuning
	Abwägung Supervised Finetuning
	Abwägung Reinforcement Learning from Human Feedback
	Finetuning Kosten

	Skalierbarkeit
	Integration

	Diskussion
	Fazit
	Anhang: Konkretes Beispiel-Mapping

