Fachhochschule Aachen
Campus Jiilich

Prototyp einer mobilen Applikation
zum Kontrollieren von Account-Based Tickets
in der IVU.Suite

Seminararbeit
im Studiengang Angewandte Mathematik und Informatik
von Jonathan Liersch
Matrikelnummer: 3619788

Betreut durch:

Prof. Dr.rer.nat. Alexander Vof3
M. Sc. Christoph Becker

Fachbereich 09

Medizintechnik und Technomathematik

Aachen, 15. Dezember 2025

UNIVERSITY OF APPLIED SCIENCES

FH AACHEN

Eidesstattliche Erklirung

Hiermit versichere ich, dass ich die Seminararbeit mit dem Thema

Pﬁo“o{"!? Crnlr Mo&'(«‘n 44'qp(:'L'o’ll'on gum Vm#o[(m-m

von Accont -Bosed Tickets i o VU Suile

selbststidndig verfasst und keine anderen als die angegebenen Quellen und

Hilfsmittel benutzt habe, alle Ausfithrungen, die anderen Schriften
wortlich oder sinngemil entnommen wurden, kenntlich gemacht sind und
die Arbeit in gleicher oder dhnlicher Fassung noch nicht Bestandteil einer
Studien- oder Priifungsleistung war.

Ich verpflichte mich, ein Exemplar der Seminararbeit fiinf Jahre aufzu-
bewahren und auf Verlangen dem Priifungsamt des Fachbereiches

Medizintechnik und Technomathematik auszuhindigen.

Name: Lfe'sol-_, Nan or“um

Aachen, den 718.72.202 5

Unterschrift der Studentin / des Studenten

. (arseh

Zusammenfassung

Diese Arbeit behandelt die Konzeption und prototypische Umsetzung einer mo-
bilen Applikation zur Kontrolle von Account-Based Tickets (ABT) im Kontext
der IVU.Suite. ABT ist ein modernes Ticketing-Verfahren, bei dem Fahrberechti-
gungen nicht mehr lokal auf einem Medium gespeichert, sondern in einem Hinter-
grundsystem verwaltet werden. Ziel der Arbeit war die Entwicklung einer Kontroll-
Applikation, die mithilfe der externen TOKA-App ein Identitdtstoken generiert und
dieses zur Validierung der Fahrberechtigung nutzt. Nach einer Analyse der Anforde-
rungen und Anwendungsfille wurde die Applikation mit Kotlin Multiplatform und
Compose Multiplatform umgesetzt, um eine plattformiibergreifende Architektur zu
ermoglichen. Die Softwarearchitektur folgt dem MVVM-Muster und integriert Me-
chanismen fiir automatisierte Tests sowie eine CI/CD-Pipeline zur kontinuierlichen
Auslieferung. Der entwickelte Prototyp erfilllt die definierten Anforderungen und
bietet eine Grundlage fiir eine produktionsreife Losung. Abschliefend werden die

Ergebnisse bewertet und ein Ausblick auf mogliche Erweiterungen gegeben.

Inhaltsverzeichnis
1 Einfithrung in den OPV

2 Ticketkontrolle in Deutschland
2.1 ABT -der moderne Weg
22 TOKA . . . e

3 Anwendungsfille und Anforderungen
3.1 Imbetriebnahme Lo
3.2 Anwendungsfille
3.3 Fachliche Anforderungen

4 Kotlin Multiplattform mit Compose Multiplattform
4.1 Jetpack Compose - Deklarative GUL.
4.2 Kotlin Multiplattform

4.3 Compose Multiplatform o000

5 Applikationsarchitektur
5.1 Softwarearchitekturmuster

5.2 Bauprozess

6 Prototyp der Kontroll-Applikation
6.1 Anbindung der TOKA-App
6.2 Umsetzung der Inbetriebnahme

6.3 Umsetzung der Anwendungsfille

7 Automatisierte Tests zur Fehlererkennung
7.1 Unit-Tests o o e
7.2 GUI-Tests o o o

o o o O =~

©

Continuos Integration (CI) und Continuos Delivery (CD) 21
81 Wozu CI/CD? o 21

Fazit 23

1 Einfithrung in den OPV

In Deutschland ist Gffentlicher Personenverkehr (OPV) im standigen Wandel: Die bisher
kraftstoffbetriebenen Busse werden immer haufiger ersetzt durch elektrische Busse. Ein
wachsender Busfahrermangel motiviert das Forschen an autonomen Fahrzeugen im OPV

und nach einer Preiserh6hung im Jahr 2026 wird der Preis des Deutschlandtickets erstmals
nicht mehr erhoht [9].

Auch der Erwerb einer giiltigen Fahrberechtigung wird fiir Ortsfremde zunehmend kompli-
zierter. Durch Tarifsysteme, die in jeder Stadt anders sind, und unterschiedlichste Ticketar-
ten wie zum Beispiel ErméfBiigungstickets, Einzeltickets oder Mehrfahrtentickets ist der
Erwerb einer Fahrberechtigung nicht mehr trivial. Unter anderem fiithren die genannten
Faktoren dazu, dass das Kaufen einer Fahrberechtigung als ,,ein undurchsichtiger Dschun-

gel aus Hiirden“ [18] beschrieben wird.

So wird auch die Kontrolle von Fahrgisten ein immer aufwéndigerer Prozess. Durch die
seit. Jahren etablierte und fortlaufende Erweiterung der Menge an Ticket-Medien ist der
Kontrollprozess immer vielseitiger geworden. Anstatt alle notwendigen Informationen auf
ein Papierticket zu drucken, sind viele Verkehrsverbiinde daran interessiert, moglichst vie-
le digitale Fahrberechtigungen zu verkaufen. Diese sparen unter anderem Zeit und Geld
ein, da beispielsweise nicht mehr regelméfligen Monats- und Jahreskarten ausgestellt wer-
den miissen. Seit der Einfithrung von Chipkarten und des internationalen UIC-Barcodes
in Deutschland sind Software-unterstiitze Kontrollen zum Standard fiir Kontrolleure ge-
worden, da alle notwendigen Kontrollinformationen auf dem Ticket-Medium gespeichert

werden [0].

Seit einigen Jahren ist auch das Thema Account-Based Ticketing (ABT) in Deutschland
préasent und wird im Verband Deutscher Verkehrsunternehmen (VDV) sowie in den Soft-
wareunternehmen der OPV-Branche aktiv diskutiert. ABT bietet eine Grundlage fiir den
universellen Erwerb und Verkauf von Fahrberechtigungen fiir Fahrgéste [25]. Die géngigen
Ticket-Medien werden dabei durch neue Ticket-Medien ersetzt, wie z. B. eine Bankkarte,
die zum Bezahlen und Referenzieren der Fahrberechtigung in einem Hintergrundsystem
genutzt wird. Dabei werden keine Ticketinformationen auf der Bankkarte gespeichert, son-
dern sie sind ausschlieBlich im Hintergrundsystem hinterlegt [20]. Die Bedeutung von ABT

wird in Kapitel 2.1 noch néher erlautert.

In der IVU Traffic Technologies AG (IVU) wird ABT ebenso viel diskutiert. Aktuell ar-
beiten verschiedenste Teams in den verschiedenen Bereichen der IVU an einer einheitli-

chen Produktlosung. In Zusammenarbeit mit einem externen Zahlungsdienstleister wird

ein ABT-fahiges System entwickelt, welches vom Erwerb iiber die Kontrolle bis hin zur

Abrechnung im ABT-Kontext zum Einsatz kommen soll.

Dieser Zahlungsdienstleister stellt der IVU auch die sogenannte TOKA-App zur Verfiigung,
mit der es moglich ist, ein eindeutiges Identitdtstoken fiir eine Bankkarte zu generieren. In
Kapitel 2.2 wird ersichtlich, dass die TOKA-App Grundlagen liefert, um eine darauf auf-
bauende Kontroll-Applikation zu erstellen. Da ABT in der IVU einen grofien Stellenwert
besitzt, ist die IVU daran interessiert, eine eigene Kontroll-Applikation zum Kontrollieren
von Fahrberechtigungen im Kontext von ABT zu erstellen. Aufgrund dessen wird im Laufe
dieser Arbeit ein Prototyp einer Kontroll-Applikation mithilfe der TOKA-App erstellt.

In den néchsten Kapiteln dieser Arbeit wird beschrieben, wie und womit die Kontroll-
Applikation entwickelt wird. In Kapitel 2 wird zunéchst auf die Ticketkontrolle in Deutsch-
land néher eingegangen, um den notwendigen Kontext zur Kontroll-Applikation darzu-
stellen. Anschliefend werden in Kapitel 3 die daraus resultierenden Anwendungsfille und
Anforderungen abgeleitet. Danach wird die Softwarearchitektur in den Kapiteln 4 und
5 sowie in Kapitel 6 die konkrete Implementierung der Kontroll-Applikation erldutert.
AbschlieBend wird in den Kapiteln 7 und 8 noch eine Ubersicht zu Continuous Integra-
tion (CI)/Continuous Delivery (CD) und automatisierten Tests der Kontroll-Applikation

gegeben. Zuletzt werden die Erkenntnisse des Prototyps zusammengefasst.

2 Ticketkontrolle in Deutschland

Seit der Jahrtausendwende werden in Deutschland elektronische Fahrberechtigungen im
OPV verkauft und kontrolliert [20]. Dabei wurden Fahrberechtigungen auf Chipkarten,
in Barcodes oder auf Handys ausgegeben. Die Form des Ticket-Mediums nennt sich auch
Medium-Based Ticketing (MBT).

Seit 2007 werden (((eTickets nach dem VDV-Kernapplikation (VDV-KA) Standard mit
dem (((eTicket Deutschland vertrieben. 2010 kam der VDV-Barcode sowie der internatio-
nale UIC-Barcode in den Vertrieb [20]. Vor allem der VDV-Barcode wird in Deutschland
viel genutzt. Internationale Ticket-Medien und Fahrberechtigungen sind nur schwer oder
nicht kontrollierbar gewesen. Touristen mussten deshalb fiir die Nutzung des OPV in
Deutschland immer ein deutsches Ticket-Medium kaufen, um eine giiltige Fahrberechti-

gung zu besitzen.

Fahrberechtigungen im MBT sind die derzeit am héufigsten verkauften Ticketarten in

Deutschland [20]. Sie benotigen zur Kontrolle keine dauerhafte Internetverbindung. Es

werden Sperrlisten fiir Fahrbescheinigungen zyklisch von einem Hintergrundsystem herun-
tergeladen. Zusétzlich sind alle wichtigen Kontrollinformationen auf dem Ticket-Medium
gespeichert, wodurch eine internetlose Kontrolle ermoglicht wird. Aufgrund dessen ist
das Kontrollieren der Fahrberechtigungen auch in abgelegenen Regionen Deutschlands

moglich.

2.1 ABT - der moderne Weg

ABT ist im Gegensatz zu MBT-basierten Medien ein internationales und lénderiibergreifendes
Verfahren zum Erwerb einer giiltigen Fahrberechtigung. Die meiste Datenverarbeitung,
inklusive Preisberechnung und Ablage der Fahrberechtigung, findet auf zentralen Hinter-
grundsystemen statt, wodurch ABT auch als ,server-based ticketing“ bezeichnet wird [15].
Die Fahrberechtigung fiir einen Fahrgast wird {iber ein Identitédtstoken verkniipft, welches
fiir den Fahrgast eindeutig sein soll. Beispielsweise kann eine Bankkarte als Identitatstoken
genutzt werden und dient zugleich als Zahlungsmittel fiir die gekaufte Fahrberechtigung.
Dieses Token wird beim Kontrollieren benutzt, um mit einem Hintergrundsystem abzu-

gleichen, ob ein giiltiger Fahrausweis vorliegt.

Es gibt bei ABT ein weites Spektrum an Definitionen fiir die Umsetzungsmoglichkeiten
innerhalb der Software- und Verkehrsbetriebe. Es gibt Gesamtlosungen, welche jegliche
Berechnungen und Speicherung von Informationen dem zentralen System iiberlassen und
eine durchgéngige Internetverbindung bendtigen. Andererseits gibt es Teillosungen, die
auf eine Zusammenarbeit zwischen lokaler Kontrolllogik und zentralen Systemen beruhen.
Vorteil hiervon ist, dass die Teillosungen keine durchgehende Internetverbindung benétigen
[16]. In der Praxis ist dies im OPV interessant, wenn zum Beispiel Busse durch Dorfer

durchfahren, die keine ausreichende Internetverbindung besitzen.

Generell ist ABT ein weltweites Thema und wird von verschiedenen Projekten erforscht
und umgesetzt [16]. In London wurde ABT schon 2014 durch eine Kooperation von Ma-
stercard und Transport for London (TFL) eingefiihrt und ist seitdem im Einsatz [7]. Auch
in Deutschland ist ABT ein viel diskutiertes Instrument und wird von der Bundesregie-
rung sowie dem VDV weiter vorangetrieben. In einer Stellungnahme erkléirt Oliver Wolff
vom Ausschuss fiir Verkehr und digitale Infrastruktur des Deutschen Bundestages, dass
ABT bisher als eine ,[...] vielversprechende Losung fiir eine grenziiberschreitende Reiseket-
te tiber unterschiedliche Modalitdten“ [25] angesehen wird. Insbesondere der VDV habe in

Deutschland in den letzten Jahren die Vernetzungsinitiative der Branche vorangebracht.

Mit ABT kommt zugleich eine neue Hiirde fiir die Kontrolle von Reisenden. Die bisheri-

gen Kontrollmethoden beruhen auf Medien, die die Fahrberechtigung lokal auf dem Ticket-
Medium abspeichern. So werden alle notwendigen Informationen fiir eine Fahrberechtigung
in einem Barcode oder auf einer Chipkarte abgespeichert. Durch den Verkauf von Fahrbe-
rechtigungen mit ABT miissen nun auch Ticket-Medien kontrolliert werden kénnen, die
keine lokale Speicherung von Fahrberechtigungen vornehmen. Die Kontroll-Applikation
soll eine Kontrolle basierend auf einem Identitéitstoken und der im Hintergrundsystem ge-
speicherten Fahrberechtigung durchfithren. Nur wenn hinter dem Identitétstoken auf dem
Hintergrundsystem eine giiltige Fahrberechtigung vorliegt, wird dem Reisenden dieses at-

testiert.

Die Konzeption und Erstellung des Kontroll-Applikation-Prototyps fiir das Kontrollie-
ren einer Fahrberechtigung mit ABT ist die Aufgabe dieser Arbeit. Es soll eine mobile
Applikation fiir Smartphones entwickelt werden, die beim Vorhalten eines ABT-fahigen
Ticket-Mediums ein Identitétstoken generiert und den Abgleich mit dem Hintergrundsy-
stem vornimmt. Die Generierung des Identitétstoken wird der TOKA-App iiberlassen, die

im ABT-Kontext schon zum Einsatz kommt.

2.2 TOKA

Bei der Generierung des Identitdtstoken wird die externe Applikation des Zahlungsdienst-
leisters namens Tokenization Application (TOKA) zur Hilfe genommen. Sie iibernimmt
die Aufgabe, aus einem vorgehaltenen Ticket-Medium ein eindeutiges Identitétstoken zu
generieren. Um ein Ticket-Medium auszulesen, sind viele Randbedingungen und Informa-
tionen notwendig, da zum Beispiel Bankkarten entschliisselt und gepriift werden miissen,
bevor sie ausgelesen werden konnen. Diese Anforderungen an eine auslesende Applika-
tion miissen zertifiziert werden, bevor sie offiziell genutzt werden diirfen. Zusétzlich soll
die Kontroll-Applikation keine Informationen iiber die Bankkarte und dessen Inhaber be-
sitzen, damit keine Bezahlungen durchgefithrt oder personenbezogene Daten iiber den
Inhaber erhoben werden kéonnen. Letzteres wiirde bedeuten, dass die Kontroll-Applikation
datenschutzrechtliche Mafinahmen ergreifen miisste. Wegen der genannten Griinde fallt
das Auslesen des Ticket-Mediums und das Generieren des Identitédtstoken nicht in das
Aufgabengebiet der Kontroll-Applikation. In den nachfolgenden Kapiteln dieser Arbeit
wird TOKA als TOKA-App bezeichnet, wobei damit die gleiche Applikation gemeint ist.

Die TOKA-App ist eine Android-exklusive Applikation und kann durch Android-spezifische
Kommunikationswege angesteuert werden, wobei die Kommunikationsdaten im JSON-

Format iibertragen werden. Die TOKA-App erkennt per Near Field Communication (NFC)

ein am Smartphone vorgehaltenes Ticket-Medium wie zum Beispiel eine Bankkarte. Zu
diesem Ticket-Medium wird ein eindeutiges Identitédtstoken generiert und der aufrufenden
Applikation wieder mitgeteilt. Somit kann die Kontroll-Applikation mithilfe der TOKA-

App ein Identitédtstoken generieren.

Anschlielend wird das Identitdtstoken benutzt, um vom Hintergrundsystem Informationen
iiber die Fahrberechtigung des Reisenden zu erhalten. Es wird unter anderem gepriift,
ob das Ticket-Medium auf einer Sperrliste steht, wodurch dem Reisenden keine giiltige
Fahrberechtigung attestiert werden wiirde. Dies geschieht genau dann, wenn die Bankkarte
nicht belastet werden kann. Falls keine Fahrberechtigung festgestellt wird, wird dies dem

Kontrolleur mitgeteilt.

Die TOKA-App legt demnach eine Basis fiir das Erstellen der Kontroll-Applikation.

3 Anwendungsfille und Anforderungen

Wie im Kapitel 2.2 schon erldautert wurde, gibt es die zugrundeliegende TOKA-App
nur fiir Android-basierte Gerate. Aufgrund dessen wird auch der Prototyp der Kontroll-
Applikation eine mobile Applikation fiir Android-Geréte sein. Dabei sind noch verschiedene
Implementierungsfragen zu kliaren, die in den nachfolgenden Kapiteln beantwortet werden.
So muss unter anderem die Graphical User Interface (GUI)-Bibliothek fiir die Kontroll-
Applikation festgelegt werden oder wie neue Versionen des Prototypen automatisch an die

Kontrolleure weitergegeben werden kénnen.

liefert/speichert
Kontrollinformationen

Installation durch Android Gerﬁt
Zahlungsdiensileister Hintergrundsystem J
TOKA-App

Generierung ldenfitatstoken Identitatstoken + Terminal ID Speriiste/Tapiiste

manuelles Auslesen der Terminal ID[Kontroll-Applikation

Abbildung 1: Ubersicht der Komponenten fiir die Kontroll-Applikation

3.1 Inbetriebnahme

Fiir die Inbetriebnahme der Kontroll-Applikation auf einem Android-Gerét sind folgende
Schritte notwendig:

1. Die Kontroll-Applikation muss beispielsweise aus einem App-Store installiert werden.
Wie die aktuelle Version der Kontroll-Applikation in einen App-Store geladen wird,
wird in Kapitel 8 erklért.

2. Wie in Abbildung 1 angemerkt, muss die TOKA-App vom Zahlungsdienstleister in-
stalliert werden. Ohne diese ist das Generieren eines Identitédtstoken und demnach
auch das Kontrollieren nicht moéglich. Die Kontroll-Applikation soll eine Fehlermel-
dung anzeigen, wenn die TOKA-App nicht installiert oder die Kommunikation mit
TOKA nicht moglich ist.

3. Die Terminal-ID, welche Teil der TOKA-App ist und das Kontroll-Gerét eindeu-
tig identifiziert, soll beim erstmaligen Offnen der Kontroll-Applikation eingegeben
werden. Die Kontroll-Applikation kann die Terminal-ID nicht automatisch auslesen.
Aus Abbildung 1 kann abgelesen werden, dass die Terminal-ID genutzt wird, um
eine Anfrage an das Hintergrundsystem zu stellen. Demnach kann ohne Terminal-ID

keine Kontrolle durchgefiihrt werden.

3.2 Anwendungsfille

Nach der Inbetriebnahme, soll das Android-Gerét bereit sein, eine Kontrolle mithilfe der
Kontroll-Applikation durchfiihren zu kénnen. In Abbildung 2 wird eine erfolgreiche Kon-
trolle in Form eines Sequenzdiagramms dargestellt. Es bietet einen Uberblick, um die
nachfolgenden Anwendungsfille zu verdeutlichen. Auf die Details des Sequenzdiagramm

wird noch genauer in Kapitel 6 eingegangen.

e Wenn der Fahrgast vor der Kontrolle eine giiltige Fahrberechtigung erworben hat und
das Ticket-Medium nicht auf der Sperrliste steht, dann soll die Kontroll-Applikation

ein positives Kontrollergebnis anzeigen.

e Wenn das Ticket-Medium des Fahrgastes auf der Sperrliste steht, dann soll die
Kontroll-Applikation eine ungiiltige Fahrberechtigung anzeigen. Eine Sperrung des
Ticket-Mediums kommt genau dann vor, wenn der Fahrgast mit dem Ticket-Medium

aufgrund fehlender Zahlungsmittel nicht bezahlen konnte.

6

Kontrolleur Kontroll-

i Applikation
Halt Ticket-Medium

™ an Android Gerat

TOKA-App Hintergrundsystem

:
i
i
i
i
i
i
i
T |dentitatstoken

TR

Prife ob Ticket-Medium
gesperrt

Ungultige Anzeige,
wenn gespernt «I—I

T Anfrage Fahrberechtigling zu Idenfittatstoken
|
- i
Anzeige des Liste aller Fahrberechtigung zu Identitatstoken
Kontrollergebnisses ME----=mm=mmmomm s Rttt

L L]
i i
[

Abbildung 2: Kontrollablauf fiir eine erfolgreiche Kontrolle

e Wenn der Fahrgast keine Fahrberechtigung vor Antritt der Fahrt gekauft hat, zeigt
die Kontroll-Applikation eine ungiiltige Fahrberechtigung an.

e Wenn beim Vorhalten des Ticket-Mediums von der TOKA-App das Medium nicht
ausgelesen werden konnte, um das Identitatstoken zu generieren, dann soll die Kontroll-
Applikation einen Fehlerzustand anzeigen. Zugleich wird der Kontrolleur aufgefor-
dert, das Ticket-Medium wiederholt vorzuhalten, um die Kontrolle der Fahrberech-

tigung erneut zu versuchen.

e Wenn die Kommunikation mit dem Hintergrundsystem nicht moglich ist, beispiels-
weise durch eine fehlende Internetverbindung oder einen Hintergrundsystemfehler,
kann das zu kontrollierende Ticket-Medium nicht auf eine giiltige oder ungiiltige
Fahrberechtigung gepriift werden. Die Kontroll-Applikation soll eine entsprechende

Fehlermeldung anzeigen.

e Wenn die Kommunikation mit dem Hintergrundsystem nicht moglich ist, das Ticket-
Medium jedoch auf der Sperrliste gefunden wurde, dann soll die Kontroll-Applikation

eine ungiiltige Fahrberechtigung anzeigen.

Die Kontrolle einer Fahrberechtigung eines Fahrgastes wird, wie in Abbildung 2 zu se-

hen ist, mit einer Anfrage an ein Hintergrundsystem erfolgen. Dabei wird gepriift, ob

eine giiltige Fahrberechtigung im Hintergrundsystem hinterlegt ist. Eine weitere Priifung
auf rdumliche Giiltigkeit oder Liniengiiltigkeit wird nicht Teil dieser Arbeit sein. Diese
Priifungen wiirden beispielsweise durch das Einbinden von IVU-internen C++ Bibliothe-
ken ermoglicht werden, welche unter Android mithilfe des Java Native Interface innerhalb
der Java Virtual Machine (JVM) laufen wiirden. Dieser Schritt wiirde den Rahmen des
Prototyps iibersteigen und ist aufgrund dessen nicht Teil der Kontroll-Applikation.

Basierend auf den genannten Anwendungsfillen und den beschriebenen Schritten fiir die
Inbetriebnahme ergeben sich unter anderem Testfille, auf welche in Kapitel 7 ndher ein-
gegangen wird. Die Implementierung und Umsetzung der Anwendungsfille innerhalb des

Prototypen werden in Kapitel 6 erlautert.

3.3 Fachliche Anforderungen

Zusétzlich zu den genannten Anwendungsfillen gibt es weitere fachliche Anforderungen
an die Kontroll-Applikation. Aufgrund dessen werden zusétzlich zu den Anwendungsfillen
nicht-funktionale Anforderungen definiert, die sich mit der Speicherung von Daten befas-

sen:

e Die Terminal-ID soll nach der erstmaligen Eingabe in der Kontroll-Applikation auf
dem Android-Gerit gespeichert werden, damit die Terminal-ID nicht bei jedem Start

der Kontroll-Applikation erneut eingegeben werden muss.

e Die Sperrliste soll periodisch vom Hintergrundsystem geladen und auf dem Android-
Gerét gespeichert werden. Dies ermoglicht eine Teil-Kontrolle, falls die Verbindung
zum Hintergrundsystem am Kontrollzeitpunkt nicht vorhanden ist. In dem Fall kann
noch verglichen werden, ob das Ticket-Medium auf der Sperrliste steht, wie es in den

Anwendungsfillen schon beschrieben wurde.

Zusammen mit den fachlichen Anforderungen ergeben die Anwendungsfille eine Frage-
stellung, die die Entwicklung des Prototyps beantworten soll: , Wie konnte eine mobile
Android-Applikation zum Kontrollieren von Fahrberechtigungen mit ABT technisch und

inhaltlich aussehen?“

4 Kotlin Multiplattform mit Compose Multiplattform

Um die Wahl einer GUI-Bibliothek zu treffen, wurden zunéchst zwei verschiedene Ansitze
verglichen. Konkret ging es dabei um die GUI-Bibliothek Jetpack Compose im Vergleich
zur XML basierten GUI-Entwicklung. Der Vergleich der beiden Varianten ergab, dass
Compose die GUI-Bibliothek fiir die Kontroll-Applikation aufgrund der im folgenden be-

schriebenen Vorteile sein wird.

4.1 Jetpack Compose - Deklarative GUI

Jetpack Compose ist, im Gegensatz zur imperativen GUI-Entwicklung, eine deklarative
GUI-Bibliothek. Jetpack Compose unterscheidet sich wesentlich vom imperativen Ansatz

in folgenden Aspekten wie beschrieben in [24]:

e Die GUI-Komponenten werden in Kotlin geschrieben, derselben Programmierspra-
che, die auch fiir die Entwicklung von Android-Applikationen genutzt wird. GUI-
Komponenten werden als Funktionen beschrieben und bieten dadurch eine hohe

Wiederverwendbarkeit in mehreren Teilen einer Applikation.

e Die Performance der GUI kann aufgrund der 'smart recomposition’ spiirbar schnel-
ler sein als der imperative Ansatz. Dabei werden nur die GUI-Komponenten neu

gezeichnet, wenn diese eine Anderung in ihrem Zustand haben.

e Die Menge an Code, welcher die GUI-Komponenten mit der Logik verbindet, wird
reduziert, da nicht mehr mit findViewById gearbeitet werden muss, um die GUI-

Komponente mit der Logik zu verbinden.

Zusétzlich zu den genannten Aspekten ist Jetpack Compose auch die modernere Biblio-
thek, die durchgehend weiterentwickelt wird und eine grole Gemeinschaft hat, um Fragen
und Probleme zu kldaren. Aufgrund der verschiedenen Aspekte wurde die GUI-Bibliothek

Compose fiir das Projekt ausgewéhlt.

4.2 Kotlin Multiplattform

Zugleich wurde auch in Betracht gezogen, dass die Kontroll-Applikation auf mehreren

Plattformen laufen kénnen soll. Dafiir wurde ein Vergleich zwischen Android-Nativer und

Kotlin Multiplatform (KMP)-App-Entwicklung durchgefiihrt, um herauszufinden, wie viel
Mehraufwand eine Entwicklung mit KMP mit sich zieht.

KMP ist ein Framework, um mehrere Plattformen in einer Codebasis gleichzeitig zu un-
terstiitzen. Gemeinsame Codeanteile kénnen plattformiibergreifend verwendet werden. Ge-
nauso kénnen plattformspezifische Inhalte zugeschnitten auf die Plattform entwickelt wer-

den. Unter anderem zéhlen Android, i0S, Desktop (JVM) und Server-Side (JVM) zu den

unterstiitzten Plattformen. [14].

Die unterstiitzten Plattformen lassen sich durch die

- . . Ordnerstruktur erkennen und unterscheiden. Die in
3 androidMain

Abbildung 3 gezeigte Ordnerstruktur entspricht einer

y [commonMain KMP Applikation. In commonMain sind alle Codeantei-

le enthalten, die plattformunabhéngig sind, wie zum

» |:_' 105 Main Beispiel die Business-Logik. In androidMain liegen al-

le Android- und in iosMain alle iOS-spezifischen Co-

Abbildung 3: Ordnerstruktur ei- deanteile wie zum Beispiel die Interaktion mit Hard-

ner KMP Applikation warekomponenten oder Abspeichern von Daten auf ei-

nem Geréat.

Durch den Vergleich wurde klar, dass mehrere Plattformen mithilfe von KMP mit gerin-
gem Mehraufwand unterstiitzt werden kénnen. Die Implementierung einer Multiplattform-
Applikation unterscheidet sich nicht fundamental von der einer Android-nativen Applikati-
on, da Android-nativ im Wesentlichen ein Subset von KMP ist. Eine gute App-Architektur
entsteht, wenn beispielsweise Klassen durch Interfaces entkoppelt und durch Dependency
Injection (DI) iibergeben werden [12]. Diese Vorgehensweise wird in KMP vertieft und
durch die Keywords expect/actual erweitert. expect ist ein Interface in commonMain,
welches vorgibt, wie die plattformspezifische Implementierung aussieht. Die tatséichliche

plattformspezifische Umsetzung nutzt actual [13].

4.3 Compose Multiplatform

Nachdem in Kapitel 4.2 festgelegt wurde, dass fiir mehrere Plattformen entwickelt werden
kann, miisste noch die plattformunabhingige GUI-Bibliothek festgelegt werden. Durch
KMP wurde eine Multiplattform-Variante von Jetpack Compose namens Compose Mul-
tiplatform (CMP) in Betracht gezogen. Die Eigenschaften von Jetpack Compose wurden
schon in Kapitel 4.1 diskutiert und viele der dort genannten Aspekte sind auch fiir CMP

zutreffend:

10

e CMP baut auf den gleichen Prinzipien wie Jetpack Compose auf: Es ist deklarativ,
hat die gleiche Syntax und ist ebenso in Kotlin geschrieben [3].

e CMP besitzt fast die gleichen Funktionen wie Jetpack Compose. Es fehlen nur ein
paar wenige Klassen wie zum Beispiel die native Integration einer Kartenansicht in

Jetpack Compose [11].

e CMP bindet Drittanbieter-Bibliotheken ein [11].

Wenn eine KMP mit CMP-Applikation fiir Android gebaut wird, dann werden intern die
Pakete von Jetpack Compose verwendet, um die Android-Applikation zu bauen [1]. Seit
Mai 2025 ist CMP als stabile Laufzeitkomponente gekennzeichnet und gilt als produkti-
onsreif fiir iOS-Geréte. Dort wird nach SwiftUI kompiliert, das native GUI-Framework fiir
iOS [2]. Aufgrund dessen wurde CMP als GUI-Bibliothek gewéhlt, um weiterhin platt-

formiibergreifend entwickeln zu koénnen.

Jedoch stellt die TOKA-App ein Problem fiir die iOS-Applikation dar, denn die TOKA-
App gibt es nur fiir Android-Geréte - wie schon in Kapitel 2.2 erwéhnt. Demnach wiére
es sinnvoll, die Kontroll-Applikation nur auf Android-Geréten zu entwickeln. Allerdings
wurden in den Kapiteln 4.2 und 4.3 schon gezeigt, dass mit wenig Mehraufwand ei-
ne Multiplattform-Variante der Applikation gebaut werden kann. Dabei entstehen kaum
Einschrankungen, wenn fiir beide Betriebssystemvarianten gleichzeitig entwickelt wird.
Zusétzlich ist es zukiinftig moglich, dass die TOKA-App unter iOS funktioniert. Daraus
folgt, dass die Kontroll-Applikation zunéchst nicht auf iOS-Geréten laufen soll. Jedoch
soll die Integration der iOS-Gerite mit in Betracht gezogen werden, um in der Zukunft

mehrere Plattformen unterstiitzen zu konnen.

5 Applikationsarchitektur

Aus den in Kapitel 4 diskutierten Moglichkeiten ergibt sich, dass die Kontroll-Applikation
mit KMP und CMP entwickelt wird. Aufbauend auf der grundlegenden Architektur werden

weitere Softwarearchitekturmuster und Bauprozesse genutzt.

5.1 Softwarearchitekturmuster

Der Prototyp wird nach dem Model-View-ViewModel (MVVM) Architekturmuster aufge-

baut, um eine klare Trennung zwischen Benutzeroberfliche, Logik und Daten zu gewéhrleisten.

11

Die 3 verschiedenen Rollen des Architekturmusters konnen - auf den Prototypen bezogen

- wie folgt beschrieben werden:

e Model: Die verschiedenen Modelle beschreiben die Business-Logik der Kontroll-
Applikation. Unter anderem zéhlen die Anbindung an das Hintergrundsystem, die
Kommunikation mit der TOKA-App sowie die Logik fiir das Kontrollieren einer

giiltigen Fahrberechtigung dazu.

e ViewModel: Diese sind eng gekoppelt mit der View und stellen Daten zur Darstel-
lung bereit. Das ViewModel sammelt Daten aus verschiedenen Modellen und bereitet

diese zur Darstellung auf.

e View: Views bestehen aus simplen deklarativen GUI-Komponenten, die die aufberei-
teten Daten eines ViewModels anzeigen. Dabei besitzen Views keine Business-Logik,

sondern nur Logik zur Konfiguration der angezeigten Komponenten.

Die meisten Code-Anteile innerhalb der 3 Rollen sind im commonMain-Ordner wiederzufin-
den. Vor allem die Views und ViewModels haben keine plattformspezifischen Unterschiede
und bauen auf der gleichen Code-Basis auf. Bei den Modellen gibt es manchmal Abwei-
chungen bei Hardware-Schnittstellen, was dazu fiithrt, dass dort mit plattformspezifischem
Code gearbeitet wird. Dieser liegt in androidMain und nativeMain. So ist beispielsweise
das Kommunizieren und Interagieren mit einer anderen Applikation in jedem Betriebssy-

stem unterschiedlich.

5.2 Bauprozess

Der Bauprozess ist mithilfe von Gradle plattformiibergreifend einheitlich geregelt. Grad-
le bietet Moglichkeiten zur einheitlichen Definition von Abhéngigkeiten fiir jede einzelne
Plattform. Gleichzeitig konnen auch plattformspezifische Einstellungen vorgenommen wer-

den.

Grundsétzlich werden die meisten Abhéngigkeiten fiir die commonMain Code-Anteile de-
finiert. Dies ist nicht immer moglich, da Abhéngigkeiten plattformspezifisch umgesetzt
sein konnen. So muss zum Beispiel fiir die Kommunikation iiber einen HTTP-Client eine
HTTP-Client-Engine fiir jede Plattform festgelegt werden. In Android wird OkHttp und
fiir native Plattformen Darwin als HTTP-Client-Engine verwendet [10]. Die jeweiligen

plattformspezifischen Abhéngigkeiten werden in der entsprechenden Plattform initialisiert

12

und anschliefend iiber den in Kapitel 4.2 beschriebenen Prozess einheitlich in commonMain

verwendet.

Auch plattformspezifische Einstellungen kénnen in Gradle vorgenommen werden. Fiir An-
droid kann zum Beispiel die Signierung der Applikation beim Bauen einer Release-Version
konfiguriert werden. In iOS unterscheidet sich der Signierungsprozess von dem fiir Android-

Geriéte. Trotzdem wird dieser genauso in Gradle definiert und ausgefiihrt.

6 Prototyp der Kontroll-Applikation

Die in Kapitel 5.1 beschriebene Architektur wird wiahrend der Umsetzung der Kontroll-
Applikation durchgehend angewandt und bietet eine gute Grundlage fiir sofwareseitige
Designentscheidungen. In diesem Kapitel wird auf die konkrete Umsetzung der Anwen-
dungsfille, der fachlichen Anforderungen sowie der Inbetriebnahme aus Kapitel 3 einge-

gangen.

6.1 Anbindung der TOKA-App

In Kapitel 2.2 wurde die TOKA-App eingefiihrt, wobei erklart wurde, dass die TOKA-
App eine Android-exklusive Applikation ist. Wie jedoch in Kapitel 4 beschrieben wurde,
soll die Kontroll-Applikation plattformunabhingig funktionieren kénnen. Dafiir muss die
Anbindung der TOKA-App in commonMain definiert werden. Sie nutzt Android-spezifische
Broadcasts, um ihre generierten Daten an andere Applikationen weiterzugeben. Bevor
auf die plattformunabhéngige Umsetzung eingegangen werden kann, muss noch im Detail

erklart werden, wie und welche Informationen die TOKA-APP versendet.

Die TOKA-App erkennt automatisch, dass ein Ticket-Medium an den NFC-Leser des
Android-Geriites vorgehalten wird. Daraufhin versucht die TOKA-App das Ticket-Medium
auszulesen, wobei es zu drei verschiedenen Ergebnissen kommen kann: Das Ticket-Medium
konnte erfolgreich ausgelesen werden und ein Identitdtstoken wurde generiert; das Ticket-
Medium konnte nicht ausgelesen werden; es gab einen anderen unbekannten Fehler wéahrend
der Generierung. Bei jedem der drei Moglichkeiten sendet die TOKA-App einen Broadcast

mit Daten, die entweder einen Fehler oder ein generiertes Identitédtstoken beinhalten.

In der Kontroll-Applikation wurde ein BroadcastReceiver implementiert, der auf den Broad-
cast der TOKA-App reagiert. Damit der BroadcastReceiver die Daten empfangen kann,

miissen der Kontroll-Applikation noch besondere Berechtigungen erteilt werden, die in der

13

AndroidManifest.xml definiert werden. Sobald ein Ticket-Medium an den NFC-Leser des
Android-Geriites vorgehalten wird und die TOKA-App ein Ergebnis liefert, bekommt dies
die Kontroll-Applikation mit. AnschlieBend kann das Identitdtstoken weiter verarbeitet

werden.

Um die Anbindung plattformunabhéngig zu gestalten, braucht es einen Kommunikations-
weg, um die empfangenen Daten der TOKA-App auf commonMain-Ebene zu erhalten und
weiterzuleiten. Dafiir wird ein Observer-Pattern genutzt, das aus der Standardbibliothek
in Kotlin stammt. Die SharedFlows werden auf ModelView-Ebene genutzt, um auf den
Broadcast zu reagieren, der durch die TOKA-App ausgesendet wird. Daraufhin werden
die Daten, wie schon in Kapitel 5.1 erklért, fiir die Darstellung in der View aufbereitet,
wie es im Screenshot der Kontroll-Applikation in Abbildung 6 zu sehen ist. Unter iOS
ware das Einbinden der TOKA-App demnach iiber das gleiche Observer-Pattern moglich.

6.2 Umsetzung der Inbetriebnahme

Die in Kapitel 3.1 beschriebenen Anforderungen an die Inbetriebnahme, also das Installie-
ren der TOKA-App und das Eingeben der Terminal-ID, wurden unabhéngig voneinander
umgesetzt. Das Installieren der Kontroll-Applikation ist Teil der Entwicklung und in Ka-

pitel 8 wird erlautert, wie sie heruntergeladen werden kann.

e Um die TOKA-App zu installieren, wurden die Android-Gerédte an den Zahlungs-
dienstleister versendet, damit dieser die TOKA-App installieren und konfigurieren
kann. Die TOKA-App muss vom Zahlungsdienstleister auf das Android-Gerit gela-
den werden, da zugleich bei der Installation bestimmte Zertifikate notwendig sind,
ohne die das Auslesen eines Ticket-Mediums per NFC nicht moglich wére. Anschlie-
end wurden die Android-Gerite zuriick an die IVU gesendet, um den Kontroll-

Applikations-Prototyp entwickeln zu kénnen.

e Das manuelle Eingeben der Terminal-ID wurde iiber eine eigene Ansicht gelost, wel-
che beim erstmaligen Offnen der Kontroll-Applikation dargestellt wird. Wie in Ab-
bildung 4 zu sehen ist, wird der Kontrolleur darum gebeten, die Terminal-ID manuell
einzugeben. Dazu gibt es einen kurzen Hinweistext, wodurch der Kontrolleur weif3,
woher er die Terminal-ID beziehen soll. Nach der Eingabe einer Terminal-ID wird
ein Bestéitigungsdialog eingeblendet. Dieser soll gewihrleisten, dass der Kontrolleur
die korrekte Terminal-ID eingegeben hat. Bei einer Bestédtigung wird die néchste

Ansicht dargestellt, wie sie in Abbildung 5 zu sehen ist.

14

Um die fachliche Anforderung an die Terminal-ID aus Kapitel 3.3 einzuhalten, wird die
Terminal-ID auf dem Geriét abgespeichert. Mithilfe
eines StorageRepository auf Modell-Ebene wird das

Speichern und Auslesen plattform-unabhingig um-

Please enter your Terminal ID:

gesetzt. Sobald die Kontroll-Applikation geoffnet
ferminal1b m wird, priift die ViewModel-Ebene mit dem Stora-

Enter the Terminal ID provided to you by the TokA geRepository, ob eine Terminal-ID vorhanden ist.

Application to proceed.

Wenn die Terminal-ID schon im Gerétespeicher vor-

liegt, wird die néchste Ansicht angezeigt, ohne dass

Abbildung 4: Kontroll-Applikation der Kontrolleur erneut die Terminal-ID eingeben

Terminal-ID Input muss. Dadurch wird die fachliche Anforderung um-

gesetzt.

6.3 Umsetzung der Anwendungsfille

Bevor auf die Umsetzung der Anwendungsfille
aus Kapitel 3.2 eingegangen werden kann, muss
die fachliche Anforderung aus Kapitel 3.3 zur
Sperrliste umgesetzt werden, da die Anwen-
dungsfille teilweise auf dieser fachlichen Anfor-

derung basieren.

Die Sperrliste wird periodisch vom Hin-
tergrundsystem geladen, indem eine paral-
lele Aufgabe beim Starten der Kontroll-
Applikation ausgefithrt wird, die bis zum Be-
enden der Kontroll-Applikation fiir das Her-
unterladen der Sperrliste zustédndig ist. Die
Kontroll-Applikation holt die Sperrliste vom
Hintergrundsystem und speichert diese im
Gerétespeicher mit der Information zusammen

ab, zu welchem Zeitpunkt die Sperrliste das

Ist Sperrliste aktuell?

O

Generierte Identitatstoken:
Priife, ob Identitatstoken auf Sperrliste:
Identitatstoken auf Hintergrundsystem priifen:

Kontrolle Gesamtergebnis:

Abbildung 5: Kontroll-Applikation
Hauptansicht

letzte mal gespeichert wurde. Wie alt die abgespeicherte Sperrliste fiir eine Kontrolle sein

darf, ist konfigurierbar. Die Konfiguration steuert zugleich das zeitliche Intervall, nach

welchem die Sperrliste erneut heruntergeladen wird. Die Kontroll-Applikation kann bei

Bedarf daraufthin die aktuelle Sperrliste aus dem Gerétespeicher laden, um eine Kontrol-

le durchfiithren zu kénnen. Ob die Sperrliste fiir eine Kontrolle geeignet ist, wird in der

15

Kontroll-Applikation durch einen entsprechenden Hinweis angezeigt, wie es in Abbildung

5 zu sehen ist. Dadurch wird die fachliche Anforderung umgesetzt, da die Teil-Kontrolle

bei fehlender Verbindung zum Hintergrundsystem {iber die lokale Sperrliste durchgefiihrt

werden kann.

Ist Sperrliste aktuell?
Generierte Identitatstoken:

113DA8B4FD86D641AC523B0OE3FFB742A105 B
936AB6A7B0OCB50C1C3985E8836C6EAS8

Priife, ob Identitatstoken auf Sperrliste:

Identitatstoken steht auf der Sperrliste @)

Identitdatstoken auf Hintergrundsystem priifen:

Identitatstoken ist nicht auf der TapList

Kontrolle Gesamtergebnis:

Identitatstoken ist()

Abbildung 6: Kontroll-Applikation Iden-

titatstoken auf Sperrliste

Um die Anwendungsfiille besser nachvollziehen
zu konnen, wurde die Ansicht wéahrend der
Kontrolle im Prototyp der Kontroll-Applikation
so aufgebaut, dass jeder Schritt in der richti-
gen Reihenfolge der Kontrolle abgebildet ist.
Dabei verhalt sich die Kontrolle so, wie es
im Sequenzdiagramm aus Abbildung 2 zu se-
hen ist. Die Kontrolle beginnt damit, dass
ein Ticket-Medium an den NFC-Leser des
Android-Gerites vorgehalten wird und die
TOKA-App darauffolgend das generierte Iden-
titatstoken broadcasted. Anschlieend wird das
Identitatstoken gegen die lokal gespeicher-
te Sperrliste gepriift und gegebenenfalls als
ungiiltig gekennzeichnet. Ansonsten wird das
Identitédtstoken genutzt, um mit dem Hinter-
grundsystem abzugleichen, ob eine giiltige Fahr-

berechtigung vorliegt. Wie die einzelnen An-

wendungsfille umgesetzt wurden, wird im Folgenden in gleicher Reihenfolge wie in Kapitel

3.2 erlautert:

e Im Gegensatz zu dem in Abbildung 6 abgebildeten Gesamtergebnis wird bei einem

positiven Kontrollergebnis ein griiner Haken angezeigt, der eine giiltige Fahrberech-

tigung symbolisiert.

e Sobald das generierte Identitdtstoken auf der Sperrliste gefunden wurde, wird die

ungiiltige Fahrberechtigung mit einem entsprechenden Icon symbolisiert. Dieses wird,

wie in Abbildung 6 zu sehen, einmal bei der Sperrlistenpriifung und ein zweites Mal

bei dem Gesamtergebnis der Kontrolle angezeigt.

e Um anzuzeigen, dass zu dem generierten Identitédtstoken keine Fahrberechtigung exi-

stiert, wird analog zur Sperrliste ein entsprechendes Icon angezeigt. Diesmal besteht

dieses aus einem roten Hintergrund und einem Ausrufezeichen, womit dem Kon-

16

trolleur verdeutlicht wird, dass der Reisende keine Fahrberechtigung vor Antritt der

Fahrt erworben hat.

e Wenn beim Vorhalten eines Ticket-Mediums von der TOKA-App das Medium nicht
ausgelesen werden kann, wird dieser Fehler in der Ansicht angezeigt. Dafiir wird ein
roter Text mit entsprechender Fehlermeldung unterhalb der in Abbildung 5 angezeig-
ten Schritte dargestellt. Dieser Text beinhaltet einen Aufforderung an den Kontrol-
leur, das Ticket-Medium erneut vorzuhalten, damit ein Identitédtstoken erfolgreich

generiert werden kann.

e Um die fehlende Kommunikation zum Hintergrundsystem darzustellen, wurde eine
Statusanzeige erstellt, welche dem Kontrolleur anzeigt, dass er keine Internetverbin-
dung hat. Die in Abbildung 7 abgebildete Statusbar kann entweder den Zustand
, Offline“ oder ,,Backend unreachable“ besitzen. Je nachdem, welches von beiden ak-
tuell zutrifft, wird die Anzeige der Statusbar gedindert. Ahnlich zu der beschriebenen
nicht-funktionalen Anforderung der Sperrliste, wird auch hier eine parallele Aufgabe

gestartet, welche wiahrend der gesamten Laufzeit der Kontroll-Applikation aktiv ist.

e In Sequenzdiagramm aus Abbildung 2 ist beschrieben, dass die Sperrlistenpriifung
ausgefithrt wird, bevor die Fahrberechtigung mit dem Hintergrundsystem abgegli-
chen wird. Im Falle eines Eintrags in der Sperrliste bedeutet dies, dass die Kontrolle
beendet wird, bevor die Internetverbindung notwendig ist. Zusammen mit der be-
schrieben nicht-funtkionalen Anforderung der Sperrliste ergibt dies, dass eine Teil-

kontrolle ohne Verbindung zum Hintergrundsystem durchgefiihrt werden kann.

Die Abbildungen in diesem Kapitel sind prototypisch imple-
mentiert und entsprechen nicht dem finalen Produkt. Das Ziel
des Prototyps ist es, dass die Kontroll-Applikation einen pro- & Offline
duktiven Implementierungsstand erreicht, weshalb die in Ka-

pitel 7 und 8 beschriebenen Mafinahmen erfolgen. Aufgrund
Abbildung 7: Kontroll-

Applikation Verbindungs-

dessen werden die abgebildeten Ansichten im Nachgang noch
iiberarbeitet, sodass sie nur die relevanten Informationen fiir
die Kontrolle beinhalten. Der Kontrolleur wird dementspre- statusbar
chend das Gesamtergebnis der Kontrolle angezeigt bekom-

men.

17

7 Automatisierte Tests zur Fehlererkennung

Bei der Implementierung der Kontroll-Applikation wird der geschriebene Code durchgéngig
an neue Funktionalitdten oder an behobene Fehler angepasst. Durch diesen Prozess kann
es zu Fehlverhalten in schon existierenden Funktionalitdten kommen. Diese Fehler werden
in der Literatur Regressionsfehler genannt [17]. Die Code-Anteile kénnen Abhéngigkeiten
an bestimmte Funktionalitdten oder Abldaufe besitzen, die sich durch das Implementie-
ren einer neuen Funktionalitdt oder das Losen eines Fehlers &ndern konnen. Demnach ist
das Testen des geschriebenen Codes ein sinnvoller Schritt im Entwicklungsprozess, um

ungewolltes Fehlverhalten zu vermeiden.

Die Testpyramide in Abbildung

8 sieht vor, dass Tests in 3 50 * A clower
Ebenen unterteilt werden: GUI- integration Ul
Tests, Service- oder Integration-

Tests

Tests und Unit-Tests. Innerhalb
der Kontroll-Applikation werden / Service Tests\
allerdings nur zwei Testarten ver-

wendet, da bisher noch keine .
o ~more Unit Tests
Service-Tests aufgesetzt wurden. /s0/ation v

faster
Y

Diese sind aktuell im Aufbau und
werden erst nach dem Ende des Abbildung 8: Testpyramide nach Mike Cohn [22]
Projekts lauffiahig sein.

7.1 Unit-Tests

Unit-Tests bilden beim Testen die Grundlage der Testpyramide und sichern den Code auf
einer grundlegenden Ebene ab. Sie testen Module, héufig definiert als eine Klasse oder als
kleine Sammlung von Funktionen im Code. Die Module sind groflenméfig iibersichtlich,
gut zu testen und im besten Fall abhéngig von wenigen anderen Modulen. Aufgrund
dessen haben die geschriebenen Testfélle eine Laufzeit von wenigen Millisekunden, wie in
Abbildung 9 zu sehen ist. Dies erlaubt hunderten Unit-Tests in kurzer Zeit zu priifen, ob

der neue geschriebene Code eine bestehende Funktionalitét aus Versehen beeinflusst hat
[22].

Auch wenn es haufig nur wenige Abhéngigkeiten gibt, kénnen diese zu Problemen beim

Testen fiithren. Eine Klasse kann beispielsweise von einem HTTP-Client abhéngig sein,

18

der normalerweise Anfragen ins Internet verschickt. Diese dauern im Normalfall ein paar
hundert Millisekunden und wiirden einen Unit-Test um ein Hundertfaches verlangsamen.
Zusétzlich ware in dem konkreten Beispiel schwer zu steuern, wie sich der Server im Inter-
net verhélt. Eine Server-Testumgebung aufzusetzten, die alle Fehler- und Erfolgsbeispiele
wiedergeben kann, ist zeit- und gegebenenfalls kostenintensiv.
Auch das Testen mit einer Hardware-

GO R =iy g st IRy Schnittstelle wie von der TOKA-App ver-
Retums ON_TAPLIST when toke ind in TapList a8l wendet wire schwer zu ermoglichen, da je-
T & : B des Fehler-szenario der TOKA-App iiber

e B cine eigene TOKA-Applikation gepriift

werden miisste. Aus diesen Griinden wird

eine Fake-Abhéngigkeit dem zu testenden
Abbildung 9: Beispiel Unit-Test Ausfithrung Modul iibergeben. Diese Vorgehensweise
wird im Allgemeinen als Mocking bezeich-

net.

Beim Mocking werden eine oder mehrere Pseudo-Klassen implementiert. Diese implemen-
tieren die Schnittstelle der Abhéngigkeit, sodass im Unit-Test bestimmte Verhaltensweisen
im Modul getestet werden konnen [23]. So kann beispielsweise dem Modul mit der HTTP-
Client-Abhéngigkeit vorgetduscht werden, dass die Anfrage einen festgelegten Datensatz
oder der Server einen Fehler zuriickgibt, ohne dass eine echte Anfrage ins Internet gemacht

wird. Somit ist die Laufzeit eines Unit-Tests wieder auf ein paar Millisekunden beschrénkt.

In der Kontroll-Applikation sind die meisten Tests im commonTest Ordner geschrieben, da
der Grof3teil des Codes in commonMain liegt. Doch auch die plattformspezifischen Kom-
ponenten, die mit expect/actual geschrieben wurden, miissen mit Unit-Tests abgedeckt
werden. Wichtig dabei ist, dass die Unit-Tests nun plattformspezifisch arbeiten und das
gesonderte Testabhéngigkeiten definiert werden miissen. So ist auch das Mocking, wie oben
beschrieben, moglich. Jedoch wird hier zusétzlich eine Bibliothek genutzt, die das Mocken
von Android-spezifischem Kontext iibernimmt. Dies dient der schnelleren Erstellung und

Umsetzung der Unit-Tests durch Nutzung etablierter Bibliotheken.

7.2 GUI-Tests

Auch wenn Unit-Tests am héufigsten benutzt werden, um Code zu testen, sind zusétzliche
GUI-Tests eine wichtige Testform, um die GUI-Komponenten sinnvoll zu priifen. Wie in

Kapitel 5.1 beschrieben, beinhalten Views auch eine Anzeigelogik, die ungetestet ebenso zu

19

Fehlern fiihren kann. Zusétzlich spielen in modernen Anwendungen die Benutzerfiihrung
und die intuitive Bedienung der Applikationen eine immer gréfiere Rolle [19]. Aufgrund
dessen sollten auch die einzelnen GUI-Komponenten getestet werden, um ungewollte Feh-

lerquellen beim Anzeigen in der View zu verhindern.

Dabei weichen die hier beschriebenen GUI-Tests von der gidngigen Interpretation ab. Im
Allgemeinen werden sie als Tests fiir die gesamte Priifung der Software verstanden und
von Entwicklern hiufig als weniger notwendig angesehen. Demnach gibt es eine deutlich
hohere Menge an Unit-Tests als GUI-Tests, weil Unit-Tests noch andere wichtige Faktoren
beinhalten. Zum Beispiel sind Unit-Tests stabil, sie haben eine schnelle Durchlaufzeit und
kénnen komplexe Szenarien einfach testen [21]. In der Kontroll-Applikation wird ein GUI-
Test als ein Test der Anzeigelogik verstanden und wird dementsprechend als gleichgiiltig

zu Unit-Tests angesehen.

In Kapitel 4.3 wurde fiir CMP ein einheitlicher Weg erldutert, um GUI-Tests zu schreiben.
Mithilfe der bereitgestellten runComposeUiTest-Methode kann der aktuell zu testende
Inhalt festgelegt und die zu priifende Anzeigelogik getestet werden. Die bereitgestellten

Methoden zum Testen beinhalten folgende Funktionalitéten:

e Finden einer bestimmten GUI-Komponente durch die Suche nach einem festgelegten

Test-Tag oder durch die Suche nach dem aktuellen Text der Komponente.

e Sicherstellen der Anzeige von bestimmten Subkomponenten oder im Gegenfall der
ausbleibenden Anzeige dieser Komponenten. Dies wird durch die Anzeigelogik inner-
halb der GUI-Komponente gesteuert und kann durch das Mocken eines ViewModels

getestet werden.

e Interagieren mit einzelnen Subkomponenten wie zum Beispiel das Klicken auf einen

Knopf oder eine TextBox.

e Uberpriifen von Eigenschaften der einzelnen GUI-Komponenten wie zum Beispiel,
dass ein genauer Text vorhanden ist, dass die Komponente anklickbar ist oder dass

die Hohe/Breite einem vorgegebenen Wert entspricht.

Die Tests werden normalerweise auf jeder konfigurierten Plattform durch das Anschlieflen
eines physischen Geréates ausgefiihrt. Jedoch gibt es beim Testen eine wesentliche Anfor-
derung, nédmlich dass die GUI-Tests automatisch ausgefiihrt werden koénnen, ohne dass
ein physisches Gerit angeschlossen sein muss. Aus diesem Grund wird fiir die GUI-Tests

ein Emulator verwendet. Dieser simuliert die Ausfithrung auf einem physischen Gerét und

20

bietet dadurch eine unabhéngige Testausfithrung und fiihrt zusétzlich zu einer verkiirzten
Laufzeit der Tests.

Der fiir Android genutzte Emulator ist Robolectric und funktioniert technisch gesehen
nicht wie ein klassischer Emulator eines physischen Gerétes. Robolectric lauft innerhalb
der JVM in Sekundenschnelle und bietet eine Testumgebung, welche konfigurierbar ist
und Android prézise emuliert [5]. Die Testumgebung muss vor jedem Test eingerichtet
werden, jedoch wird dies dem Test-Schreibenden durch die Vererbung der selbstgeschrie-
benen UsingContext-Klasse abgenommen, die fiir die Konfiguration zustindig ist. Da
nicht jede Plattform mit Robolectric lduft, wird auch hier wieder der expect/actual
Mechanismus genutzt wie in Kapitel 4.2 beschrieben, um plattformspezifische Inhalte zu

abstrahieren.

8 Continuos Integration (CI) und Continuos Delivery
(CD)

In der Softwarewelt ist eine CI/CD-Pipeline ein fester Bestandteil der Softwareentwick-
lung. CI/CD ist ein wichtiger Grundbaustein fiir die skalierbare Integration und Ausliefe-
rung von neuer Software. Unter anderem spielen das automatische Bauen und Testen, die
Unterstiitzung mehrerer Plattformen und die Skalierbarkeit der Infrastruktur eine grofle
Rolle [1].

8.1 Wozu CI/CD?

Durch die fortlaufende Weiterentwicklung oder Fehlerbehebung in der Codebasis kann es
zu den in Kapitel 7 beschriebenen Regressionsfehlern kommen. Eine Regression wird dabei
beschrieben als ,[...] a specific type of bug or issue that occurs when new code changes,
like software enhancements, patches, or configuration changes, introduce unintended side

effects or break existing functionality that was working correctly before.“ [3].

Demnach sollten nach jeder Anderung in der Implementierung alle geschriebenen GUI-
und Unit-Tests ausgefiihrt werden. Bei einem fehlschlagenden Test wird festgestellt, dass
entweder der neu geschriebene Code noch fehlerhaft ist oder es an einer anderen Stelle zu

einer Regression gekommen ist.

Um nicht mehr kontinuierlich manuell alle Tests ausfithren zu miissen, was die Produk-

tivitdt des Entwickelnden beeintrichtigt, wird eine CI/CD Pipeline aufgebaut, die das

21

Bauen und Ausfithren der Tests automatisch tibernimmt.

8.2 Einbindung in den Prototypen

Die fiir die Kontroll-Applikation gebaute CI/CD-Pipeline baut unter anderem die Android-
Applikation sowie die geschriebenen Tests, damit diese automatisch ausgefithrt werden

konnen.

1. Im zentralen git-Repository sind beim Hochladen von neuem Code oder beim Anle-
gen einer Pull Request Aktionen hinterlegt, welche automatisch ausgefiithrt werden.
Es wird bei der automatischen Bauumgebung ein Webhook aufgerufen, wodurch der
automatische Bau- und Test-Prozess beginnt. Erst nach erfolgreichem Durchlaufen
der Tests wird die Pull Request als genehmigt markiert und kann zusammengefiihrt

werden.

2. In der automatischen Bauumgebung wird durch einen Webhook der Bauprozess ge-
startet. Dieser nutzt einen vorgebauten Docker-Container als Grundlage, um darin
das Bauen zu beginnen. Der Container beinhaltet alle notwendigen Bau-Tools zum
Erstellen und Testen der Kontroll-Applikation, da nicht sichergestellt werden kann,

dass in der Bauumgebung alle notwendigen Tools installiert sind.

3. Zum Schluss wird noch mithilfe von SonarQube eine statische Code-Analyse durch-
gefiihrt. Zusétzlich iiberpriift SonarQube die Testabdeckung mit der Erwartung, dass
mindestens 80% des geschriebenen Codes durch Tests abgedeckt sind. Die Kennzahl

ist eine IVU-interne Vorgabe und muss demnach eingehalten werden.

4. Nachdem alle Tests erfolgreich ausgefiihrt wurden, wird die gebaute Kontroll-Applikation
noch auf einem Datei-Server zusammen mit der Software Bill of Material (SBOM)
hochgeladen. Die SBOM ist nicht notwendig, jedoch ermdoglicht sie Dependency-
Tracking, um automatisch Risiken in Abhéngigkeiten zu erkennen. Die hochgeladene
Kontroll-Applikation kann anschlieend dazu genutzt werden, um die Software auf

verschiedene Geréte aufzuspielen.

5. Bei einem Fehlschlag in einer der vorherigen Schritte wird eine Mail an den Er-
steller der letzten Anderung des Code-Anteils gesendet, die die Fehlerursache kurz

wiedergibt.

Die gebaute Kontroll-Applikation kann bei Bedarf heruntergeladen werden. Auch das Er-

gebnis der Sonar-Analyse ist in einer SonarQube-Installation einzusehen.

22

In Zukunft wird es zusétzlich moglich sein, die Kontroll-Applikation direkt in den App-
Store der entsprechenden Plattform hochzuladen. Die beschriebene Pipeline wiirde dann
erweitert werden, um die Kontroll-Applikation in den App-Store hochzuladen. Dadurch
wird gewahrleistet, dass die Kontrolleure immer die aktuelle Version der Kontroll-Applikation
zum Kontrollieren der Reisenden nutzen, ohne dass manuelle Eingriffe von weiteren betei-

ligten Personen notig sind.

9 Fazit

In dieser Arbeit wurde ein Prototyp einer mobilen Kontroll-Applikation fiir ABT ent-
wickelt. Die Analyse zeigt, dass ABT neue Herausforderungen fiir die Kontrolle von Fahr-
berechtigungen mit sich bringt. Durch die Integration der TOKA-App konnte die Gene-
rierung eines Identitatstokens realisiert werden, das als Basis fiir die Priifung im Hinter-
grundsystem dient. Die Umsetzung mit KMP und CMP erwies sich als effizient und zu-
kunftssicher, da sie eine plattformiibergreifende Entwicklung ermdéglicht. Ergénzend wur-
den automatisierte Tests und eine CI/CD-Pipeline implementiert, um Qualitdt und Ska-
lierbarkeit sicherzustellen. Der Prototyp erfiillt die wesentlichen Anforderungen und ist
nahezu produktionsreif. Fiir die Zukunft bietet sich die Erweiterung auf iOS-Geréte sowie
die Integration zusétzlicher Priifmechanismen (z. B. rdumliche Giiltigkeit) an. Insgesamt
zeigt die Arbeit, dass eine moderne Kontroll-Applikation fiir ABT technisch umsetzbar ist
und eine wichtige Grundlage fiir die Digitalisierung im OPV bildet.

23

Abkiirzungsverzeichnis

ABT Account-Based Ticketing 1
CMP Compose Multiplatform 10
CD Continuous Delivery 2
CI Continuous Integration L o 2
DI Dependency Injection 10
GUI Graphical User Interface 5
JVM Java Virtual Machine 0o 8
KMP Kotlin Multiplatform 10
MBT Medium-Based Ticketing o o 2
NFC Near Field Communication 4
OPV offentlicher Personenverkehr 1
SBOM Software Bill of Material 22
VDV Verband Deutscher Verkehrsunternehmen 1

24

Abbildungsverzeichnis

1 Ubersicht der Komponenten fiir die Kontroll-Applikation 5
2 Kontrollablauf fiir eine erfolgreiche Kontrolle 7
3 Ordnerstruktur einer KMP Applikation 10
4 Kontroll-Applikation Terminal-ID Input 15
5 Kontroll-Applikation Hauptansicht 15
6 Kontroll-Applikation Identitatstoken auf Sperrliste. 16
7 Kontroll-Applikation Verbindungsstatusbar 17
8 Testpyramide nach Mike Cohn [22] 18
9 Beispiel Unit-Test Ausfithrung 19
Literatur

[1] Best CI/CD platforms for Enterprise: Top 8 solutions in 2025 — octopus.com. https :
//octopus.com/devops/ci-cd/ci-cd-tools-for-enterprise/. [Accessed 20-10-
2025].

[2] Compose Multiplatform 1.8.0 Released: Compose Multiplatform for i0S Is
Stable and Production-Ready. https://blog.jetbrains.com/kotlin/2025/05/
compose-multiplatform-1-8-0-released-compose-multiplatform-for-ios-is-stable—-and-

#production-ready-and-easy-to-adopt. [Accessed 03-11-2025].

[3] Compose Multiplatform and Jetpack Compose — Kotlin = Multi-
platform — jetbrains.com. https://www.jetbrains.com/help/
kotlin-multiplatform-dev/compose-multiplatform-and-jetpack-compose.

html#jetpack-compose-and-composables. [Accessed 31-10-2025].

[4] Compose Multiplatform and Jetpack Compose — Kotlin Multiplatform —
jetbrains.com. https://www.jetbrains.com/help/kotlin-multiplatform-dev/
compose-multiplatform-and-jetpack-compose.html#technical-details. [Ac-
cessed 03-11-2025].

[5] Robolectric — robolectric.org. https://robolectric.org/. [Accessed 17-11-2025].

25

https://octopus.com/devops/ci-cd/ci-cd-tools-for-enterprise/
https://octopus.com/devops/ci-cd/ci-cd-tools-for-enterprise/
https://blog.jetbrains.com/kotlin/2025/05/compose-multiplatform-1-8-0-released-compose-multiplatform-for-ios-is-stable-and-production-ready/#production-ready-and-easy-to-adopt
https://blog.jetbrains.com/kotlin/2025/05/compose-multiplatform-1-8-0-released-compose-multiplatform-for-ios-is-stable-and-production-ready/#production-ready-and-easy-to-adopt
https://blog.jetbrains.com/kotlin/2025/05/compose-multiplatform-1-8-0-released-compose-multiplatform-for-ios-is-stable-and-production-ready/#production-ready-and-easy-to-adopt
https://www.jetbrains.com/help/kotlin-multiplatform-dev/compose-multiplatform-and-jetpack-compose.html#jetpack-compose-and-composables
https://www.jetbrains.com/help/kotlin-multiplatform-dev/compose-multiplatform-and-jetpack-compose.html#jetpack-compose-and-composables
https://www.jetbrains.com/help/kotlin-multiplatform-dev/compose-multiplatform-and-jetpack-compose.html#jetpack-compose-and-composables
https://www.jetbrains.com/help/kotlin-multiplatform-dev/compose-multiplatform-and-jetpack-compose.html#technical-details
https://www.jetbrains.com/help/kotlin-multiplatform-dev/compose-multiplatform-and-jetpack-compose.html#technical-details
https://robolectric.org/

(6]

[7]

8]

[9]

[10]

[11]

[12]

[13]

[14]

Weas ist ein eticket - und wie funktioniert es? https://www.eticket-deutschland.
de/ticketing. [Accessed 28-11-2025].

Account based ticketing: Chancen und herausforderungen der ticketing-
technologie. https://www.eticket-deutschland.de/magazin/
account-based-ticketing-chancen-und-herausforderungen-der-ticketing-technologie/,

March 2023. [Accessed 21-11-2025].

Regression Testing: Definition, Types, and Tools — github.com. https://github.
com/resources/articles/regression-testing-definition-types-and-tools,

2024. [Accessed 20-10-2025].

Autonomes Fahren im OPNV: ,Robo-Bus-Radar 2025 zeigt
Chancen und Herausforderungen — zukunftsnetzwerk-oepnv.de.
https://www.zukunftsnetzwerk-oepnv.de/aktuelles/news/

autonomes-fahren-im-oepnv-robo-bus-radar-2025-zeigt-chancen-und-herausforderungen

2025. [Accessed 15-10-2025].

Client engines — Ktor — ktor.io. https://ktor.io/docs/client-engines.html#
platforms, 2025. [Accessed 15-11-2025].

Compose Multiplatform and Jetpack Compose — Kotlin Multi-
platform — jetbrains.com. https://www.jetbrains.com/help/
kotlin-multiplatform-dev/compose-multiplatform-and-jetpack-compose.
html#compose-multiplatform-and-jetpack-compose-features, 2025. [Accessed
03-11-2025].

Dependency injection in Android — App architecture — Android De-
velopers — developer.android.com. https://developer.android.com/training/
dependency-injection?hl=en#fwhat-is-di, 2025. [Accessed 31-10-2025].

Expected and actual declarations — Kotlin Multiplat-
form — jetbrains.com. https://www.jetbrains.com/help/
kotlin-multiplatform-dev/multiplatform-expect-actual.html#
rules-for-expected-and-actual-declarations, 2025. [Accessed 31-10-2025].

Stability of supported platforms — Kotlin Multiplat-
form — jetbrains.com. https://www. jetbrains.com/

help/kotlin-multiplatform-dev/supported-platforms.html#

26

https://www.eticket-deutschland.de/ticketing
https://www.eticket-deutschland.de/ticketing
https://www.eticket-deutschland.de/magazin/account-based-ticketing-chancen-und-herausforderungen-der-ticketing-technologie/
https://www.eticket-deutschland.de/magazin/account-based-ticketing-chancen-und-herausforderungen-der-ticketing-technologie/
https://github.com/resources/articles/regression-testing-definition-types-and-tools
https://github.com/resources/articles/regression-testing-definition-types-and-tools
https://www.zukunftsnetzwerk-oepnv.de/aktuelles/news/autonomes-fahren-im-oepnv-robo-bus-radar-2025-zeigt-chancen-und-herausforderungen
https://www.zukunftsnetzwerk-oepnv.de/aktuelles/news/autonomes-fahren-im-oepnv-robo-bus-radar-2025-zeigt-chancen-und-herausforderungen
https://ktor.io/docs/client-engines.html#platforms
https://ktor.io/docs/client-engines.html#platforms
https://www.jetbrains.com/help/kotlin-multiplatform-dev/compose-multiplatform-and-jetpack-compose.html#compose-multiplatform-and-jetpack-compose-features
https://www.jetbrains.com/help/kotlin-multiplatform-dev/compose-multiplatform-and-jetpack-compose.html#compose-multiplatform-and-jetpack-compose-features
https://www.jetbrains.com/help/kotlin-multiplatform-dev/compose-multiplatform-and-jetpack-compose.html#compose-multiplatform-and-jetpack-compose-features
https://developer.android.com/training/dependency-injection?hl=en#what-is-di
https://developer.android.com/training/dependency-injection?hl=en#what-is-di
https://www.jetbrains.com/help/kotlin-multiplatform-dev/multiplatform-expect-actual.html#rules-for-expected-and-actual-declarations
https://www.jetbrains.com/help/kotlin-multiplatform-dev/multiplatform-expect-actual.html#rules-for-expected-and-actual-declarations
https://www.jetbrains.com/help/kotlin-multiplatform-dev/multiplatform-expect-actual.html#rules-for-expected-and-actual-declarations
https://www.jetbrains.com/help/kotlin-multiplatform-dev/supported-platforms.html#current-platform-stability-levels-for-the-core-kotlin-multiplatform-technology
https://www.jetbrains.com/help/kotlin-multiplatform-dev/supported-platforms.html#current-platform-stability-levels-for-the-core-kotlin-multiplatform-technology
https://www.jetbrains.com/help/kotlin-multiplatform-dev/supported-platforms.html#current-platform-stability-levels-for-the-core-kotlin-multiplatform-technology
https://www.jetbrains.com/help/kotlin-multiplatform-dev/supported-platforms.html#current-platform-stability-levels-for-the-core-kotlin-multiplatform-technology

current-platform-stability-levels-for-the-core-kotlin-multiplatform-technology,
2025. [Accessed 30-10-2025].

[15] ArLLiance, S. T. Account-based ticketing: some basic common in-
sights. https://www.smart-ticketing.org/_files/archives/fcd3b9_
£40c7bddc26843279feee1ad02f0c134.zip?dn=ABT},200nepager’,20Management?,
20Summary.zip, September 2024.

[16] ArLLiANCE, S. T. Account-based ticketing: some opportunities and chal-
lenges. https://www.smart-ticketing.org/_files/archives/fcd3b9_
£40c7bddc26843279feeel1ad02f0c134.zip?dn=ABT%200nepager’,20Managementy
20Summary.zip, November 2024

[17) HERSCHEL, M. Eine einfiihrung in die regressionstests. Ausarbeitung fiir projekt- und
qualitdtsmanagement im masterstudiengang ,angewandte informatik“, Hochschule
Hannover, Fakultiat IV, Abteilung Informatik, December 2020.

[18] HEYER, S. Die Komplexitit des Ticketkaufs im heutigen OPNV: Eine
Schritt-fiir-Schritt-Ubersicht — linkedin.com. https://www.linkedin.com/
pulse/die-komplexit},25C3%25A4t-des-ticketkaufs-im-heutigen-%25C3Y%
25B6pnv-eine-sascha-heyer-7gzhe/, 2024. [Accessed 15-10-2025].

[19] Kousar, A., KHaN, S. U. R., MASHKOOR, A., AND IQBAL, J. A systematic
literature review on graphical user interface testing through software patterns. IET
Software 2025, 1 (2025), 9140693.

[20] KOLLER, D., MEHLICH, M., AND OMERS, M. Weilbuch ,;account based ticketing“ —
vorschlége fiir ein gemeinsames vokabular in der debatte. Der Nahverkehr 12 (2024),

16-19. Homepageveroffentlichung genehmigt fiir www.rms-consult.de.

[21] OBERLERCHNER, M. Die Test(automations)pyramide:
ein einfaches Gebilde voller Missverstandnisse — austrian-
testingboard.at. https://www.austriantestingboard.at/

die-testautomationspyramide-ein-einfaches-gebilde-voller-missverstaendnisse/,

2023. [Accessed 21-11-2025].

[22] POENISCH, M. Die Testpyramide —— openknowledge.de. https://www.
openknowledge.de/blog/die-testpyramide, August 2022.

27

https://www.jetbrains.com/help/kotlin-multiplatform-dev/supported-platforms.html#current-platform-stability-levels-for-the-core-kotlin-multiplatform-technology
https://www.jetbrains.com/help/kotlin-multiplatform-dev/supported-platforms.html#current-platform-stability-levels-for-the-core-kotlin-multiplatform-technology
https://www.jetbrains.com/help/kotlin-multiplatform-dev/supported-platforms.html#current-platform-stability-levels-for-the-core-kotlin-multiplatform-technology
https://www.smart-ticketing.org/_files/archives/fcd3b9_f40c7bddc26843279feee1ad02f0c134.zip?dn=ABT%20Onepager%20Management%20Summary.zip
https://www.smart-ticketing.org/_files/archives/fcd3b9_f40c7bddc26843279feee1ad02f0c134.zip?dn=ABT%20Onepager%20Management%20Summary.zip
https://www.smart-ticketing.org/_files/archives/fcd3b9_f40c7bddc26843279feee1ad02f0c134.zip?dn=ABT%20Onepager%20Management%20Summary.zip
https://www.smart-ticketing.org/_files/archives/fcd3b9_f40c7bddc26843279feee1ad02f0c134.zip?dn=ABT%20Onepager%20Management%20Summary.zip
https://www.smart-ticketing.org/_files/archives/fcd3b9_f40c7bddc26843279feee1ad02f0c134.zip?dn=ABT%20Onepager%20Management%20Summary.zip
https://www.smart-ticketing.org/_files/archives/fcd3b9_f40c7bddc26843279feee1ad02f0c134.zip?dn=ABT%20Onepager%20Management%20Summary.zip
https://www.linkedin.com/pulse/die-komplexit%25C3%25A4t-des-ticketkaufs-im-heutigen-%25C3%25B6pnv-eine-sascha-heyer-7gzhe/
https://www.linkedin.com/pulse/die-komplexit%25C3%25A4t-des-ticketkaufs-im-heutigen-%25C3%25B6pnv-eine-sascha-heyer-7gzhe/
https://www.linkedin.com/pulse/die-komplexit%25C3%25A4t-des-ticketkaufs-im-heutigen-%25C3%25B6pnv-eine-sascha-heyer-7gzhe/
https://www.austriantestingboard.at/die-testautomationspyramide-ein-einfaches-gebilde-voller-missverstaendnisse/
https://www.austriantestingboard.at/die-testautomationspyramide-ein-einfaches-gebilde-voller-missverstaendnisse/
https://www.openknowledge.de/blog/die-testpyramide
https://www.openknowledge.de/blog/die-testpyramide

[23] SCHWICHTENBERG, D. H. Mock-Objekt - Begriffserklarung im Entwickler-
Lexikon/Glossar auf www.IT-Visions.de — it-visions.de. https://www.it-visions.
de/glossar/alle/3923/MockObjekt.aspx. [Accessed 02-12-2025].

[24] TEAM, A. Modern Android Dev: Jetpack Compose vs. XML (2025) — andros-
helf.com. https://androshelf.com/blogs/jetpack-compose-vs-xml.html, 2025.
[Accessed 30-10-2025].

[25] WoLFF, O. Stellungnahme zur anhérung des ausschusses fiir verkehr und digitale
infrastruktur des deutschen bundestages — bundesweites/digitales ticketing. Webkon-
ferenz, May 2020. Ausschussdrucksache 19(15)352-A, 71. Sitzung.

28

https://www.it-visions.de/glossar/alle/3923/MockObjekt.aspx
https://www.it-visions.de/glossar/alle/3923/MockObjekt.aspx
https://androshelf.com/blogs/jetpack-compose-vs-xml.html

	Einführung in den ÖPV
	Ticketkontrolle in Deutschland
	ABT - der moderne Weg
	TOKA

	Anwendungsfälle und Anforderungen
	Inbetriebnahme
	Anwendungsfälle
	Fachliche Anforderungen

	Kotlin Multiplattform mit Compose Multiplattform
	Jetpack Compose - Deklarative GUI
	Kotlin Multiplattform
	Compose Multiplatform

	Applikationsarchitektur
	Softwarearchitekturmuster
	Bauprozess

	Prototyp der Kontroll-Applikation
	Anbindung der TOKA-App
	Umsetzung der Inbetriebnahme
	Umsetzung der Anwendungsfälle

	Automatisierte Tests zur Fehlererkennung
	Unit-Tests
	GUI-Tests

	Continuos Integration (CI) und Continuos Delivery (CD)
	Wozu CI/CD?
	Einbindung in den Prototypen

	Fazit

