
Fachhochschule Aachen
Campus Jülich

Prototyp einer mobilen Applikation

zum Kontrollieren von Account-Based Tickets

in der IVU.Suite

Seminararbeit

im Studiengang Angewandte Mathematik und Informatik

von Jonathan Liersch

Matrikelnummer: 3619788

Betreut durch:

Prof. Dr.rer.nat. Alexander Voß

M. Sc. Christoph Becker

Fachbereich 09

Medizintechnik und Technomathematik

Aachen, 15. Dezember 2025

Eidesstattliche Erklärung

Hiermit versichere ich, dass ich die Seminararbeit mit dem Thema

selbstständig verfasst und keine anderen als die angegebenen Quellen und

Hilfsmittel benutzt habe, alle Ausführungen, die anderen Schriften

wörtlich oder sinngemäß entnommen wurden, kenntlich gemacht sind und

die Arbeit in gleicher oder ähnlicher Fassung noch nicht Bestandteil einer

Studien- oder Prüfungsleistung war.

Ich verpflichte mich, ein Exemplar der Seminararbeit fünf Jahre aufzu-

bewahren und auf Verlangen dem Prüfungsamt des Fachbereiches

Medizintechnik und Technomathematik auszuhändigen.

Name: ____________________________________

Aachen, den ____________________

Unterschrift der Studentin / des Studenten

Zusammenfassung

Diese Arbeit behandelt die Konzeption und prototypische Umsetzung einer mo-

bilen Applikation zur Kontrolle von Account-Based Tickets (ABT) im Kontext

der IVU.Suite. ABT ist ein modernes Ticketing-Verfahren, bei dem Fahrberechti-

gungen nicht mehr lokal auf einem Medium gespeichert, sondern in einem Hinter-

grundsystem verwaltet werden. Ziel der Arbeit war die Entwicklung einer Kontroll-

Applikation, die mithilfe der externen TOKA-App ein Identitätstoken generiert und

dieses zur Validierung der Fahrberechtigung nutzt. Nach einer Analyse der Anforde-

rungen und Anwendungsfälle wurde die Applikation mit Kotlin Multiplatform und

Compose Multiplatform umgesetzt, um eine plattformübergreifende Architektur zu

ermöglichen. Die Softwarearchitektur folgt dem MVVM-Muster und integriert Me-

chanismen für automatisierte Tests sowie eine CI/CD-Pipeline zur kontinuierlichen

Auslieferung. Der entwickelte Prototyp erfüllt die definierten Anforderungen und

bietet eine Grundlage für eine produktionsreife Lösung. Abschließend werden die

Ergebnisse bewertet und ein Ausblick auf mögliche Erweiterungen gegeben.

Inhaltsverzeichnis

1 Einführung in den ÖPV 1

2 Ticketkontrolle in Deutschland 2

2.1 ABT - der moderne Weg . 3

2.2 TOKA . 4

3 Anwendungsfälle und Anforderungen 5

3.1 Inbetriebnahme . 6

3.2 Anwendungsfälle . 6

3.3 Fachliche Anforderungen . 8

4 Kotlin Multiplattform mit Compose Multiplattform 9

4.1 Jetpack Compose - Deklarative GUI . 9

4.2 Kotlin Multiplattform . 9

4.3 Compose Multiplatform . 10

5 Applikationsarchitektur 11

5.1 Softwarearchitekturmuster . 11

5.2 Bauprozess . 12

6 Prototyp der Kontroll-Applikation 13

6.1 Anbindung der TOKA-App . 13

6.2 Umsetzung der Inbetriebnahme . 14

6.3 Umsetzung der Anwendungsfälle . 15

7 Automatisierte Tests zur Fehlererkennung 18

7.1 Unit-Tests . 18

7.2 GUI-Tests . 19

8 Continuos Integration (CI) und Continuos Delivery (CD) 21

8.1 Wozu CI/CD? . 21

8.2 Einbindung in den Prototypen . 22

9 Fazit 23

1 Einführung in den ÖPV

In Deutschland ist öffentlicher Personenverkehr (ÖPV) im ständigen Wandel: Die bisher

kraftstoffbetriebenen Busse werden immer häufiger ersetzt durch elektrische Busse. Ein

wachsender Busfahrermangel motiviert das Forschen an autonomen Fahrzeugen im ÖPV

und nach einer Preiserhöhung im Jahr 2026 wird der Preis des Deutschlandtickets erstmals

nicht mehr erhöht [9].

Auch der Erwerb einer gültigen Fahrberechtigung wird für Ortsfremde zunehmend kompli-

zierter. Durch Tarifsysteme, die in jeder Stadt anders sind, und unterschiedlichste Ticketar-

ten wie zum Beispiel Ermäßigungstickets, Einzeltickets oder Mehrfahrtentickets ist der

Erwerb einer Fahrberechtigung nicht mehr trivial. Unter anderem führen die genannten

Faktoren dazu, dass das Kaufen einer Fahrberechtigung als
”
ein undurchsichtiger Dschun-

gel aus Hürden“ [18] beschrieben wird.

So wird auch die Kontrolle von Fahrgästen ein immer aufwändigerer Prozess. Durch die

seit Jahren etablierte und fortlaufende Erweiterung der Menge an Ticket-Medien ist der

Kontrollprozess immer vielseitiger geworden. Anstatt alle notwendigen Informationen auf

ein Papierticket zu drucken, sind viele Verkehrsverbünde daran interessiert, möglichst vie-

le digitale Fahrberechtigungen zu verkaufen. Diese sparen unter anderem Zeit und Geld

ein, da beispielsweise nicht mehr regelmäßigen Monats- und Jahreskarten ausgestellt wer-

den müssen. Seit der Einführung von Chipkarten und des internationalen UIC-Barcodes

in Deutschland sind Software-unterstütze Kontrollen zum Standard für Kontrolleure ge-

worden, da alle notwendigen Kontrollinformationen auf dem Ticket-Medium gespeichert

werden [6].

Seit einigen Jahren ist auch das Thema Account-Based Ticketing (ABT) in Deutschland

präsent und wird im Verband Deutscher Verkehrsunternehmen (VDV) sowie in den Soft-

wareunternehmen der ÖPV-Branche aktiv diskutiert. ABT bietet eine Grundlage für den

universellen Erwerb und Verkauf von Fahrberechtigungen für Fahrgäste [25]. Die gängigen

Ticket-Medien werden dabei durch neue Ticket-Medien ersetzt, wie z. B. eine Bankkarte,

die zum Bezahlen und Referenzieren der Fahrberechtigung in einem Hintergrundsystem

genutzt wird. Dabei werden keine Ticketinformationen auf der Bankkarte gespeichert, son-

dern sie sind ausschließlich im Hintergrundsystem hinterlegt [20]. Die Bedeutung von ABT

wird in Kapitel 2.1 noch näher erläutert.

In der IVU Traffic Technologies AG (IVU) wird ABT ebenso viel diskutiert. Aktuell ar-

beiten verschiedenste Teams in den verschiedenen Bereichen der IVU an einer einheitli-

chen Produktlösung. In Zusammenarbeit mit einem externen Zahlungsdienstleister wird

1

ein ABT-fähiges System entwickelt, welches vom Erwerb über die Kontrolle bis hin zur

Abrechnung im ABT-Kontext zum Einsatz kommen soll.

Dieser Zahlungsdienstleister stellt der IVU auch die sogenannte TOKA-App zur Verfügung,

mit der es möglich ist, ein eindeutiges Identitätstoken für eine Bankkarte zu generieren. In

Kapitel 2.2 wird ersichtlich, dass die TOKA-App Grundlagen liefert, um eine darauf auf-

bauende Kontroll-Applikation zu erstellen. Da ABT in der IVU einen großen Stellenwert

besitzt, ist die IVU daran interessiert, eine eigene Kontroll-Applikation zum Kontrollieren

von Fahrberechtigungen im Kontext von ABT zu erstellen. Aufgrund dessen wird im Laufe

dieser Arbeit ein Prototyp einer Kontroll-Applikation mithilfe der TOKA-App erstellt.

In den nächsten Kapiteln dieser Arbeit wird beschrieben, wie und womit die Kontroll-

Applikation entwickelt wird. In Kapitel 2 wird zunächst auf die Ticketkontrolle in Deutsch-

land näher eingegangen, um den notwendigen Kontext zur Kontroll-Applikation darzu-

stellen. Anschließend werden in Kapitel 3 die daraus resultierenden Anwendungsfälle und

Anforderungen abgeleitet. Danach wird die Softwarearchitektur in den Kapiteln 4 und

5 sowie in Kapitel 6 die konkrete Implementierung der Kontroll-Applikation erläutert.

Abschließend wird in den Kapiteln 7 und 8 noch eine Übersicht zu Continuous Integra-

tion (CI)/Continuous Delivery (CD) und automatisierten Tests der Kontroll-Applikation

gegeben. Zuletzt werden die Erkenntnisse des Prototyps zusammengefasst.

2 Ticketkontrolle in Deutschland

Seit der Jahrtausendwende werden in Deutschland elektronische Fahrberechtigungen im

ÖPV verkauft und kontrolliert [20]. Dabei wurden Fahrberechtigungen auf Chipkarten,

in Barcodes oder auf Handys ausgegeben. Die Form des Ticket-Mediums nennt sich auch

Medium-Based Ticketing (MBT).

Seit 2007 werden (((eTickets nach dem VDV-Kernapplikation (VDV-KA) Standard mit

dem (((eTicket Deutschland vertrieben. 2010 kam der VDV-Barcode sowie der internatio-

nale UIC-Barcode in den Vertrieb [20]. Vor allem der VDV-Barcode wird in Deutschland

viel genutzt. Internationale Ticket-Medien und Fahrberechtigungen sind nur schwer oder

nicht kontrollierbar gewesen. Touristen mussten deshalb für die Nutzung des ÖPV in

Deutschland immer ein deutsches Ticket-Medium kaufen, um eine gültige Fahrberechti-

gung zu besitzen.

Fahrberechtigungen im MBT sind die derzeit am häufigsten verkauften Ticketarten in

Deutschland [20]. Sie benötigen zur Kontrolle keine dauerhafte Internetverbindung. Es

2

werden Sperrlisten für Fahrbescheinigungen zyklisch von einem Hintergrundsystem herun-

tergeladen. Zusätzlich sind alle wichtigen Kontrollinformationen auf dem Ticket-Medium

gespeichert, wodurch eine internetlose Kontrolle ermöglicht wird. Aufgrund dessen ist

das Kontrollieren der Fahrberechtigungen auch in abgelegenen Regionen Deutschlands

möglich.

2.1 ABT - der moderne Weg

ABT ist im Gegensatz zu MBT-basierten Medien ein internationales und länderübergreifendes

Verfahren zum Erwerb einer gültigen Fahrberechtigung. Die meiste Datenverarbeitung,

inklusive Preisberechnung und Ablage der Fahrberechtigung, findet auf zentralen Hinter-

grundsystemen statt, wodurch ABT auch als
”
server-based ticketing“ bezeichnet wird [15].

Die Fahrberechtigung für einen Fahrgast wird über ein Identitätstoken verknüpft, welches

für den Fahrgast eindeutig sein soll. Beispielsweise kann eine Bankkarte als Identitätstoken

genutzt werden und dient zugleich als Zahlungsmittel für die gekaufte Fahrberechtigung.

Dieses Token wird beim Kontrollieren benutzt, um mit einem Hintergrundsystem abzu-

gleichen, ob ein gültiger Fahrausweis vorliegt.

Es gibt bei ABT ein weites Spektrum an Definitionen für die Umsetzungsmöglichkeiten

innerhalb der Software- und Verkehrsbetriebe. Es gibt Gesamtlösungen, welche jegliche

Berechnungen und Speicherung von Informationen dem zentralen System überlassen und

eine durchgängige Internetverbindung benötigen. Andererseits gibt es Teillösungen, die

auf eine Zusammenarbeit zwischen lokaler Kontrolllogik und zentralen Systemen beruhen.

Vorteil hiervon ist, dass die Teillösungen keine durchgehende Internetverbindung benötigen

[16]. In der Praxis ist dies im ÖPV interessant, wenn zum Beispiel Busse durch Dörfer

durchfahren, die keine ausreichende Internetverbindung besitzen.

Generell ist ABT ein weltweites Thema und wird von verschiedenen Projekten erforscht

und umgesetzt [16]. In London wurde ABT schon 2014 durch eine Kooperation von Ma-

stercard und Transport for London (TFL) eingeführt und ist seitdem im Einsatz [7]. Auch

in Deutschland ist ABT ein viel diskutiertes Instrument und wird von der Bundesregie-

rung sowie dem VDV weiter vorangetrieben. In einer Stellungnahme erklärt Oliver Wolff

vom Ausschuss für Verkehr und digitale Infrastruktur des Deutschen Bundestages, dass

ABT bisher als eine
”
[...] vielversprechende Lösung für eine grenzüberschreitende Reiseket-

te über unterschiedliche Modalitäten“ [25] angesehen wird. Insbesondere der VDV habe in

Deutschland in den letzten Jahren die Vernetzungsinitiative der Branche vorangebracht.

Mit ABT kommt zugleich eine neue Hürde für die Kontrolle von Reisenden. Die bisheri-

3

gen Kontrollmethoden beruhen auf Medien, die die Fahrberechtigung lokal auf dem Ticket-

Medium abspeichern. So werden alle notwendigen Informationen für eine Fahrberechtigung

in einem Barcode oder auf einer Chipkarte abgespeichert. Durch den Verkauf von Fahrbe-

rechtigungen mit ABT müssen nun auch Ticket-Medien kontrolliert werden können, die

keine lokale Speicherung von Fahrberechtigungen vornehmen. Die Kontroll-Applikation

soll eine Kontrolle basierend auf einem Identitätstoken und der im Hintergrundsystem ge-

speicherten Fahrberechtigung durchführen. Nur wenn hinter dem Identitätstoken auf dem

Hintergrundsystem eine gültige Fahrberechtigung vorliegt, wird dem Reisenden dieses at-

testiert.

Die Konzeption und Erstellung des Kontroll-Applikation-Prototyps für das Kontrollie-

ren einer Fahrberechtigung mit ABT ist die Aufgabe dieser Arbeit. Es soll eine mobile

Applikation für Smartphones entwickelt werden, die beim Vorhalten eines ABT-fähigen

Ticket-Mediums ein Identitätstoken generiert und den Abgleich mit dem Hintergrundsy-

stem vornimmt. Die Generierung des Identitätstoken wird der TOKA-App überlassen, die

im ABT-Kontext schon zum Einsatz kommt.

2.2 TOKA

Bei der Generierung des Identitätstoken wird die externe Applikation des Zahlungsdienst-

leisters namens Tokenization Application (TOKA) zur Hilfe genommen. Sie übernimmt

die Aufgabe, aus einem vorgehaltenen Ticket-Medium ein eindeutiges Identitätstoken zu

generieren. Um ein Ticket-Medium auszulesen, sind viele Randbedingungen und Informa-

tionen notwendig, da zum Beispiel Bankkarten entschlüsselt und geprüft werden müssen,

bevor sie ausgelesen werden können. Diese Anforderungen an eine auslesende Applika-

tion müssen zertifiziert werden, bevor sie offiziell genutzt werden dürfen. Zusätzlich soll

die Kontroll-Applikation keine Informationen über die Bankkarte und dessen Inhaber be-

sitzen, damit keine Bezahlungen durchgeführt oder personenbezogene Daten über den

Inhaber erhoben werden können. Letzteres würde bedeuten, dass die Kontroll-Applikation

datenschutzrechtliche Maßnahmen ergreifen müsste. Wegen der genannten Gründe fällt

das Auslesen des Ticket-Mediums und das Generieren des Identitätstoken nicht in das

Aufgabengebiet der Kontroll-Applikation. In den nachfolgenden Kapiteln dieser Arbeit

wird TOKA als TOKA-App bezeichnet, wobei damit die gleiche Applikation gemeint ist.

Die TOKA-App ist eine Android-exklusive Applikation und kann durch Android-spezifische

Kommunikationswege angesteuert werden, wobei die Kommunikationsdaten im JSON-

Format übertragen werden. Die TOKA-App erkennt per Near Field Communication (NFC)

4

ein am Smartphone vorgehaltenes Ticket-Medium wie zum Beispiel eine Bankkarte. Zu

diesem Ticket-Medium wird ein eindeutiges Identitätstoken generiert und der aufrufenden

Applikation wieder mitgeteilt. Somit kann die Kontroll-Applikation mithilfe der TOKA-

App ein Identitätstoken generieren.

Anschließend wird das Identitätstoken benutzt, um vom Hintergrundsystem Informationen

über die Fahrberechtigung des Reisenden zu erhalten. Es wird unter anderem geprüft,

ob das Ticket-Medium auf einer Sperrliste steht, wodurch dem Reisenden keine gültige

Fahrberechtigung attestiert werden würde. Dies geschieht genau dann, wenn die Bankkarte

nicht belastet werden kann. Falls keine Fahrberechtigung festgestellt wird, wird dies dem

Kontrolleur mitgeteilt.

Die TOKA-App legt demnach eine Basis für das Erstellen der Kontroll-Applikation.

3 Anwendungsfälle und Anforderungen

Wie im Kapitel 2.2 schon erläutert wurde, gibt es die zugrundeliegende TOKA-App

nur für Android-basierte Geräte. Aufgrund dessen wird auch der Prototyp der Kontroll-

Applikation eine mobile Applikation für Android-Geräte sein. Dabei sind noch verschiedene

Implementierungsfragen zu klären, die in den nachfolgenden Kapiteln beantwortet werden.

So muss unter anderem die Graphical User Interface (GUI)-Bibliothek für die Kontroll-

Applikation festgelegt werden oder wie neue Versionen des Prototypen automatisch an die

Kontrolleure weitergegeben werden können.

Abbildung 1: Übersicht der Komponenten für die Kontroll-Applikation

5

3.1 Inbetriebnahme

Für die Inbetriebnahme der Kontroll-Applikation auf einem Android-Gerät sind folgende

Schritte notwendig:

1. Die Kontroll-Applikation muss beispielsweise aus einem App-Store installiert werden.

Wie die aktuelle Version der Kontroll-Applikation in einen App-Store geladen wird,

wird in Kapitel 8 erklärt.

2. Wie in Abbildung 1 angemerkt, muss die TOKA-App vom Zahlungsdienstleister in-

stalliert werden. Ohne diese ist das Generieren eines Identitätstoken und demnach

auch das Kontrollieren nicht möglich. Die Kontroll-Applikation soll eine Fehlermel-

dung anzeigen, wenn die TOKA-App nicht installiert oder die Kommunikation mit

TOKA nicht möglich ist.

3. Die Terminal-ID, welche Teil der TOKA-App ist und das Kontroll-Gerät eindeu-

tig identifiziert, soll beim erstmaligen Öffnen der Kontroll-Applikation eingegeben

werden. Die Kontroll-Applikation kann die Terminal-ID nicht automatisch auslesen.

Aus Abbildung 1 kann abgelesen werden, dass die Terminal-ID genutzt wird, um

eine Anfrage an das Hintergrundsystem zu stellen. Demnach kann ohne Terminal-ID

keine Kontrolle durchgeführt werden.

3.2 Anwendungsfälle

Nach der Inbetriebnahme, soll das Android-Gerät bereit sein, eine Kontrolle mithilfe der

Kontroll-Applikation durchführen zu können. In Abbildung 2 wird eine erfolgreiche Kon-

trolle in Form eines Sequenzdiagramms dargestellt. Es bietet einen Überblick, um die

nachfolgenden Anwendungsfälle zu verdeutlichen. Auf die Details des Sequenzdiagramm

wird noch genauer in Kapitel 6 eingegangen.

� Wenn der Fahrgast vor der Kontrolle eine gültige Fahrberechtigung erworben hat und

das Ticket-Medium nicht auf der Sperrliste steht, dann soll die Kontroll-Applikation

ein positives Kontrollergebnis anzeigen.

� Wenn das Ticket-Medium des Fahrgastes auf der Sperrliste steht, dann soll die

Kontroll-Applikation eine ungültige Fahrberechtigung anzeigen. Eine Sperrung des

Ticket-Mediums kommt genau dann vor, wenn der Fahrgast mit dem Ticket-Medium

aufgrund fehlender Zahlungsmittel nicht bezahlen konnte.

6

Abbildung 2: Kontrollablauf für eine erfolgreiche Kontrolle

� Wenn der Fahrgast keine Fahrberechtigung vor Antritt der Fahrt gekauft hat, zeigt

die Kontroll-Applikation eine ungültige Fahrberechtigung an.

� Wenn beim Vorhalten des Ticket-Mediums von der TOKA-App das Medium nicht

ausgelesen werden konnte, um das Identitätstoken zu generieren, dann soll die Kontroll-

Applikation einen Fehlerzustand anzeigen. Zugleich wird der Kontrolleur aufgefor-

dert, das Ticket-Medium wiederholt vorzuhalten, um die Kontrolle der Fahrberech-

tigung erneut zu versuchen.

� Wenn die Kommunikation mit dem Hintergrundsystem nicht möglich ist, beispiels-

weise durch eine fehlende Internetverbindung oder einen Hintergrundsystemfehler,

kann das zu kontrollierende Ticket-Medium nicht auf eine gültige oder ungültige

Fahrberechtigung geprüft werden. Die Kontroll-Applikation soll eine entsprechende

Fehlermeldung anzeigen.

� Wenn die Kommunikation mit dem Hintergrundsystem nicht möglich ist, das Ticket-

Medium jedoch auf der Sperrliste gefunden wurde, dann soll die Kontroll-Applikation

eine ungültige Fahrberechtigung anzeigen.

Die Kontrolle einer Fahrberechtigung eines Fahrgastes wird, wie in Abbildung 2 zu se-

hen ist, mit einer Anfrage an ein Hintergrundsystem erfolgen. Dabei wird geprüft, ob

7

eine gültige Fahrberechtigung im Hintergrundsystem hinterlegt ist. Eine weitere Prüfung

auf räumliche Gültigkeit oder Liniengültigkeit wird nicht Teil dieser Arbeit sein. Diese

Prüfungen würden beispielsweise durch das Einbinden von IVU-internen C++ Bibliothe-

ken ermöglicht werden, welche unter Android mithilfe des Java Native Interface innerhalb

der Java Virtual Machine (JVM) laufen würden. Dieser Schritt würde den Rahmen des

Prototyps übersteigen und ist aufgrund dessen nicht Teil der Kontroll-Applikation.

Basierend auf den genannten Anwendungsfällen und den beschriebenen Schritten für die

Inbetriebnahme ergeben sich unter anderem Testfälle, auf welche in Kapitel 7 näher ein-

gegangen wird. Die Implementierung und Umsetzung der Anwendungsfälle innerhalb des

Prototypen werden in Kapitel 6 erläutert.

3.3 Fachliche Anforderungen

Zusätzlich zu den genannten Anwendungsfällen gibt es weitere fachliche Anforderungen

an die Kontroll-Applikation. Aufgrund dessen werden zusätzlich zu den Anwendungsfällen

nicht-funktionale Anforderungen definiert, die sich mit der Speicherung von Daten befas-

sen:

� Die Terminal-ID soll nach der erstmaligen Eingabe in der Kontroll-Applikation auf

dem Android-Gerät gespeichert werden, damit die Terminal-ID nicht bei jedem Start

der Kontroll-Applikation erneut eingegeben werden muss.

� Die Sperrliste soll periodisch vom Hintergrundsystem geladen und auf dem Android-

Gerät gespeichert werden. Dies ermöglicht eine Teil-Kontrolle, falls die Verbindung

zum Hintergrundsystem am Kontrollzeitpunkt nicht vorhanden ist. In dem Fall kann

noch verglichen werden, ob das Ticket-Medium auf der Sperrliste steht, wie es in den

Anwendungsfällen schon beschrieben wurde.

Zusammen mit den fachlichen Anforderungen ergeben die Anwendungsfälle eine Frage-

stellung, die die Entwicklung des Prototyps beantworten soll:
”
Wie könnte eine mobile

Android-Applikation zum Kontrollieren von Fahrberechtigungen mit ABT technisch und

inhaltlich aussehen?“

8

4 Kotlin Multiplattform mit Compose Multiplattform

Um die Wahl einer GUI-Bibliothek zu treffen, wurden zunächst zwei verschiedene Ansätze

verglichen. Konkret ging es dabei um die GUI-Bibliothek Jetpack Compose im Vergleich

zur XML basierten GUI-Entwicklung. Der Vergleich der beiden Varianten ergab, dass

Compose die GUI-Bibliothek für die Kontroll-Applikation aufgrund der im folgenden be-

schriebenen Vorteile sein wird.

4.1 Jetpack Compose - Deklarative GUI

Jetpack Compose ist, im Gegensatz zur imperativen GUI-Entwicklung, eine deklarative

GUI-Bibliothek. Jetpack Compose unterscheidet sich wesentlich vom imperativen Ansatz

in folgenden Aspekten wie beschrieben in [24]:

� Die GUI-Komponenten werden in Kotlin geschrieben, derselben Programmierspra-

che, die auch für die Entwicklung von Android-Applikationen genutzt wird. GUI-

Komponenten werden als Funktionen beschrieben und bieten dadurch eine hohe

Wiederverwendbarkeit in mehreren Teilen einer Applikation.

� Die Performance der GUI kann aufgrund der ’smart recomposition’ spürbar schnel-

ler sein als der imperative Ansatz. Dabei werden nur die GUI-Komponenten neu

gezeichnet, wenn diese eine Änderung in ihrem Zustand haben.

� Die Menge an Code, welcher die GUI-Komponenten mit der Logik verbindet, wird

reduziert, da nicht mehr mit findViewById gearbeitet werden muss, um die GUI-

Komponente mit der Logik zu verbinden.

Zusätzlich zu den genannten Aspekten ist Jetpack Compose auch die modernere Biblio-

thek, die durchgehend weiterentwickelt wird und eine große Gemeinschaft hat, um Fragen

und Probleme zu klären. Aufgrund der verschiedenen Aspekte wurde die GUI-Bibliothek

Compose für das Projekt ausgewählt.

4.2 Kotlin Multiplattform

Zugleich wurde auch in Betracht gezogen, dass die Kontroll-Applikation auf mehreren

Plattformen laufen können soll. Dafür wurde ein Vergleich zwischen Android-Nativer und

9

Kotlin Multiplatform (KMP)-App-Entwicklung durchgeführt, um herauszufinden, wie viel

Mehraufwand eine Entwicklung mit KMP mit sich zieht.

KMP ist ein Framework, um mehrere Plattformen in einer Codebasis gleichzeitig zu un-

terstützen. Gemeinsame Codeanteile können plattformübergreifend verwendet werden. Ge-

nauso können plattformspezifische Inhalte zugeschnitten auf die Plattform entwickelt wer-

den. Unter anderem zählen Android, iOS, Desktop (JVM) und Server-Side (JVM) zu den

unterstützten Plattformen. [14].

Abbildung 3: Ordnerstruktur ei-

ner KMP Applikation

Die unterstützten Plattformen lassen sich durch die

Ordnerstruktur erkennen und unterscheiden. Die in

Abbildung 3 gezeigte Ordnerstruktur entspricht einer

KMP Applikation. In commonMain sind alle Codeantei-

le enthalten, die plattformunabhängig sind, wie zum

Beispiel die Business-Logik. In androidMain liegen al-

le Android- und in iosMain alle iOS-spezifischen Co-

deanteile wie zum Beispiel die Interaktion mit Hard-

warekomponenten oder Abspeichern von Daten auf ei-

nem Gerät.

Durch den Vergleich wurde klar, dass mehrere Plattformen mithilfe von KMP mit gerin-

gem Mehraufwand unterstützt werden können. Die Implementierung einer Multiplattform-

Applikation unterscheidet sich nicht fundamental von der einer Android-nativen Applikati-

on, da Android-nativ im Wesentlichen ein Subset von KMP ist. Eine gute App-Architektur

entsteht, wenn beispielsweise Klassen durch Interfaces entkoppelt und durch Dependency

Injection (DI) übergeben werden [12]. Diese Vorgehensweise wird in KMP vertieft und

durch die Keywords expect/actual erweitert. expect ist ein Interface in commonMain,

welches vorgibt, wie die plattformspezifische Implementierung aussieht. Die tatsächliche

plattformspezifische Umsetzung nutzt actual [13].

4.3 Compose Multiplatform

Nachdem in Kapitel 4.2 festgelegt wurde, dass für mehrere Plattformen entwickelt werden

kann, müsste noch die plattformunabhängige GUI-Bibliothek festgelegt werden. Durch

KMP wurde eine Multiplattform-Variante von Jetpack Compose namens Compose Mul-

tiplatform (CMP) in Betracht gezogen. Die Eigenschaften von Jetpack Compose wurden

schon in Kapitel 4.1 diskutiert und viele der dort genannten Aspekte sind auch für CMP

zutreffend:

10

� CMP baut auf den gleichen Prinzipien wie Jetpack Compose auf: Es ist deklarativ,

hat die gleiche Syntax und ist ebenso in Kotlin geschrieben [3].

� CMP besitzt fast die gleichen Funktionen wie Jetpack Compose. Es fehlen nur ein

paar wenige Klassen wie zum Beispiel die native Integration einer Kartenansicht in

Jetpack Compose [11].

� CMP bindet Drittanbieter-Bibliotheken ein [11].

Wenn eine KMP mit CMP-Applikation für Android gebaut wird, dann werden intern die

Pakete von Jetpack Compose verwendet, um die Android-Applikation zu bauen [4]. Seit

Mai 2025 ist CMP als stabile Laufzeitkomponente gekennzeichnet und gilt als produkti-

onsreif für iOS-Geräte. Dort wird nach SwiftUI kompiliert, das native GUI-Framework für

iOS [2]. Aufgrund dessen wurde CMP als GUI-Bibliothek gewählt, um weiterhin platt-

formübergreifend entwickeln zu können.

Jedoch stellt die TOKA-App ein Problem für die iOS-Applikation dar, denn die TOKA-

App gibt es nur für Android-Geräte - wie schon in Kapitel 2.2 erwähnt. Demnach wäre

es sinnvoll, die Kontroll-Applikation nur auf Android-Geräten zu entwickeln. Allerdings

wurden in den Kapiteln 4.2 und 4.3 schon gezeigt, dass mit wenig Mehraufwand ei-

ne Multiplattform-Variante der Applikation gebaut werden kann. Dabei entstehen kaum

Einschränkungen, wenn für beide Betriebssystemvarianten gleichzeitig entwickelt wird.

Zusätzlich ist es zukünftig möglich, dass die TOKA-App unter iOS funktioniert. Daraus

folgt, dass die Kontroll-Applikation zunächst nicht auf iOS-Geräten laufen soll. Jedoch

soll die Integration der iOS-Geräte mit in Betracht gezogen werden, um in der Zukunft

mehrere Plattformen unterstützen zu können.

5 Applikationsarchitektur

Aus den in Kapitel 4 diskutierten Möglichkeiten ergibt sich, dass die Kontroll-Applikation

mit KMP und CMP entwickelt wird. Aufbauend auf der grundlegenden Architektur werden

weitere Softwarearchitekturmuster und Bauprozesse genutzt.

5.1 Softwarearchitekturmuster

Der Prototyp wird nach dem Model-View-ViewModel (MVVM) Architekturmuster aufge-

baut, um eine klare Trennung zwischen Benutzeroberfläche, Logik und Daten zu gewährleisten.

11

Die 3 verschiedenen Rollen des Architekturmusters können - auf den Prototypen bezogen

- wie folgt beschrieben werden:

� Model: Die verschiedenen Modelle beschreiben die Business-Logik der Kontroll-

Applikation. Unter anderem zählen die Anbindung an das Hintergrundsystem, die

Kommunikation mit der TOKA-App sowie die Logik für das Kontrollieren einer

gültigen Fahrberechtigung dazu.

� ViewModel: Diese sind eng gekoppelt mit der View und stellen Daten zur Darstel-

lung bereit. Das ViewModel sammelt Daten aus verschiedenen Modellen und bereitet

diese zur Darstellung auf.

� View: Views bestehen aus simplen deklarativen GUI-Komponenten, die die aufberei-

teten Daten eines ViewModels anzeigen. Dabei besitzen Views keine Business-Logik,

sondern nur Logik zur Konfiguration der angezeigten Komponenten.

Die meisten Code-Anteile innerhalb der 3 Rollen sind im commonMain-Ordner wiederzufin-

den. Vor allem die Views und ViewModels haben keine plattformspezifischen Unterschiede

und bauen auf der gleichen Code-Basis auf. Bei den Modellen gibt es manchmal Abwei-

chungen bei Hardware-Schnittstellen, was dazu führt, dass dort mit plattformspezifischem

Code gearbeitet wird. Dieser liegt in androidMain und nativeMain. So ist beispielsweise

das Kommunizieren und Interagieren mit einer anderen Applikation in jedem Betriebssy-

stem unterschiedlich.

5.2 Bauprozess

Der Bauprozess ist mithilfe von Gradle plattformübergreifend einheitlich geregelt. Grad-

le bietet Möglichkeiten zur einheitlichen Definition von Abhängigkeiten für jede einzelne

Plattform. Gleichzeitig können auch plattformspezifische Einstellungen vorgenommen wer-

den.

Grundsätzlich werden die meisten Abhängigkeiten für die commonMain Code-Anteile de-

finiert. Dies ist nicht immer möglich, da Abhängigkeiten plattformspezifisch umgesetzt

sein können. So muss zum Beispiel für die Kommunikation über einen HTTP-Client eine

HTTP-Client-Engine für jede Plattform festgelegt werden. In Android wird OkHttp und

für native Plattformen Darwin als HTTP-Client-Engine verwendet [10]. Die jeweiligen

plattformspezifischen Abhängigkeiten werden in der entsprechenden Plattform initialisiert

12

und anschließend über den in Kapitel 4.2 beschriebenen Prozess einheitlich in commonMain

verwendet.

Auch plattformspezifische Einstellungen können in Gradle vorgenommen werden. Für An-

droid kann zum Beispiel die Signierung der Applikation beim Bauen einer Release-Version

konfiguriert werden. In iOS unterscheidet sich der Signierungsprozess von dem für Android-

Geräte. Trotzdem wird dieser genauso in Gradle definiert und ausgeführt.

6 Prototyp der Kontroll-Applikation

Die in Kapitel 5.1 beschriebene Architektur wird während der Umsetzung der Kontroll-

Applikation durchgehend angewandt und bietet eine gute Grundlage für sofwareseitige

Designentscheidungen. In diesem Kapitel wird auf die konkrete Umsetzung der Anwen-

dungsfälle, der fachlichen Anforderungen sowie der Inbetriebnahme aus Kapitel 3 einge-

gangen.

6.1 Anbindung der TOKA-App

In Kapitel 2.2 wurde die TOKA-App eingeführt, wobei erklärt wurde, dass die TOKA-

App eine Android-exklusive Applikation ist. Wie jedoch in Kapitel 4 beschrieben wurde,

soll die Kontroll-Applikation plattformunabhängig funktionieren können. Dafür muss die

Anbindung der TOKA-App in commonMain definiert werden. Sie nutzt Android-spezifische

Broadcasts, um ihre generierten Daten an andere Applikationen weiterzugeben. Bevor

auf die plattformunabhängige Umsetzung eingegangen werden kann, muss noch im Detail

erklärt werden, wie und welche Informationen die TOKA-APP versendet.

Die TOKA-App erkennt automatisch, dass ein Ticket-Medium an den NFC-Leser des

Android-Gerätes vorgehalten wird. Daraufhin versucht die TOKA-App das Ticket-Medium

auszulesen, wobei es zu drei verschiedenen Ergebnissen kommen kann: Das Ticket-Medium

konnte erfolgreich ausgelesen werden und ein Identitätstoken wurde generiert; das Ticket-

Medium konnte nicht ausgelesen werden; es gab einen anderen unbekannten Fehler während

der Generierung. Bei jedem der drei Möglichkeiten sendet die TOKA-App einen Broadcast

mit Daten, die entweder einen Fehler oder ein generiertes Identitätstoken beinhalten.

In der Kontroll-Applikation wurde ein BroadcastReceiver implementiert, der auf den Broad-

cast der TOKA-App reagiert. Damit der BroadcastReceiver die Daten empfangen kann,

müssen der Kontroll-Applikation noch besondere Berechtigungen erteilt werden, die in der

13

AndroidManifest.xml definiert werden. Sobald ein Ticket-Medium an den NFC-Leser des

Android-Gerätes vorgehalten wird und die TOKA-App ein Ergebnis liefert, bekommt dies

die Kontroll-Applikation mit. Anschließend kann das Identitätstoken weiter verarbeitet

werden.

Um die Anbindung plattformunabhängig zu gestalten, braucht es einen Kommunikations-

weg, um die empfangenen Daten der TOKA-App auf commonMain-Ebene zu erhalten und

weiterzuleiten. Dafür wird ein Observer-Pattern genutzt, das aus der Standardbibliothek

in Kotlin stammt. Die SharedFlows werden auf ModelView-Ebene genutzt, um auf den

Broadcast zu reagieren, der durch die TOKA-App ausgesendet wird. Daraufhin werden

die Daten, wie schon in Kapitel 5.1 erklärt, für die Darstellung in der View aufbereitet,

wie es im Screenshot der Kontroll-Applikation in Abbildung 6 zu sehen ist. Unter iOS

wäre das Einbinden der TOKA-App demnach über das gleiche Observer-Pattern möglich.

6.2 Umsetzung der Inbetriebnahme

Die in Kapitel 3.1 beschriebenen Anforderungen an die Inbetriebnahme, also das Installie-

ren der TOKA-App und das Eingeben der Terminal-ID, wurden unabhängig voneinander

umgesetzt. Das Installieren der Kontroll-Applikation ist Teil der Entwicklung und in Ka-

pitel 8 wird erläutert, wie sie heruntergeladen werden kann.

� Um die TOKA-App zu installieren, wurden die Android-Geräte an den Zahlungs-

dienstleister versendet, damit dieser die TOKA-App installieren und konfigurieren

kann. Die TOKA-App muss vom Zahlungsdienstleister auf das Android-Gerät gela-

den werden, da zugleich bei der Installation bestimmte Zertifikate notwendig sind,

ohne die das Auslesen eines Ticket-Mediums per NFC nicht möglich wäre. Anschlie-

ßend wurden die Android-Geräte zurück an die IVU gesendet, um den Kontroll-

Applikations-Prototyp entwickeln zu können.

� Das manuelle Eingeben der Terminal-ID wurde über eine eigene Ansicht gelöst, wel-

che beim erstmaligen Öffnen der Kontroll-Applikation dargestellt wird. Wie in Ab-

bildung 4 zu sehen ist, wird der Kontrolleur darum gebeten, die Terminal-ID manuell

einzugeben. Dazu gibt es einen kurzen Hinweistext, wodurch der Kontrolleur weiß,

woher er die Terminal-ID beziehen soll. Nach der Eingabe einer Terminal-ID wird

ein Bestätigungsdialog eingeblendet. Dieser soll gewährleisten, dass der Kontrolleur

die korrekte Terminal-ID eingegeben hat. Bei einer Bestätigung wird die nächste

Ansicht dargestellt, wie sie in Abbildung 5 zu sehen ist.

14

Um die fachliche Anforderung an die Terminal-ID aus Kapitel 3.3 einzuhalten, wird die

Terminal-ID auf dem Gerät abgespeichert. Mithilfe

Abbildung 4: Kontroll-Applikation

Terminal-ID Input

eines StorageRepository auf Modell-Ebene wird das

Speichern und Auslesen plattform-unabhängig um-

gesetzt. Sobald die Kontroll-Applikation geöffnet

wird, prüft die ViewModel-Ebene mit dem Stora-

geRepository, ob eine Terminal-ID vorhanden ist.

Wenn die Terminal-ID schon im Gerätespeicher vor-

liegt, wird die nächste Ansicht angezeigt, ohne dass

der Kontrolleur erneut die Terminal-ID eingeben

muss. Dadurch wird die fachliche Anforderung um-

gesetzt.

6.3 Umsetzung der Anwendungsfälle

Abbildung 5: Kontroll-Applikation

Hauptansicht

Bevor auf die Umsetzung der Anwendungsfälle

aus Kapitel 3.2 eingegangen werden kann, muss

die fachliche Anforderung aus Kapitel 3.3 zur

Sperrliste umgesetzt werden, da die Anwen-

dungsfälle teilweise auf dieser fachlichen Anfor-

derung basieren.

Die Sperrliste wird periodisch vom Hin-

tergrundsystem geladen, indem eine paral-

lele Aufgabe beim Starten der Kontroll-

Applikation ausgeführt wird, die bis zum Be-

enden der Kontroll-Applikation für das Her-

unterladen der Sperrliste zuständig ist. Die

Kontroll-Applikation holt die Sperrliste vom

Hintergrundsystem und speichert diese im

Gerätespeicher mit der Information zusammen

ab, zu welchem Zeitpunkt die Sperrliste das

letzte mal gespeichert wurde. Wie alt die abgespeicherte Sperrliste für eine Kontrolle sein

darf, ist konfigurierbar. Die Konfiguration steuert zugleich das zeitliche Intervall, nach

welchem die Sperrliste erneut heruntergeladen wird. Die Kontroll-Applikation kann bei

Bedarf daraufhin die aktuelle Sperrliste aus dem Gerätespeicher laden, um eine Kontrol-

le durchführen zu können. Ob die Sperrliste für eine Kontrolle geeignet ist, wird in der

15

Kontroll-Applikation durch einen entsprechenden Hinweis angezeigt, wie es in Abbildung

5 zu sehen ist. Dadurch wird die fachliche Anforderung umgesetzt, da die Teil-Kontrolle

bei fehlender Verbindung zum Hintergrundsystem über die lokale Sperrliste durchgeführt

werden kann.

Abbildung 6: Kontroll-Applikation Iden-

titätstoken auf Sperrliste

Um die Anwendungsfälle besser nachvollziehen

zu können, wurde die Ansicht während der

Kontrolle im Prototyp der Kontroll-Applikation

so aufgebaut, dass jeder Schritt in der richti-

gen Reihenfolge der Kontrolle abgebildet ist.

Dabei verhält sich die Kontrolle so, wie es

im Sequenzdiagramm aus Abbildung 2 zu se-

hen ist. Die Kontrolle beginnt damit, dass

ein Ticket-Medium an den NFC-Leser des

Android-Gerätes vorgehalten wird und die

TOKA-App darauffolgend das generierte Iden-

titätstoken broadcasted. Anschließend wird das

Identitätstoken gegen die lokal gespeicher-

te Sperrliste geprüft und gegebenenfalls als

ungültig gekennzeichnet. Ansonsten wird das

Identitätstoken genutzt, um mit dem Hinter-

grundsystem abzugleichen, ob eine gültige Fahr-

berechtigung vorliegt. Wie die einzelnen An-

wendungsfälle umgesetzt wurden, wird im Folgenden in gleicher Reihenfolge wie in Kapitel

3.2 erläutert:

� Im Gegensatz zu dem in Abbildung 6 abgebildeten Gesamtergebnis wird bei einem

positiven Kontrollergebnis ein grüner Haken angezeigt, der eine gültige Fahrberech-

tigung symbolisiert.

� Sobald das generierte Identitätstoken auf der Sperrliste gefunden wurde, wird die

ungültige Fahrberechtigung mit einem entsprechenden Icon symbolisiert. Dieses wird,

wie in Abbildung 6 zu sehen, einmal bei der Sperrlistenprüfung und ein zweites Mal

bei dem Gesamtergebnis der Kontrolle angezeigt.

� Um anzuzeigen, dass zu dem generierten Identitätstoken keine Fahrberechtigung exi-

stiert, wird analog zur Sperrliste ein entsprechendes Icon angezeigt. Diesmal besteht

dieses aus einem roten Hintergrund und einem Ausrufezeichen, womit dem Kon-

16

trolleur verdeutlicht wird, dass der Reisende keine Fahrberechtigung vor Antritt der

Fahrt erworben hat.

� Wenn beim Vorhalten eines Ticket-Mediums von der TOKA-App das Medium nicht

ausgelesen werden kann, wird dieser Fehler in der Ansicht angezeigt. Dafür wird ein

roter Text mit entsprechender Fehlermeldung unterhalb der in Abbildung 5 angezeig-

ten Schritte dargestellt. Dieser Text beinhaltet einen Aufforderung an den Kontrol-

leur, das Ticket-Medium erneut vorzuhalten, damit ein Identitätstoken erfolgreich

generiert werden kann.

� Um die fehlende Kommunikation zum Hintergrundsystem darzustellen, wurde eine

Statusanzeige erstellt, welche dem Kontrolleur anzeigt, dass er keine Internetverbin-

dung hat. Die in Abbildung 7 abgebildete Statusbar kann entweder den Zustand

”
Offline“ oder

”
Backend unreachable“ besitzen. Je nachdem, welches von beiden ak-

tuell zutrifft, wird die Anzeige der Statusbar geändert. Ähnlich zu der beschriebenen

nicht-funktionalen Anforderung der Sperrliste, wird auch hier eine parallele Aufgabe

gestartet, welche während der gesamten Laufzeit der Kontroll-Applikation aktiv ist.

� In Sequenzdiagramm aus Abbildung 2 ist beschrieben, dass die Sperrlistenprüfung

ausgeführt wird, bevor die Fahrberechtigung mit dem Hintergrundsystem abgegli-

chen wird. Im Falle eines Eintrags in der Sperrliste bedeutet dies, dass die Kontrolle

beendet wird, bevor die Internetverbindung notwendig ist. Zusammen mit der be-

schrieben nicht-funtkionalen Anforderung der Sperrliste ergibt dies, dass eine Teil-

kontrolle ohne Verbindung zum Hintergrundsystem durchgeführt werden kann.

Abbildung 7: Kontroll-

Applikation Verbindungs-

statusbar

Die Abbildungen in diesem Kapitel sind prototypisch imple-

mentiert und entsprechen nicht dem finalen Produkt. Das Ziel

des Prototyps ist es, dass die Kontroll-Applikation einen pro-

duktiven Implementierungsstand erreicht, weshalb die in Ka-

pitel 7 und 8 beschriebenen Maßnahmen erfolgen. Aufgrund

dessen werden die abgebildeten Ansichten im Nachgang noch

überarbeitet, sodass sie nur die relevanten Informationen für

die Kontrolle beinhalten. Der Kontrolleur wird dementspre-

chend das Gesamtergebnis der Kontrolle angezeigt bekom-

men.

17

7 Automatisierte Tests zur Fehlererkennung

Bei der Implementierung der Kontroll-Applikation wird der geschriebene Code durchgängig

an neue Funktionalitäten oder an behobene Fehler angepasst. Durch diesen Prozess kann

es zu Fehlverhalten in schon existierenden Funktionalitäten kommen. Diese Fehler werden

in der Literatur Regressionsfehler genannt [17]. Die Code-Anteile können Abhängigkeiten

an bestimmte Funktionalitäten oder Abläufe besitzen, die sich durch das Implementie-

ren einer neuen Funktionalität oder das Lösen eines Fehlers ändern können. Demnach ist

das Testen des geschriebenen Codes ein sinnvoller Schritt im Entwicklungsprozess, um

ungewolltes Fehlverhalten zu vermeiden.

Abbildung 8: Testpyramide nach Mike Cohn [22]

Die Testpyramide in Abbildung

8 sieht vor, dass Tests in 3

Ebenen unterteilt werden: GUI-

Tests, Service- oder Integration-

Tests und Unit-Tests. Innerhalb

der Kontroll-Applikation werden

allerdings nur zwei Testarten ver-

wendet, da bisher noch keine

Service-Tests aufgesetzt wurden.

Diese sind aktuell im Aufbau und

werden erst nach dem Ende des

Projekts lauffähig sein.

7.1 Unit-Tests

Unit-Tests bilden beim Testen die Grundlage der Testpyramide und sichern den Code auf

einer grundlegenden Ebene ab. Sie testen Module, häufig definiert als eine Klasse oder als

kleine Sammlung von Funktionen im Code. Die Module sind größenmäßig übersichtlich,

gut zu testen und im besten Fall abhängig von wenigen anderen Modulen. Aufgrund

dessen haben die geschriebenen Testfälle eine Laufzeit von wenigen Millisekunden, wie in

Abbildung 9 zu sehen ist. Dies erlaubt hunderten Unit-Tests in kurzer Zeit zu prüfen, ob

der neue geschriebene Code eine bestehende Funktionalität aus Versehen beeinflusst hat

[22].

Auch wenn es häufig nur wenige Abhängigkeiten gibt, können diese zu Problemen beim

Testen führen. Eine Klasse kann beispielsweise von einem HTTP-Client abhängig sein,

18

der normalerweise Anfragen ins Internet verschickt. Diese dauern im Normalfall ein paar

hundert Millisekunden und würden einen Unit-Test um ein Hundertfaches verlangsamen.

Zusätzlich wäre in dem konkreten Beispiel schwer zu steuern, wie sich der Server im Inter-

net verhält. Eine Server-Testumgebung aufzusetzten, die alle Fehler- und Erfolgsbeispiele

wiedergeben kann, ist zeit- und gegebenenfalls kostenintensiv.

Abbildung 9: Beispiel Unit-Test Ausführung

Auch das Testen mit einer Hardware-

Schnittstelle wie von der TOKA-App ver-

wendet wäre schwer zu ermöglichen, da je-

des Fehler-szenario der TOKA-App über

eine eigene TOKA-Applikation geprüft

werden müsste. Aus diesen Gründen wird

eine Fake-Abhängigkeit dem zu testenden

Modul übergeben. Diese Vorgehensweise

wird im Allgemeinen als Mocking bezeich-

net.

Beim Mocking werden eine oder mehrere Pseudo-Klassen implementiert. Diese implemen-

tieren die Schnittstelle der Abhängigkeit, sodass im Unit-Test bestimmte Verhaltensweisen

im Modul getestet werden können [23]. So kann beispielsweise dem Modul mit der HTTP-

Client-Abhängigkeit vorgetäuscht werden, dass die Anfrage einen festgelegten Datensatz

oder der Server einen Fehler zurückgibt, ohne dass eine echte Anfrage ins Internet gemacht

wird. Somit ist die Laufzeit eines Unit-Tests wieder auf ein paar Millisekunden beschränkt.

In der Kontroll-Applikation sind die meisten Tests im commonTest Ordner geschrieben, da

der Großteil des Codes in commonMain liegt. Doch auch die plattformspezifischen Kom-

ponenten, die mit expect/actual geschrieben wurden, müssen mit Unit-Tests abgedeckt

werden. Wichtig dabei ist, dass die Unit-Tests nun plattformspezifisch arbeiten und das

gesonderte Testabhängigkeiten definiert werden müssen. So ist auch das Mocking, wie oben

beschrieben, möglich. Jedoch wird hier zusätzlich eine Bibliothek genutzt, die das Mocken

von Android-spezifischem Kontext übernimmt. Dies dient der schnelleren Erstellung und

Umsetzung der Unit-Tests durch Nutzung etablierter Bibliotheken.

7.2 GUI-Tests

Auch wenn Unit-Tests am häufigsten benutzt werden, um Code zu testen, sind zusätzliche

GUI-Tests eine wichtige Testform, um die GUI-Komponenten sinnvoll zu prüfen. Wie in

Kapitel 5.1 beschrieben, beinhalten Views auch eine Anzeigelogik, die ungetestet ebenso zu

19

Fehlern führen kann. Zusätzlich spielen in modernen Anwendungen die Benutzerführung

und die intuitive Bedienung der Applikationen eine immer größere Rolle [19]. Aufgrund

dessen sollten auch die einzelnen GUI-Komponenten getestet werden, um ungewollte Feh-

lerquellen beim Anzeigen in der View zu verhindern.

Dabei weichen die hier beschriebenen GUI-Tests von der gängigen Interpretation ab. Im

Allgemeinen werden sie als Tests für die gesamte Prüfung der Software verstanden und

von Entwicklern häufig als weniger notwendig angesehen. Demnach gibt es eine deutlich

höhere Menge an Unit-Tests als GUI-Tests, weil Unit-Tests noch andere wichtige Faktoren

beinhalten. Zum Beispiel sind Unit-Tests stabil, sie haben eine schnelle Durchlaufzeit und

können komplexe Szenarien einfach testen [21]. In der Kontroll-Applikation wird ein GUI-

Test als ein Test der Anzeigelogik verstanden und wird dementsprechend als gleichgültig

zu Unit-Tests angesehen.

In Kapitel 4.3 wurde für CMP ein einheitlicher Weg erläutert, um GUI-Tests zu schreiben.

Mithilfe der bereitgestellten runComposeUiTest-Methode kann der aktuell zu testende

Inhalt festgelegt und die zu prüfende Anzeigelogik getestet werden. Die bereitgestellten

Methoden zum Testen beinhalten folgende Funktionalitäten:

� Finden einer bestimmten GUI-Komponente durch die Suche nach einem festgelegten

Test-Tag oder durch die Suche nach dem aktuellen Text der Komponente.

� Sicherstellen der Anzeige von bestimmten Subkomponenten oder im Gegenfall der

ausbleibenden Anzeige dieser Komponenten. Dies wird durch die Anzeigelogik inner-

halb der GUI-Komponente gesteuert und kann durch das Mocken eines ViewModels

getestet werden.

� Interagieren mit einzelnen Subkomponenten wie zum Beispiel das Klicken auf einen

Knopf oder eine TextBox.

� Überprüfen von Eigenschaften der einzelnen GUI-Komponenten wie zum Beispiel,

dass ein genauer Text vorhanden ist, dass die Komponente anklickbar ist oder dass

die Höhe/Breite einem vorgegebenen Wert entspricht.

Die Tests werden normalerweise auf jeder konfigurierten Plattform durch das Anschließen

eines physischen Gerätes ausgeführt. Jedoch gibt es beim Testen eine wesentliche Anfor-

derung, nämlich dass die GUI-Tests automatisch ausgeführt werden können, ohne dass

ein physisches Gerät angeschlossen sein muss. Aus diesem Grund wird für die GUI-Tests

ein Emulator verwendet. Dieser simuliert die Ausführung auf einem physischen Gerät und

20

bietet dadurch eine unabhängige Testausführung und führt zusätzlich zu einer verkürzten

Laufzeit der Tests.

Der für Android genutzte Emulator ist Robolectric und funktioniert technisch gesehen

nicht wie ein klassischer Emulator eines physischen Gerätes. Robolectric läuft innerhalb

der JVM in Sekundenschnelle und bietet eine Testumgebung, welche konfigurierbar ist

und Android präzise emuliert [5]. Die Testumgebung muss vor jedem Test eingerichtet

werden, jedoch wird dies dem Test-Schreibenden durch die Vererbung der selbstgeschrie-

benen UsingContext-Klasse abgenommen, die für die Konfiguration zuständig ist. Da

nicht jede Plattform mit Robolectric läuft, wird auch hier wieder der expect/actual

Mechanismus genutzt wie in Kapitel 4.2 beschrieben, um plattformspezifische Inhalte zu

abstrahieren.

8 Continuos Integration (CI) und Continuos Delivery

(CD)

In der Softwarewelt ist eine CI/CD-Pipeline ein fester Bestandteil der Softwareentwick-

lung. CI/CD ist ein wichtiger Grundbaustein für die skalierbare Integration und Ausliefe-

rung von neuer Software. Unter anderem spielen das automatische Bauen und Testen, die

Unterstützung mehrerer Plattformen und die Skalierbarkeit der Infrastruktur eine große

Rolle [1].

8.1 Wozu CI/CD?

Durch die fortlaufende Weiterentwicklung oder Fehlerbehebung in der Codebasis kann es

zu den in Kapitel 7 beschriebenen Regressionsfehlern kommen. Eine Regression wird dabei

beschrieben als
”
[...] a specific type of bug or issue that occurs when new code changes,

like software enhancements, patches, or configuration changes, introduce unintended side

effects or break existing functionality that was working correctly before.“ [8].

Demnach sollten nach jeder Änderung in der Implementierung alle geschriebenen GUI-

und Unit-Tests ausgeführt werden. Bei einem fehlschlagenden Test wird festgestellt, dass

entweder der neu geschriebene Code noch fehlerhaft ist oder es an einer anderen Stelle zu

einer Regression gekommen ist.

Um nicht mehr kontinuierlich manuell alle Tests ausführen zu müssen, was die Produk-

tivität des Entwickelnden beeinträchtigt, wird eine CI/CD Pipeline aufgebaut, die das

21

Bauen und Ausführen der Tests automatisch übernimmt.

8.2 Einbindung in den Prototypen

Die für die Kontroll-Applikation gebaute CI/CD-Pipeline baut unter anderem die Android-

Applikation sowie die geschriebenen Tests, damit diese automatisch ausgeführt werden

können.

1. Im zentralen git-Repository sind beim Hochladen von neuem Code oder beim Anle-

gen einer Pull Request Aktionen hinterlegt, welche automatisch ausgeführt werden.

Es wird bei der automatischen Bauumgebung ein Webhook aufgerufen, wodurch der

automatische Bau- und Test-Prozess beginnt. Erst nach erfolgreichem Durchlaufen

der Tests wird die Pull Request als genehmigt markiert und kann zusammengeführt

werden.

2. In der automatischen Bauumgebung wird durch einen Webhook der Bauprozess ge-

startet. Dieser nutzt einen vorgebauten Docker-Container als Grundlage, um darin

das Bauen zu beginnen. Der Container beinhaltet alle notwendigen Bau-Tools zum

Erstellen und Testen der Kontroll-Applikation, da nicht sichergestellt werden kann,

dass in der Bauumgebung alle notwendigen Tools installiert sind.

3. Zum Schluss wird noch mithilfe von SonarQube eine statische Code-Analyse durch-

geführt. Zusätzlich überprüft SonarQube die Testabdeckung mit der Erwartung, dass

mindestens 80% des geschriebenen Codes durch Tests abgedeckt sind. Die Kennzahl

ist eine IVU-interne Vorgabe und muss demnach eingehalten werden.

4. Nachdem alle Tests erfolgreich ausgeführt wurden, wird die gebaute Kontroll-Applikation

noch auf einem Datei-Server zusammen mit der Software Bill of Material (SBOM)

hochgeladen. Die SBOM ist nicht notwendig, jedoch ermöglicht sie Dependency-

Tracking, um automatisch Risiken in Abhängigkeiten zu erkennen. Die hochgeladene

Kontroll-Applikation kann anschließend dazu genutzt werden, um die Software auf

verschiedene Geräte aufzuspielen.

5. Bei einem Fehlschlag in einer der vorherigen Schritte wird eine Mail an den Er-

steller der letzten Änderung des Code-Anteils gesendet, die die Fehlerursache kurz

wiedergibt.

Die gebaute Kontroll-Applikation kann bei Bedarf heruntergeladen werden. Auch das Er-

gebnis der Sonar-Analyse ist in einer SonarQube-Installation einzusehen.

22

In Zukunft wird es zusätzlich möglich sein, die Kontroll-Applikation direkt in den App-

Store der entsprechenden Plattform hochzuladen. Die beschriebene Pipeline würde dann

erweitert werden, um die Kontroll-Applikation in den App-Store hochzuladen. Dadurch

wird gewährleistet, dass die Kontrolleure immer die aktuelle Version der Kontroll-Applikation

zum Kontrollieren der Reisenden nutzen, ohne dass manuelle Eingriffe von weiteren betei-

ligten Personen nötig sind.

9 Fazit

In dieser Arbeit wurde ein Prototyp einer mobilen Kontroll-Applikation für ABT ent-

wickelt. Die Analyse zeigt, dass ABT neue Herausforderungen für die Kontrolle von Fahr-

berechtigungen mit sich bringt. Durch die Integration der TOKA-App konnte die Gene-

rierung eines Identitätstokens realisiert werden, das als Basis für die Prüfung im Hinter-

grundsystem dient. Die Umsetzung mit KMP und CMP erwies sich als effizient und zu-

kunftssicher, da sie eine plattformübergreifende Entwicklung ermöglicht. Ergänzend wur-

den automatisierte Tests und eine CI/CD-Pipeline implementiert, um Qualität und Ska-

lierbarkeit sicherzustellen. Der Prototyp erfüllt die wesentlichen Anforderungen und ist

nahezu produktionsreif. Für die Zukunft bietet sich die Erweiterung auf iOS-Geräte sowie

die Integration zusätzlicher Prüfmechanismen (z. B. räumliche Gültigkeit) an. Insgesamt

zeigt die Arbeit, dass eine moderne Kontroll-Applikation für ABT technisch umsetzbar ist

und eine wichtige Grundlage für die Digitalisierung im ÖPV bildet.

23

Abkürzungsverzeichnis

ABT Account-Based Ticketing . 1

CMP Compose Multiplatform . 10

CD Continuous Delivery . 2

CI Continuous Integration . 2

DI Dependency Injection . 10

GUI Graphical User Interface . 5

JVM Java Virtual Machine . 8

KMP Kotlin Multiplatform . 10

MBT Medium-Based Ticketing . 2

NFC Near Field Communication . 4

ÖPV öffentlicher Personenverkehr . 1

SBOM Software Bill of Material . 22

VDV Verband Deutscher Verkehrsunternehmen . 1

24

Abbildungsverzeichnis

1 Übersicht der Komponenten für die Kontroll-Applikation 5

2 Kontrollablauf für eine erfolgreiche Kontrolle 7

3 Ordnerstruktur einer KMP Applikation . 10

4 Kontroll-Applikation Terminal-ID Input 15

5 Kontroll-Applikation Hauptansicht . 15

6 Kontroll-Applikation Identitätstoken auf Sperrliste 16

7 Kontroll-Applikation Verbindungsstatusbar 17

8 Testpyramide nach Mike Cohn [22] . 18

9 Beispiel Unit-Test Ausführung . 19

Literatur

[1] Best CI/CD platforms for Enterprise: Top 8 solutions in 2025 — octopus.com. https:

//octopus.com/devops/ci-cd/ci-cd-tools-for-enterprise/. [Accessed 20-10-

2025].

[2] Compose Multiplatform 1.8.0 Released: Compose Multiplatform for iOS Is

Stable and Production-Ready. https://blog.jetbrains.com/kotlin/2025/05/

compose-multiplatform-1-8-0-released-compose-multiplatform-for-ios-is-stable-and-production-ready/

#production-ready-and-easy-to-adopt. [Accessed 03-11-2025].

[3] Compose Multiplatform and Jetpack Compose — Kotlin Multi-

platform — jetbrains.com. https://www.jetbrains.com/help/

kotlin-multiplatform-dev/compose-multiplatform-and-jetpack-compose.

html#jetpack-compose-and-composables. [Accessed 31-10-2025].

[4] Compose Multiplatform and Jetpack Compose — Kotlin Multiplatform —

jetbrains.com. https://www.jetbrains.com/help/kotlin-multiplatform-dev/

compose-multiplatform-and-jetpack-compose.html#technical-details. [Ac-

cessed 03-11-2025].

[5] Robolectric — robolectric.org. https://robolectric.org/. [Accessed 17-11-2025].

25

https://octopus.com/devops/ci-cd/ci-cd-tools-for-enterprise/
https://octopus.com/devops/ci-cd/ci-cd-tools-for-enterprise/
https://blog.jetbrains.com/kotlin/2025/05/compose-multiplatform-1-8-0-released-compose-multiplatform-for-ios-is-stable-and-production-ready/#production-ready-and-easy-to-adopt
https://blog.jetbrains.com/kotlin/2025/05/compose-multiplatform-1-8-0-released-compose-multiplatform-for-ios-is-stable-and-production-ready/#production-ready-and-easy-to-adopt
https://blog.jetbrains.com/kotlin/2025/05/compose-multiplatform-1-8-0-released-compose-multiplatform-for-ios-is-stable-and-production-ready/#production-ready-and-easy-to-adopt
https://www.jetbrains.com/help/kotlin-multiplatform-dev/compose-multiplatform-and-jetpack-compose.html#jetpack-compose-and-composables
https://www.jetbrains.com/help/kotlin-multiplatform-dev/compose-multiplatform-and-jetpack-compose.html#jetpack-compose-and-composables
https://www.jetbrains.com/help/kotlin-multiplatform-dev/compose-multiplatform-and-jetpack-compose.html#jetpack-compose-and-composables
https://www.jetbrains.com/help/kotlin-multiplatform-dev/compose-multiplatform-and-jetpack-compose.html#technical-details
https://www.jetbrains.com/help/kotlin-multiplatform-dev/compose-multiplatform-and-jetpack-compose.html#technical-details
https://robolectric.org/

[6] Was ist ein eticket - und wie funktioniert es? https://www.eticket-deutschland.

de/ticketing. [Accessed 28-11-2025].

[7] Account based ticketing: Chancen und herausforderungen der ticketing-

technologie. https://www.eticket-deutschland.de/magazin/

account-based-ticketing-chancen-und-herausforderungen-der-ticketing-technologie/,

March 2023. [Accessed 21-11-2025].

[8] Regression Testing: Definition, Types, and Tools — github.com. https://github.

com/resources/articles/regression-testing-definition-types-and-tools,

2024. [Accessed 20-10-2025].

[9] Autonomes Fahren im ÖPNV:
”
Robo-Bus-Radar 2025“ zeigt

Chancen und Herausforderungen — zukunftsnetzwerk-oepnv.de.

https://www.zukunftsnetzwerk-oepnv.de/aktuelles/news/

autonomes-fahren-im-oepnv-robo-bus-radar-2025-zeigt-chancen-und-herausforderungen,

2025. [Accessed 15-10-2025].

[10] Client engines — Ktor — ktor.io. https://ktor.io/docs/client-engines.html#

platforms, 2025. [Accessed 15-11-2025].

[11] Compose Multiplatform and Jetpack Compose — Kotlin Multi-

platform — jetbrains.com. https://www.jetbrains.com/help/

kotlin-multiplatform-dev/compose-multiplatform-and-jetpack-compose.

html#compose-multiplatform-and-jetpack-compose-features, 2025. [Accessed

03-11-2025].

[12] Dependency injection in Android — App architecture — Android De-

velopers — developer.android.com. https://developer.android.com/training/

dependency-injection?hl=en#what-is-di, 2025. [Accessed 31-10-2025].

[13] Expected and actual declarations — Kotlin Multiplat-

form — jetbrains.com. https://www.jetbrains.com/help/

kotlin-multiplatform-dev/multiplatform-expect-actual.html#

rules-for-expected-and-actual-declarations, 2025. [Accessed 31-10-2025].

[14] Stability of supported platforms — Kotlin Multiplat-

form — jetbrains.com. https://www.jetbrains.com/

help/kotlin-multiplatform-dev/supported-platforms.html#

26

https://www.eticket-deutschland.de/ticketing
https://www.eticket-deutschland.de/ticketing
https://www.eticket-deutschland.de/magazin/account-based-ticketing-chancen-und-herausforderungen-der-ticketing-technologie/
https://www.eticket-deutschland.de/magazin/account-based-ticketing-chancen-und-herausforderungen-der-ticketing-technologie/
https://github.com/resources/articles/regression-testing-definition-types-and-tools
https://github.com/resources/articles/regression-testing-definition-types-and-tools
https://www.zukunftsnetzwerk-oepnv.de/aktuelles/news/autonomes-fahren-im-oepnv-robo-bus-radar-2025-zeigt-chancen-und-herausforderungen
https://www.zukunftsnetzwerk-oepnv.de/aktuelles/news/autonomes-fahren-im-oepnv-robo-bus-radar-2025-zeigt-chancen-und-herausforderungen
https://ktor.io/docs/client-engines.html#platforms
https://ktor.io/docs/client-engines.html#platforms
https://www.jetbrains.com/help/kotlin-multiplatform-dev/compose-multiplatform-and-jetpack-compose.html#compose-multiplatform-and-jetpack-compose-features
https://www.jetbrains.com/help/kotlin-multiplatform-dev/compose-multiplatform-and-jetpack-compose.html#compose-multiplatform-and-jetpack-compose-features
https://www.jetbrains.com/help/kotlin-multiplatform-dev/compose-multiplatform-and-jetpack-compose.html#compose-multiplatform-and-jetpack-compose-features
https://developer.android.com/training/dependency-injection?hl=en#what-is-di
https://developer.android.com/training/dependency-injection?hl=en#what-is-di
https://www.jetbrains.com/help/kotlin-multiplatform-dev/multiplatform-expect-actual.html#rules-for-expected-and-actual-declarations
https://www.jetbrains.com/help/kotlin-multiplatform-dev/multiplatform-expect-actual.html#rules-for-expected-and-actual-declarations
https://www.jetbrains.com/help/kotlin-multiplatform-dev/multiplatform-expect-actual.html#rules-for-expected-and-actual-declarations
https://www.jetbrains.com/help/kotlin-multiplatform-dev/supported-platforms.html#current-platform-stability-levels-for-the-core-kotlin-multiplatform-technology
https://www.jetbrains.com/help/kotlin-multiplatform-dev/supported-platforms.html#current-platform-stability-levels-for-the-core-kotlin-multiplatform-technology
https://www.jetbrains.com/help/kotlin-multiplatform-dev/supported-platforms.html#current-platform-stability-levels-for-the-core-kotlin-multiplatform-technology
https://www.jetbrains.com/help/kotlin-multiplatform-dev/supported-platforms.html#current-platform-stability-levels-for-the-core-kotlin-multiplatform-technology

current-platform-stability-levels-for-the-core-kotlin-multiplatform-technology,

2025. [Accessed 30-10-2025].

[15] Alliance, S. T. Account-based ticketing: some basic common in-

sights. https://www.smart-ticketing.org/_files/archives/fcd3b9_

f40c7bddc26843279feee1ad02f0c134.zip?dn=ABT%20Onepager%20Management%

20Summary.zip, September 2024.

[16] Alliance, S. T. Account-based ticketing: some opportunities and chal-

lenges. https://www.smart-ticketing.org/_files/archives/fcd3b9_

f40c7bddc26843279feee1ad02f0c134.zip?dn=ABT%20Onepager%20Management%

20Summary.zip, November 2024.

[17] Herschel, M. Eine einführung in die regressionstests. Ausarbeitung für projekt- und

qualitätsmanagement im masterstudiengang
”
angewandte informatik“, Hochschule

Hannover, Fakultät IV, Abteilung Informatik, December 2020.

[18] Heyer, S. Die Komplexität des Ticketkaufs im heutigen ÖPNV: Eine

Schritt-für-Schritt-Übersicht — linkedin.com. https://www.linkedin.com/

pulse/die-komplexit%25C3%25A4t-des-ticketkaufs-im-heutigen-%25C3%

25B6pnv-eine-sascha-heyer-7gzhe/, 2024. [Accessed 15-10-2025].

[19] Kousar, A., Khan, S. U. R., Mashkoor, A., and Iqbal, J. A systematic

literature review on graphical user interface testing through software patterns. IET

Software 2025, 1 (2025), 9140693.

[20] Köller, D., Mehlich, M., and Omers, M. Weißbuch
”
account based ticketing“ –

vorschläge für ein gemeinsames vokabular in der debatte. Der Nahverkehr 12 (2024),

16–19. Homepageveröffentlichung genehmigt für www.rms-consult.de.

[21] Oberlerchner, M. Die Test(automations)pyramide:

ein einfaches Gebilde voller Missverständnisse — austrian-

testingboard.at. https://www.austriantestingboard.at/

die-testautomationspyramide-ein-einfaches-gebilde-voller-missverstaendnisse/,

2023. [Accessed 21-11-2025].

[22] Poenisch, M. Die Testpyramide — openknowledge.de. https://www.

openknowledge.de/blog/die-testpyramide, August 2022.

27

https://www.jetbrains.com/help/kotlin-multiplatform-dev/supported-platforms.html#current-platform-stability-levels-for-the-core-kotlin-multiplatform-technology
https://www.jetbrains.com/help/kotlin-multiplatform-dev/supported-platforms.html#current-platform-stability-levels-for-the-core-kotlin-multiplatform-technology
https://www.jetbrains.com/help/kotlin-multiplatform-dev/supported-platforms.html#current-platform-stability-levels-for-the-core-kotlin-multiplatform-technology
https://www.smart-ticketing.org/_files/archives/fcd3b9_f40c7bddc26843279feee1ad02f0c134.zip?dn=ABT%20Onepager%20Management%20Summary.zip
https://www.smart-ticketing.org/_files/archives/fcd3b9_f40c7bddc26843279feee1ad02f0c134.zip?dn=ABT%20Onepager%20Management%20Summary.zip
https://www.smart-ticketing.org/_files/archives/fcd3b9_f40c7bddc26843279feee1ad02f0c134.zip?dn=ABT%20Onepager%20Management%20Summary.zip
https://www.smart-ticketing.org/_files/archives/fcd3b9_f40c7bddc26843279feee1ad02f0c134.zip?dn=ABT%20Onepager%20Management%20Summary.zip
https://www.smart-ticketing.org/_files/archives/fcd3b9_f40c7bddc26843279feee1ad02f0c134.zip?dn=ABT%20Onepager%20Management%20Summary.zip
https://www.smart-ticketing.org/_files/archives/fcd3b9_f40c7bddc26843279feee1ad02f0c134.zip?dn=ABT%20Onepager%20Management%20Summary.zip
https://www.linkedin.com/pulse/die-komplexit%25C3%25A4t-des-ticketkaufs-im-heutigen-%25C3%25B6pnv-eine-sascha-heyer-7gzhe/
https://www.linkedin.com/pulse/die-komplexit%25C3%25A4t-des-ticketkaufs-im-heutigen-%25C3%25B6pnv-eine-sascha-heyer-7gzhe/
https://www.linkedin.com/pulse/die-komplexit%25C3%25A4t-des-ticketkaufs-im-heutigen-%25C3%25B6pnv-eine-sascha-heyer-7gzhe/
https://www.austriantestingboard.at/die-testautomationspyramide-ein-einfaches-gebilde-voller-missverstaendnisse/
https://www.austriantestingboard.at/die-testautomationspyramide-ein-einfaches-gebilde-voller-missverstaendnisse/
https://www.openknowledge.de/blog/die-testpyramide
https://www.openknowledge.de/blog/die-testpyramide

[23] Schwichtenberg, D. H. Mock-Objekt - Begriffserklärung im Entwickler-

Lexikon/Glossar auf www.IT-Visions.de — it-visions.de. https://www.it-visions.

de/glossar/alle/3923/MockObjekt.aspx. [Accessed 02-12-2025].

[24] Team, A. Modern Android Dev: Jetpack Compose vs. XML (2025) — andros-

helf.com. https://androshelf.com/blogs/jetpack-compose-vs-xml.html, 2025.

[Accessed 30-10-2025].

[25] Wolff, O. Stellungnahme zur anhörung des ausschusses für verkehr und digitale

infrastruktur des deutschen bundestages – bundesweites/digitales ticketing. Webkon-

ferenz, May 2020. Ausschussdrucksache 19(15)352-A, 71. Sitzung.

28

https://www.it-visions.de/glossar/alle/3923/MockObjekt.aspx
https://www.it-visions.de/glossar/alle/3923/MockObjekt.aspx
https://androshelf.com/blogs/jetpack-compose-vs-xml.html

	Einführung in den ÖPV
	Ticketkontrolle in Deutschland
	ABT - der moderne Weg
	TOKA

	Anwendungsfälle und Anforderungen
	Inbetriebnahme
	Anwendungsfälle
	Fachliche Anforderungen

	Kotlin Multiplattform mit Compose Multiplattform
	Jetpack Compose - Deklarative GUI
	Kotlin Multiplattform
	Compose Multiplatform

	Applikationsarchitektur
	Softwarearchitekturmuster
	Bauprozess

	Prototyp der Kontroll-Applikation
	Anbindung der TOKA-App
	Umsetzung der Inbetriebnahme
	Umsetzung der Anwendungsfälle

	Automatisierte Tests zur Fehlererkennung
	Unit-Tests
	GUI-Tests

	Continuos Integration (CI) und Continuos Delivery (CD)
	Wozu CI/CD?
	Einbindung in den Prototypen

	Fazit

