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Abstract

This seminar thesis explores the possibility of accurate step length estimation by combin-
ing stereo vision and AI pose detection. A software pipeline was developed using a Luxonis
OAK-D Pro camera for depth estimation, the deep neural network model YOLO11n-pose
for keypoint detection and a multi-step filtering process for noise reduction. Experimental
validation using step intervals of 50,60 and 70 cm revealed high absolute Errors (>100 mm)
with Peak detection, while a Kernel Density Estimation achieves accuracies of approximately
10 mm. These findings demonstrate potential for an autonomous, contactless pace regulation
system.
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1 Introduction

Intelligent control systems are essential in an increasingly automated world. An aging demo-
graphic requires an enhanced healthcare system, where physical movement is one of the most
important factors influencing health. As machine learning continues to maximize technological
improvements, assistive walking systems can become ’smart’ through the integration of advanced
control systems. An electric walker can support a person via pace regulation, assisting with ev-
erything from rehabilitation exercises to fall prevention. With the development of faster and
more accurate AI detection systems, new autonomous control mechanisms are becoming a real-
ity. A contactless regulation system, combining AI detection with 3D estimation through stereo
vision, could transform a standard electric walker into a smart and safe support device.

1.1 Stereo Depth Estimation

The ability to estimate the distance of a certain object without physical measurement is found
naturally in the animal kingdom. Biological systems possess innate capabilities to gauge the
distance of visible objects through stereopsis. In humans, incoming reflections of light are cap-
tured by two lenses situated at a fixed distance: our eyes. The brain estimates the distance by
analyzing the disparity created between the two slightly different reconstructed images.

Technological replication of this process began in the 19th century, when Sir Charles Wheat-
stone laid down the foundations of stereoscopy. He invented the stereoscope, a device demon-
strating binocular depth vision, by presenting two pictures taken from two different perspectives
to both eyes separately.

Calculating disparity requires identifying the same point in both stereoscopic images. With-
out a clear marker, such as a light or laser dots commonly used in active stereo, a system becomes
challenged by the possibility of multiple potential candidates. With the emergence of Computer
Vision in the 20th century, this so-called Correspondence Problem moved into the focus of re-
search. Marr and Poggio described in their 1976 article an early algorithm to solve this exact
problem [1]. With multiple iterations, the right points are singled out, strengthening candidates
which have surrounding points with similar disparity. Once the point pair is identified, the dis-
parity value can be calculated (Figure 1). This, in turn, enables the possibility to create a 3D
estimation from the captured image by deriving a depth value for each pixel taken [2].

Figure 1: Stereo Camera Disparity Calculation [11]
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1.2 Key Point Detection

From autonomous vehicles to surveillance, convolutional neural networks brought a significant
advancement to modern computer vision. Object detection systems such as Ultralytics YOLO
(You Only Look Once) [3, 4] enable real-time object detection. Introduced in 2016, YOLO re-
frames the process to a single regression problem, with a convolutional network predicting mul-
tiple bounding boxes with class probabilities simultaneously, reducing the computation needed
to a minimum [5].

Building upon this, Deep Neural Networks for pose estimation are designed to identify
anatomically important human keypoints. Combined, these points form a simplified skeletal
representation, marking the most important parts of the human body [6]. Integrating both tech-
nologies, YOLO-Pose emerges as an enhanced non-heatmap bottom-up method [7]. YOLO-Pose
Models are trained on the COCO Dataset [8] utilizing 200,000 images with 250,000 humans, for
the detection of 17 distinct keypoints [7] (Figure 2).

Figure 2: Keypoints YOLOv8-Pose [20]

2 Methodology

2.1 Hardware Specifications

The experimental apparatus consisted of an OAK-D Pro Camera that was mounted to the
underside of a walker at a 10◦ angle facing downward. The OAK-D Pro has one RGB camera in
the middle, two infrared cameras on each side, an infrared Dot Projector, and an incorporated
Processor [9]. The depth perception capabilities are enhanced with the infrared dot projector
providing "more texture to the scene" [11], enabling "Active Stereo". The built-in processor
has a potential of 4 TOPS processing power, of which 1.4 TOPS can be used for on-board AI
Calculation [12].
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Figure 3: Electric Walker

Figure 4: OAK-D Pro [9]

2.2 Software Pipeline & Depth Estimation

For the control of the camera, the Luxonis DepthAI library was used [14]. It features a simple
connection API and a node-based structure that can be linked into a pipeline. To achieve the
depth estimation, the software was constructed in Python. A pipeline object, the RGB camera
node, the two mono camera nodes, and a stereo node were initialized. The outputs of both mono
camera nodes were linked to the stereo node, enabling the computation of the disparity.

The data from the calculated disparity are transformed to depth values through the Trian-
gulation equation:

z =
f · b
d

(1)

where f is the focal length, b is the baseline distance between the cameras (calculated internally
inside the camera), and d is the disparity [2]. The resulting frames from the RGB camera
alongside the 2D depth data array were saved for later usage.

2.3 Keypoint Detection (YOLO-Pose)

To estimate the step length of the participant, each RGB frame is given to the YOLO-Pose model
to detect the human pose keypoints. Of particular interest were the 15th and 16th keypoints,
located at the left and right ankle. These two points are best suited for step distance estimation.
The model outputs, in case of a human detection, an array where the keypoints are stored. If the
15th and 16th keypoints are detected, the X and Y pixels from each point are saved alongside
the confidence score.

2.4 Depth Extraction

In the next part, the detection data is loaded, and the keypoint pixels are used as indices to
retrieve the depth value from the corresponding data array. To ensure more reliable results, the
noise of the depth map must be minimized. To achieve that, a "Region of Interest" (ROI) around
the given coordinates was utilized rather than a single data point [15].

For the ROI size, a 9 × 9 area was chosen as a starting ground. If less than one-third of
the values are valid, the region slowly grows iteratively up to a maximum size of 20 × 20. This
process reduces the possibility of too few valid values while minimizing the risk of including
values from outside the desired region. During the depth estimation process, inside the OAK-D,
the disparity of each pixel has a certain confidence score; if it did not reach a certain threshold,
the disparity value was set to zero. From the array, the median value is taken, to reduce the
noise interference even further.
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2.5 Step Length Calculation

Before the step length can be calculated, the 2D coordinates need to be transformed to 3D
coordinates. The camera intrinsic horizontal and vertical focal lengths (fx, fy) and principal
point (cx, cy) are extracted beforehand through a calibration node. With the depth value z, the
3D x and y coordinates can be calculated with the triangulation equations [5]. For a 2D point
(u,v) with c : camera and w : world:

xc =
(u− cx) · zc

fx
, yc =

(v − cy) · zc
fy

(2)

Because the camera is situated at a slight angle of θ = 10◦, the y and z coordinates need to be
adjusted:

yw = yc · cos(θ)− zc · sin(θ), zw = yc · sin(θ) + zc · cos(θ) (3)

All coordinates are saved, and the absolute difference between both z values is taken as the step
length.

2.6 Data Filtering

For a refined step length estimation, certain filter methods were implemented into the software
in a multi-step approach.

• Biomechanical Threshold: A maximum step length of 1000mm was set. The average
step length of a human is calculated with a factor of 0.43 from their height; this thresh-
old would only exclude humans averaging around 230 cm. This makes subsequent filter
implementations cleaner.

• Hampel Filter: Implemented for strict outlier identification and replacement. A strict
statistical threshold is calculated using the Median Absolute Deviation (MAD). The MAD
value is multiplied by 1.4826 to make it comparable with standard deviation. A threshold
factor of 3 was chosen (keeping 99.87% of original data points), filtering out data points
further away than the threshold and replacing them with the median. This is used itera-
tively.

• Savitzky-Golay Filter: This transforms the data with polynomial regression in a moving
window. It leads to a stricter outlier correction while generally preserving curvature, peaks,
and valleys.

3 Experiment

The experiments were conducted in a windowless corridor with constant artificial illumination.
The camera’s infrared floodlight and dot projector were set to maximum intensity to enable
active stereo. Both the RGB and Mono cameras captured data at 20 frames per second. For
the detection the YOLO11n-Pose was chosen. To validate the experiment a ground truth mea-
surement was needed. Three walkways were created, each had 11 parallel tape markings on the
ground.

• Walkway 1: 50 cm distance.

• Walkway 2: 60 cm distance.

• Walkway 3: 70 cm distance.
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Figure 5: Walkway with 70 cm distanced tape marker

With each step the participant needed to touch the 48 mm wide tape with their heel, otherwise
the measurement was invalid and was repeated. In total each walkway was completed 10 times,
with each iteration capturing 10 step length measurements when both heels touched the tape.
With each step a maximum error of 48 mm could be made, but the average step length would
be the measured distance between the tapes. This was an attempt to establish a limited ground
truth while also creating a realistic usage of the walker. Due to the quite difficult task of placing
the foot inside the 48 mm space a slower, more deliberate movement was observed. After each
step a short pause was intended so more frames could be captured, resulting in more data points
for later examination.

4 Results

4.1 Keypoint Detection Accuracy

The foundation of the step length estimation is reliable detection results. The YOLOn-pose
model delivers a fast and accurate keypoint estimation. Although the exact ankle location varied,
the model predicted the correct area with over 70% confidence in nearly all 15,000 captured
frames. In total an average of 90.7% confidence is given to the right ankle keypoint and 89.4%
for the left.

4.2 Signal Processing and Noise Reduction

First a representative plot from the processed data will be examined and the multi step filter
approach described in the methodology was applied. Figure 6 shows one of the ten 50 cm
measurements, plotting the step length per image frame.

Depth map errors can cause relatively high peaks, which can be seen in Figure 6. Even with
ROI value extraction noise is a common occurrence. This is largely caused by larger noisy areas,
rather than only a few of the pixels. First the data points are filtered using a maximum possible
distance threshold of 1,000 mm (Figure 7).

After thresholding, the graph is displays a clearer rhythmic pattern. The ten steps create
approximately twelve local minima separated by a larger accumulation of points in the 400 and
600 mm range. The larger number of points is due to slower movement while placing the foot
and the short stop to capture the maximum step length. Numerous outliers are visible, ranging
from short dips to high spikes near the threshold limit.

To combat the measurement noises the Hampel Filter is applied iteratively up to maximum
of 10 repetitions. In the first iteration many outliers are removed and replaced (Figure 8).
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Figure 6: Step length per Image Frame Figure 7: Step length with 1 meter threshold

Figure 8: Hampel Filter applied. First Itera-
tion

Figure 9: Hampel Filter applied. 7th Iteration

Figure 10: Savitzky Golay Filter applied.
Polynomial order 2, window size 7
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Nevertheless, several clusters reaching up to 800 mm are unaffected. This is normal due to the
overall contribution of the clusters to the calculation of the median. After seven iterations no
additional outliers can be detected (Figure 9). One can observe that correct data is also removed.
The local minima around frame 530 has been cut, leading to complications later during peak
estimation. It becomes clear that a modest approach for the selection of the sigma threshold is
most effective.

The final method applied is the Savitzky Golay Filter, using a window size of seven and
polynomial order of two all data points of the graph are transformed (Figure 10). The influ-
ence of certain outliers is minimized, while other spikes are still too dominant to be removed.
Furthermore, many fluctuations in the data are removed and smoothed.

4.3 Step Length Estimation Validation

4.3.1 Analysis of Peak Detection

Finally, peak detection is performed. Except that the first and last each local maximum represent
one of the ten steps done during the measurement (Figure 11). The detected peaks range from
572.4 to 773.4 mm, averaging around 649.4 mm. The prominence and distance parameters
control the peak detection process. Because the second to last minima was cut out during the
filter process only 9 peaks are returned. Nevertheless, the identification of the individual steps
is mostly successful. measurements. There is a large error when comparing the Peak values and

Figure 11: Peak Detection: Distance 1, Prominence 350

the ground truth of 50 cm. This is a common occurrence with all other filtered measurements
(Table 1).

Table 1: Comparison of Ground Truth with Step length estimation through Peak detection
Ground Truth Steps recorded Peaks Detected Median Peak Absolute Error

500mm (avg.) 100 89 619.0mm 119.0mm
600mm (avg.) 100 102 727.8mm 127.8mm
700mm (avg.) 100 106 806.6mm 106.6mm

The absolute error between ground truth and Median Peak detected ranges between 106.6
to 127.8 mm, showing a clear inability to estimate the step length through peak detection.

However, due to the short pause in between each step, a large number of data points are
collected. Here, the peak detection takes the maximum values of each step, but all other points
close in the surrounding region should be analyzed too.
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4.3.2 Analysis of Kernel Density Estimation

Examining the same representative measurement as before, it Is common to observe data cluster
touching or extending below the 500 mm mark. Actually most of the data points gather around
this mark. A different representation of the data can be achieved utilizing the mode calculation
as seen in Figure 12.

Figure 12: Kernel Density Estimation with Mode (only thresholding)

Utilizing the Kernel Density Estimation an underlying value of 505.1 mm is being measured.
Extending the analysis from a single measurement to include the other nine measurements pro-
vides a comprehensive overview. Here the calculated mode is even closer to the established
Ground Truth (Table 2).

Table 2: Comparison of Ground Truth vs. Mode
Ground Truth Data points recorded Mode Absolute Error

500mm (avg.) 5105 504.7mm 4.7mm
600mm (avg.) 4957 579.6mm 21.4mm
700mm (avg.) 5434 695.7mm 4.3mm

Figure 13: KDE and Mode for all 50 cm mea-
surements

Figure 14: KDE and Mode for all 60 cm mea-
surements
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Figure 15: KDE and Mode for all 70 cm measurements

5 Discussion

It becomes clear that the depth value estimation has a strong variance; only through a broader
perspective can values similar to the ground truth be observed. This shift away from a qualitative
to a more quantitative approach could be used for long-term step length estimations but leads
to possible irregularities in measuring sudden changes. The influence of illumination and object
variety is also a strong factor in the quality of the depth estimation [19]. The hallway used for
the experiments (Figure: 5) featured suboptimal lightning and low object variety, reducing the
depth estimation capabilities. Another factor is the position of the camera, the "ideal range" for
the OAK-D Pro is between 80 cm to 12 m [9]. With the current mounting configuration, some
foot placements are too close for optimal disparity estimation. There is also a limitation because
of blind spots, where one leg obstructs the other making it impossible for the mono camera to
estimate a disparity value. The ground truth used is too vague, a different method for a more
accurate measurements would have established a stronger foundation for later validation.

6 Outlook

To achieve more accurate step length calculation through stereo depth estimation, new methods
in filtering and refining need to be included and tested. Other possibilities include, the usage
of deep neural networks to improve the quality of depth maps [17, 18]. Implementation in
real-time on hardware like the Luxonis OAK Cameras would be a significant achievement for
the development of an autonomous system. Furthermore experimenting with different camera
positions

13



References

[1] D. Marr and T. Poggio, "Cooperative Computation of Stereo Disparity," 1976.

[2] R. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision. Cambridge
University Press.

[3] Ultralytics YOLO. https://web.archive.org/web/20251226120223/https://github.
com/ultralytics/ultralytics

[4] Ultralytics Website https://web.archive.org/web/20251226120318/https://docs.
ultralytics.com/de/#the-evolution-of-object-detection

[5] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, "You Only Look Once: Unified, Real-
Time Object Detection," arXiv, 2016. http://arxiv.org/abs/1506.02640

[6] A. Toshev and C. Szegedy, "DeepPose: Human Pose Estimation via Deep Neural Networks,"
in

[7] D. Maji, S. Nagori, M. Mathew, and D. Poddar, "YOLO-Pose: Enhancing YOLO for Multi
Person Pose Estimation Using Object Keypoint Similarity Loss," arXiv, 2022. http://
arxiv.org/abs/2204.06806

[8] T.Y. Lin et al., "Microsoft COCO: Common Objects in Context," arXiv, 2015.

[9] Luxonis OAK-D Pro. Available: https://web.archive.org/web/20251226115340/https:
//shop.luxonis.com/products/oak-d-pro1

[10] Luxonis Stereo Depth Nodes. https://web.archive.org/web/20251226120354/
https://docs.luxonis.com/software/depthai-components/nodes/stereo_depth/
#StereoDepth-Disparity

[11] Luxonis Documentation. Configuring Stereo Depth. Available: https://web.archive.
org/web/20251226120025/https://docs.luxonis.com/hardware/platform/depth/
configuring-stereo-depth#fixing-noisy-depth

[12] Luxonis Documentation. RVC2 NN Performance. Available: https://web.archive.
org/web/20251226120058/https://docs.luxonis.com/hardware/platform/rvc/rvc2/
#RVC2%20NN%20Performance

[13] Luxonis Documentation. AI Inference Conversion. https://web.archive.org/web/
20251226120157/https://docs.luxonis.com/software/ai-inference/conversion

2014 IEEE Conference on Computer Vision and Pattern Recognition, 2014.

[14] Luxonis DepthAI https://web.archive.org/web/20251226180939/https://github.
com/luxonis/depthai

[15] Luxonis Spatial location calculator. https://web.archive.org/web/20251226120404/
https://docs.luxonis.com/software-v3/depthai/examples/spatial_location_
calculator/spatial_location_calculator/

[16] I. Bytyçi and M.Y. Henein, "Stride Length Predicts Adverse Clinical Events in Older Adults:
A Systematic Review and Meta-Analysis," JCM, vol. 10, no. 12, p. 2670, 2021.

[17] A. Kendall et al., "End-to-End Learning of Geometry and Context for Deep Stereo Regres-
sion," arXiv, 2017. http://arxiv.org/abs/1703.04309

14

https://web.archive.org/web/20251226120223/https://github.com/ultralytics/ultralytics
https://web.archive.org/web/20251226120223/https://github.com/ultralytics/ultralytics
https://web.archive.org/web/20251226120318/https://docs.ultralytics.com/de/#the-evolution-of-object-detection
https://web.archive.org/web/20251226120318/https://docs.ultralytics.com/de/#the-evolution-of-object-detection
http://arxiv.org/abs/1506.02640
http://arxiv.org/abs/2204.06806
http://arxiv.org/abs/2204.06806
https://web.archive.org/web/20251226115340/https://shop.luxonis.com/products/oak-d-pro1
https://web.archive.org/web/20251226115340/https://shop.luxonis.com/products/oak-d-pro1
https://web.archive.org/web/20251226120354/https://docs.luxonis.com/software/depthai-components/nodes/stereo_depth/#StereoDepth-Disparity
https://web.archive.org/web/20251226120354/https://docs.luxonis.com/software/depthai-components/nodes/stereo_depth/#StereoDepth-Disparity
https://web.archive.org/web/20251226120354/https://docs.luxonis.com/software/depthai-components/nodes/stereo_depth/#StereoDepth-Disparity
https://web.archive.org/web/20251226120025/https://docs.luxonis.com/hardware/platform/depth/configuring-stereo-depth#fixing-noisy-depth
https://web.archive.org/web/20251226120025/https://docs.luxonis.com/hardware/platform/depth/configuring-stereo-depth#fixing-noisy-depth
https://web.archive.org/web/20251226120025/https://docs.luxonis.com/hardware/platform/depth/configuring-stereo-depth#fixing-noisy-depth
https://web.archive.org/web/20251226120058/https://docs.luxonis.com/hardware/platform/rvc/rvc2/#RVC2%20NN%20Performance
https://web.archive.org/web/20251226120058/https://docs.luxonis.com/hardware/platform/rvc/rvc2/#RVC2%20NN%20Performance
https://web.archive.org/web/20251226120058/https://docs.luxonis.com/hardware/platform/rvc/rvc2/#RVC2%20NN%20Performance
https://web.archive.org/web/20251226120157/https://docs.luxonis.com/software/ai-inference/conversion
https://web.archive.org/web/20251226120157/https://docs.luxonis.com/software/ai-inference/conversion
https://web.archive.org/web/20251226180939/https://github.com/luxonis/depthai
https://web.archive.org/web/20251226180939/https://github.com/luxonis/depthai
https://web.archive.org/web/20251226120404/https://docs.luxonis.com/software-v3/depthai/examples/spatial_location_calculator/spatial_location_calculator/
https://web.archive.org/web/20251226120404/https://docs.luxonis.com/software-v3/depthai/examples/spatial_location_calculator/spatial_location_calculator/
https://web.archive.org/web/20251226120404/https://docs.luxonis.com/software-v3/depthai/examples/spatial_location_calculator/spatial_location_calculator/
http://arxiv.org/abs/1703.04309


[18] K. Shankar et al., "A Learned Stereo Depth System for Robotic Manipulation in Homes,"
arXiv, 2021.

[19] Luxonis dyanmic calibrationhttps://web.archive.org/web/20251226141842/https:
//docs.luxonis.com/software-v3/depthai/depthai-components/host_nodes/
dynamic_calibration/

[20] Keypoints illustration https://web.archive.org/web/20250812152731/https:
//learnopencv.com/wp-content/uploads/2021/05/fix-overlay-issue.jpg

15

https://web.archive.org/web/20251226141842/https://docs.luxonis.com/software-v3/depthai/depthai-components/host_nodes/dynamic_calibration/
https://web.archive.org/web/20251226141842/https://docs.luxonis.com/software-v3/depthai/depthai-components/host_nodes/dynamic_calibration/
https://web.archive.org/web/20251226141842/https://docs.luxonis.com/software-v3/depthai/depthai-components/host_nodes/dynamic_calibration/
https://web.archive.org/web/20250812152731/https://learnopencv.com/wp-content/uploads/2021/05/fix-overlay-issue.jpg
https://web.archive.org/web/20250812152731/https://learnopencv.com/wp-content/uploads/2021/05/fix-overlay-issue.jpg

	Introduction
	Stereo Depth Estimation
	Key Point Detection

	Methodology
	Hardware Specifications
	Software Pipeline & Depth Estimation
	Keypoint Detection (YOLO-Pose)
	Depth Extraction
	Step Length Calculation
	Data Filtering

	Experiment
	Results
	Keypoint Detection Accuracy
	Signal Processing and Noise Reduction
	Step Length Estimation Validation
	Analysis of Peak Detection
	Analysis of Kernel Density Estimation 


	Discussion
	Outlook

