
Evaluation der Entwicklung von Programmen in der SAP

Programmiersprache ABAP in den Programmierumgebungen

Objekt Navigator im SAP Graphical User Interface im Vergleich

zu Eclipse mit ABAP Development Tools

Hamza Yavuz (Matr. Nr: 3620816)

Seminar

RWTH Aachen Abteilung 5.2

Dezember 2025

Inhaltsverzeichnis

Evaluation der Entwicklung von Programmen in der SAP Programmiersprache ABAP

in den Programmierumgebungen Objekt Navigator im SAP Graphical User Interface im

Vergleich zu Eclipse mit ABAP Development Tools .. 0

Abstract ... 2

1 Einleitung ... 3

1.1 Problemstellung und Motivation .. 3

1.2 Zielsetzung der Arbeit .. 3

1.3 Aufbau der Arbeit ... 4

2 Theoretische Grundlagen und technischer Kontext ... 4

2.1 Historische Evolution der ABAP-Entwicklungsumgebungen................................ 4

2.2 Der Objekt Navigator (SE80) im SAP GUI.. 5

2.3 Die Eclipse-Plattform und ABAP Development Tools (ADT) 6

2.4 Gegenüberstellung der Systemarchitekturen .. 7

3 Methodik der Evaluation ... 8

3.1 Vorgehensweise und Kriterienauswahl .. 8

3.2 Definition der Evaluationskriterien .. 9

4 Vergleichende Analyse der Entwicklungsumgebungen .. 9

4.1 Code-Erstellung und Editor-Funktionen... 9

4.2 Navigation und Suche im Repository ... 11

4.3 Unterstützung von Refactoring-Maßnahmen.. 14

4.4 Analyse- und Debugging- Werkzeuge.. 16

4.5 Unterstützung moderner ABAP-Konzepte (S/4HANA)....................................... 18

4.6 Automatisierte Qualitätssicherung und Test-Driven Development (TDD) 19

5 Diskussion der Ergebnisse ... 21

5.1 Zusammenfassende Bewertung .. 21

5.2 Strategische Implikationen ... 21

6 Fazit und Ausblick ... 21

Erklärung .. 23

Literaturverzeichnis .. 24

Abstract

Die digitale Transformation und die strategische Neuausrichtung der SAP auf

S/4HANA führen in der ABAP-Entwicklung zu einem tiefgreifenden

Paradigmenwechsel. Während der klassische Objekt Navigator (SE80) im SAP GUI

über Jahrzehnte das dominierende Entwicklungswerkzeug war, treibt SAP zunehmend

die Nutzung der modernen ABAP Development Tools (ADT) auf Eclipse-Basis voran.

Die parallele Existenz beider Umgebungen, deren Funktionsumfang sich in vielen

Bereichen überschneidet, erzeugt in der Praxis erhebliche Unsicherheiten hinsichtlich

Werkzeugwahl, Effizienz und strategischer Ausrichtung der Entwicklungslandschaft.

Ziel dieser Seminararbeit ist die systematische Evaluation und der kritische Vergleich

beider Programmierumgebungen. Untersucht wird, inwiefern sich SE80 und ADT

hinsichtlich Funktionalität, Entwicklungseffizienz, Usability und Zukunftsfähigkeit

unterscheiden und welche Implikationen diese Unterschiede für den ABAP-

Entwicklungsprozess haben.

Methodisch erfolgt eine kriterienbasierte Analyse, die auf einer fundierten Darstellung

der technischen Grundlagen und der jeweiligen Systemarchitektur aufbaut. Als zentrale

Evaluationskriterien werden Entwicklungseffizienz, Benutzerfreundlichkeit,

Refactoring-Unterstützung sowie die Abdeckung moderner ABAP-Syntax und -

Entwicklungsparadigmen definiert. Anhand dieser Kriterien werden die Stärken und

Schwächen beider Werkzeuge entlang des gesamten Entwicklungsprozesses, von der

Code-Erstellung über Strukturierungs- und Anpassungsmaßnahmen bis hin zum

Debugging, systematisch herausgearbeitet.

Die Arbeit schafft damit eine analytische Grundlage, die es Entwicklern und IT-

Verantwortlichen ermöglicht, den Einsatz der beiden Entwicklungsumgebungen

differenziert zu bewerten und auf dieser Basis eine strategisch fundierte Entscheidung

über die zukünftige Ausrichtung ihrer ABAP-Entwicklungslandschaft zu treffen.

1 Einleitung

1.1 Problemstellung und Motivation

Die digitale Transformation und die strategische Neuausrichtung der SAP SE auf

S/4HANA und Cloud-Technologien führen in der ABAP-Entwicklung zu einem

tiefgreifenden technologischen Wandel. Über Jahrzehnte hinweg bildete der Objekt

Navigator (Transaktion SE80) im SAP GUI den Standard für die Entwicklung von

Geschäftsanwendungen. Dieses monolithische, serverzentrierte Werkzeug prägte die

Arbeitsweise ganzer Entwicklergenerationen.

Mit der Einführung der ABAP Development Tools (ADT) auf Basis der offenen

Eclipse-Plattform etablierte SAP jedoch eine konkurrierende Umgebung, die moderne

Entwicklungsparadigmen adressiert. In der betrieblichen Praxis führt die parallele

Existenz beider Werkzeuge häufig zu Unsicherheiten: Es fehlt oft an fundierten

Entscheidungsgrundlagen, wann welches Werkzeug effizienzsteigernd eingesetzt

werden kann und ob der Migrationsaufwand zu Eclipse ökonomisch gerechtfertigt ist.

1.2 Zielsetzung der Arbeit

Ziel dieser Seminararbeit ist die systematische Evaluation und der kritische Vergleich

der beiden Entwicklungsumgebungen SE80 und Eclipse ADT. Es soll untersucht

werden, inwiefern sich die Werkzeuge hinsichtlich ihrer Systemarchitektur,

Funktionalität und Effizienz unterscheiden.

Im Fokus steht dabei die Beantwortung der Forschungsfrage, ob die ADT lediglich eine

moderne Alternative darstellen oder eine notwendige Voraussetzung für die

Entwicklung im S/4HANA-Kontext bilden. Die Arbeit dient somit als

Entscheidungsgrundlage für die strategische Ausrichtung von Entwicklungsprozessen.

1.3 Aufbau der Arbeit

Die Arbeit gliedert sich in einen theoretischen und einen empirisch-analytischen Teil.

Kapitel 2 legt die theoretischen Grundlagen und analysiert die unterschiedlichen

Systemarchitekturen (Server-Side vs. Client-Side Rendering). Kapitel 3 definiert die

Methodik und die Evaluationskriterien. Darauf aufbauend erfolgt in Kapitel 4 die

detaillierte vergleichende Analyse anhand konkreter Anwendungsfälle („Use Cases“)

aus der Entwicklungspraxis. Die Arbeit schließt in Kapitel 5 und 6 mit einer Diskussion

der Ergebnisse und einem Ausblick auf die zukünftige Relevanz der

Entwicklungsumgebungen.

2 Theoretische Grundlagen und technischer Kontext

2.1 Historische Evolution der ABAP-Entwicklungsumgebungen

Im Zuge der strategischen Neuausrichtung von SAP hin zu S/4HANA und Cloud-

basierten Technologien geriet das klassische Entwicklungsmodell auf Basis der SAP

GUI zunehmend an seine Grenzen. Die bisherigen Werkzeuge waren stark auf

traditionelle Entwicklungsprozesse ausgelegt und boten nur eingeschränkte

Unterstützung für moderne Anforderungen wie bessere Toolintegration, höhere

Entwicklungsproduktivität oder zeitgemäße Test- und Qualitätskonzepte.

Vor diesem Hintergrund entschied sich SAP, die ABAP-Entwicklung auf eine neue

technische Grundlage zu stellen und führte die ABAP Development Tools (ADT) auf

Basis der Eclipse-Plattform ein. Ziel war es, eine offenere und erweiterbare

Entwicklungsumgebung bereitzustellen, die sich besser in moderne

Entwicklungsprozesse einfügt und gleichzeitig die bestehenden ABAP-Konzepte

weiterhin unterstützt. Dieser Schritt kann als ein grundlegender Wandel weg von der

rein serverzentrierten Entwicklungsweise hin zu einer stärker clientbasierten

Arbeitsweise verstanden werden, bei der ein Großteil der Entwicklungsarbeit lokal in

der IDE erfolgt, während die Anbindung an das SAP-System erhalten bleibt (vgl.

Hardy, 2021, Kap. 1).

2.2 Der Objekt Navigator (SE80) im SAP GUI

Einen visuellen Eindruck der klassischen Arbeitsweise vermittelt Abbildung 1. Der

Objekt Navigator (Transaktion SE80) stellt sich als monolithische

Entwicklungsumgebung innerhalb des SAP GUI dar. Das zentrale Steuerungselement

bildet hierbei der Repository Browser am linken Bildschirmrand. Dieser erlaubt die

Navigation durch die hierarchische Baumstruktur der Entwicklungsobjekte.

Abbildung 1: Der Objekt Navigator (Transaktion SE80) mit dem hierarchischen Repository Browser und der integrierten

Werkzeugleiste im SAP GUI.

Architektonisch basiert die SE80 auf dem klassischen Multiple Document Interface

(MDI). Konkret impliziert dies, dass sämtliche Werkzeuge vom Editor über den Screen

Painter bis zur Tabellendefinition in einem einzigen Fensterrahmen eingebettet sind.

Charakteristisch für diese Architektur ist die enge Kopplung an den SAP

Applikationsserver. Technisch wird die Darstellung als Server-Side Rendering

klassifiziert. Zwar gewährleistet dieser Ansatz eine hohe Datenkonsistenz, führt in der

Praxis jedoch häufig zu Latenzen, da jeder Arbeitsschritt die Antwort des Servers

abwarten muss (vgl. Lordieck/Sprenger, 2024, Kap. 2)

2.3 Die Eclipse-Plattform und ABAP Development Tools (ADT)

Demgegenüber verfolgen die ABAP Development Tools (ADT) einen architektonisch

differenzierten Ansatz. Anstatt auf einer monolithischen Server-Struktur zu verharren,

setzen sie auf der offenen, lokal installierten Eclipse-Plattform auf. Abbildung 2

illustriert, wie sich die Darstellung von der starren Ein-Fenster-Logik der SE80 löst.

Eclipse organisiert die Arbeitsfläche stattdessen modular in sogenannten Perspektiven

und Views (vgl. Lordieck/Sprenger, 2024, Kap. 1).

Abbildung 2: Die ABAP Development Tools in Eclipse mit dem Project Explorer zur Navigation in der Paketstruktur und dem

zentralen Editor-Bereich.

Der Screenshot verdeutlicht dies am Beispiel der Standard-ABAP-Perspektive: Der

links angeordnete Project Explorer übernimmt die Funktion des Navigators. Im Kontrast

zur SE80 erlaubt dieser nicht nur die Sicht auf ein isoliertes System, sondern ermöglicht

die parallele Verwaltung mehrerer ABAP-Projekte. Zwar bleibt die hierarchische

Strukturierung erhalten, jedoch werden Inhalte hier bedarfsgerecht vom Server

nachgeladen ("Lazy Loading").

Ein wesentlicher Unterschied ist das parallele Arbeiten an mehreren Objekten. Während

die SE80 oft durch das Modus-Konzept limitiert ist, ermöglichen die ADT das

gleichzeitige Bearbeiten beliebig vieler Artefakte in Tabs, was die Effizienz bei

komplexen Aufgabenstellungen signifikant erhöht (vgl. Pęgiel, 2021, Kap. 4).

Gleichzeitig ist zu berücksichtigen, dass die höhere Funktionsdichte und die

Komplexität der Eclipse-Plattform insbesondere für langjährige SAP-GUI-Nutzer eine

erhöhte Einstiegshürde darstellen können und anfänglich zu Produktivitätseinbußen

führen (vgl. Pęgiel, 2021, Kap. 1).

2.4 Gegenüberstellung der Systemarchitekturen

Die Architektur der ADT unterscheidet sich somit fundamental von der SAP GUI

basierten Entwicklung. Eclipse fungiert als vollwertige Integrierte

Entwicklungsumgebung (IDE). Ein Vorteil der Client-basierten Architektur liegt in der

Unterstützung moderner Entwicklungsparadigmen. Komplexere Artefakte wie Core

Data Services (CDS) lassen sich aufgrund ihrer Syntax-Anforderungen nur in einer

solchen modernen IDE effizient handhaben (vgl. Hardy, 2015, Kap. 15.2.1).

Zusammenfassend stellt die folgende Tabelle die architektonischen und funktionalen

Unterschiede gegenüber:

Merkmal
Objekt Navigator

(SE80)
Eclipse ADT

Architektur
Server-basiert / Terminal-

Emulation

Client-basiert / Lokale IDE

(vgl. Lordieck/Sprenger,

2024, Kap. 1)

Kommunikation
DIAG-Protokoll

(Synchron / Hohe Latenz)

RFC / REST (Ressourcen-

Ladung bei Bedarf)

Benutzeroberfläche
Monolithisches MDI (Ein

Fenster)

Flexibel (Views,

Perspektiven, Multi-

Monitor) (vgl. Pęgiel,

2021, Kap. 4)

Merkmal
Objekt Navigator

(SE80)
Eclipse ADT

Rendering

Server-Side Rendering

(Pixel/Layout vom

Server)

Client-Side Rendering (Nur

Datenübertragung)

Offline-Lesbarkeit

Nein

(Verbindungsabbruch =

Datenverlust)

Code im Cache lesbar

3 Methodik der Evaluation

3.1 Vorgehensweise und Kriterienauswahl

Die vorliegende Arbeit verfolgt einen qualitativen, analytischen Ansatz. Zur objektiven

Gegenüberstellung der Entwicklungsumgebungen SE80 und Eclipse ADT wird eine

kriteriengeleitete Untersuchung angewandt. Die Methodik gliedert sich in zwei Phasen:

1. Literaturanalyse: Aufarbeitung der theoretischen Grundlagen (siehe Kapitel 2).

2. Empirischer Funktionsvergleich: Gegenüberstellung beider Werkzeuge

anhand konkreter Anwendungsfälle ("Use Cases") in Kapitel 4.

3.2 Definition der Evaluationskriterien

Kriterium Definition und Fragestellung

Entwicklungseffizienz

Wie zeiteffizient lassen sich Standardaufgaben

erledigen? Bewertet werden Features wie Code-

Vervollständigung und Templates.

Usability

(Gebrauchstauglichkeit)

Wie intuitiv gestaltet sich die

Benutzeroberfläche? Betrachtet werden

Navigation und Fenster-Management.

Funktionalität &

Refactoring

Welche Werkzeuge stehen zur

Qualitätssteigerung bereit? Fokus auf Refactoring

und Debugging.

Zukunftsfähigkeit

(Modern ABAP)

Inwieweit unterstützt das Werkzeug moderne

Paradigmen wie S/4HANA und CDS?

4 Vergleichende Analyse der Entwicklungsumgebungen

4.1 Code-Erstellung und Editor-Funktionen

Besonders evident wird die Diskrepanz im täglichen Arbeiten bei der Erstellung von

Quellcode. In der SE80 ist der Entwicklungsprozess oft durch assistentengestützte

Dialoge ("Wizards") geprägt, da der Editor selbst nur geringe kontextsensitive Hilfe

bietet (vgl. Lordieck/Sprenger, 2024, Kap. 4.2).

Bei der Implementierung eines Funktionsbausteins erfolgt der Aufruf in der SE80

entweder durch manuelle Eingabe der benötigten Parameter oder mithilfe der Funktion

„Muster einfügen“ (Strg+F6). Wie Abbildung 3 zeigt, öffnet sich dabei ein separates

Dialogfenster, das den Aufruf des Funktionsbausteins als Code-Block generiert. Erst

nach Bestätigung generiert das System den Code-Block. Der Nachteil: Nachträgliche

Änderungen (z. B. ein neuer Parameter) werden nicht automatisch erkannt und das

Muster muss oft neu eingefügt werden. Zwar erfordern auch in den ADT nachträgliche

Schnittstellenänderungen eine Anpassung der Aufrufstellen, diese wird dort jedoch

durch kontextsensitive Hinweise und automatische Quick Fixes wesentlich unterstützt.

Abbildung 3: Der statische Dialog zur Muster-Einfügung (Pattern Wizard) für Funktionsbausteine in der SE80.

Im Gegensatz dazu bieten die ADT in Eclipse eine intelligente Code-Vervollständigung

(Content Assist), aufrufbar über Strg+Leertaste. Abbildung 4 demonstriert dies am

Beispiel der Klasse cl_salv_table. Eclipse analysiert den Kontext direkt an der Cursor-

Position und schlägt nicht nur den Methodennamen vor, sondern visualisiert in einem

Overlay sofort die komplette Signatur inklusive aller Import- und Export-Parameter

(wie „r_salv_table“).

Abbildung 4: Die kontextsensitive Code-Vervollständigung (Content Assist) in den ADT mit Anzeige von Methodensignaturen.

Wie im Screenshot ersichtlich, weist die IDE kontextsensitiv auf Funktionen wie die

vollständige Signatur-Einfügung (Shift + Enter) hin. Im Unterschied zur SE80, deren

Code-Vervollständigung (Strg + Leertaste) überwiegend statisch bleibt oder über

separate Dialoge („Muster einfügen“) erfolgt, ist diese Funktionalität in den ADT direkt

in den Editor-Kontext integriert. Dadurch wird der Schreibfluss weniger unterbrochen

und der Bedarf an expliziten Kontextwechseln reduziert (vgl. Lordieck/Sprenger, 2024,

Kap. 4.2).

4.2 Navigation und Suche im Repository

Die Navigation innerhalb der SE80 ist primär hierarchisch organisiert und stark an die

Paketstruktur gebunden. Zwar stehen auch Suchfunktionen zur Verfügung, diese sind

jedoch häufig auf bestimmte Objekttypen beschränkt oder erfordern den Wechsel in

separate Dialoge. Eclipse verfolgt demgegenüber einen konsequent suchbasierten

Ansatz: Mit der Funktion „Open ABAP Development Object“ (Strg + Shift + A),

dargestellt in Abbildung 5, können Entwickler systemweit und objekttypübergreifend

nach Entwicklungsartefakten suchen.

Abbildung 5: Der zentrale Suchdialog "Open ABAP Development Object" (Strg+Shift+A) zur systemweiten Suche in Eclipse.

Ein entscheidender Vorteil liegt in der Unterstützung von Wildcards und der

CamelCase-Suche. Dies beschleunigt den Zugriff auf Entwicklungsobjekte signifikant

(vgl. Lordieck/Sprenger, 2024, Kap. 4.1).

Um die Diskrepanz in der Bedienungsgeschwindigkeit zu quantifizieren, lohnt sich ein

Blick auf die Tastenkürzel (Shortcuts). Während die SE80 stark mausorientiert ist,

erlauben die ADT eine fast vollständige Steuerung über die Tastatur.

Funktion
SAP GUI /

SE80
Eclipse ADT

Kommentar

Objekt öffnen

Manuelle

Baum-

Navigation

oder

SE24/SE38

Strg + Shift +

A

Eclipse-Suche ist

objektübergreifend

Aktivieren Strg + F3 Strg + F3
 Identisch (Standard

SAP)

Code-

Vervollständigung

Strg + F6

(Muster

einfügen)

oder Strg +

Leertaste

Strg +

Leertaste,

anschließend

Shift + Enter

Eclipse ist

kontextsensitiv

Element

umbenennen

Nicht

vorhanden

(Manuell)

Alt + Shift +

R

Refactoring über alle

Verwendungsstellen

Methode

extrahieren

Nicht

vorhanden

Alt + Shift +

M

 Automatische Code-

Kapselung

Funktion
SAP GUI /

SE80
Eclipse ADT

Kommentar

Definition

anzeigen

Doppelklick

(Navigation)
F3 oder F2

 F2 zeigt Details im

Overlay ohne

Navigation

Fenster

maximieren

Nicht möglich

(MDI)
Strg + M

 Fokus auf den Code-

Editor

Zeile duplizieren Strg + D
Strg + Alt +

Unten

 Standard-IDE-

Verhalten

Diese Tabelle verdeutlicht, dass Eclipse ADT etablierte Standards moderner IDEs (wie

Visual Studio oder IntelliJ) adaptiert, was insbesondere jüngeren Entwicklern den

Einstieg erleichtert.

4.3 Unterstützung von Refactoring-Maßnahmen

Defizite der SE80 offenbaren sich insbesondere im Bereich des Refactorings. In der

klassischen Umgebung müssen Aufgaben wie das Umbenennen von Methoden manuell

durchgeführt werden, was fehleranfällig ist.

Die ADT stellen hierfür automatisierte Werkzeuge bereit. Wie das Kontextmenü in

Abbildung 6 demonstriert, bietet Eclipse Funktionen wie "Rename" (Alt+Shift+R) oder

"Extract Method" (Alt+Shift+M) an (vgl. Hardy, 2021, Kap. 1.2.4).

Abbildung 6: Das Kontextmenü für Source-Code-Operationen in Eclipse, inklusive automatisierter Refactoring-Funktionen wie

"Extract Method".

Bei Selektion eines Code-Blocks und Ausführung von "Extract Method" analysiert

Eclipse den Datenfluss und generiert automatisch eine neue Methode mit korrekten

Parametern. Dies senkt die Hemmschwelle für qualitätssichernde Maßnahmen (vgl.

Hardy, 2021, Kap. 1.2.4). Gleichzeitig erfordert der Einsatz automatisierter Refactoring-

Werkzeuge ein hohes Vertrauen in die IDE, da insbesondere bei komplexen Legacy-

Strukturen eine nachträgliche manuelle Überprüfung der Änderungen weiterhin

notwendig bleibt.

Ein wesentliches Differenzierungsmerkmal zwischen der SE80 und den ABAP

Development Tools (ADT) in Eclipse ist die Unterstützung durch sogenannte "Quick

Fixes" (in Eclipse über das Tastenkürzel Strg + 1 erreichbar). Während Refactoring in

der SE80 oft manuelle Eingriffe in verschiedenen Transaktionen erfordert, ermöglichen

die ADT einen assistierten Ansatz direkt im Quellcode.

Ein exemplarisches Szenario für die Effizienzsteigerung ist die "Usage-First"-

Entwicklungsmethodik. Hierbei schreibt der Entwickler zunächst den Aufruf einer

Methode, die noch gar nicht existiert. In der SE80 würde dies zu einem Syntaxfehler

führen, der den Entwickler zwingt, den Editor zu verlassen, in die Klassendefinition

(SE24) zu wechseln, die Methode samt Signatur manuell anzulegen und anschließend

zum Aufruf zurückzukehren. Hardy beschreibt diesen Prozess in Eclipse als signifikant

effizienter: Durch die Anwendung eines Quick Fixes auf den fehlerhaften

Methodenaufruf generiert die IDE automatisch die Methodendefinition und -

implementierung, wobei die Typisierung der Parameter direkt aus dem Kontext des

Aufrufs abgeleitet wird (vgl. Hardy, 2021, Kap. 1.2.3). Dieser Automatismus reduziert

nicht nur den manuellen Schreibaufwand, sondern minimiert auch den Kontextwechsel

("Context Switch"), was den kognitiven "Flow" des Entwicklers aufrechterhält.

Abbildung 7: Automatisierte Methodengenerierung durch Quick Fixes in Eclipse ADT.

Die praktische Anwendung dieses Features wird in Abbildung 7 veranschaulicht. Das

Beispiel zeigt einen Methodenaufruf, der im Code implementiert wurde, bevor die

Methode technisch existierte (Usage-First-Ansatz). Während dies in der SE80 einen

manuellen Abbruch des Arbeitsflusses erfordern würde, bietet Eclipse ADT über das

Quick-Fix-Menü (Strg + 1) kontextsensitiv die automatische Generierung der fehlenden

Methode an (siehe rechter Bildteil). Wie der Screenshot verdeutlicht, erkennt die IDE

dabei automatisch die benötigten Parameter und Signaturen, wodurch fehleranfällige

manuelle Eingaben entfallen.

4.4 Analyse- und Debugging- Werkzeuge

Ein kritischer Erfolgsfaktor in der Softwareentwicklung ist die effiziente Fehleranalyse.

In der SE80 wird der klassische ABAP Debugger als eigenständiges Fenster (separater

Modus) ausgeführt. Wie Abbildung 7 zeigt, überlagert dieses Fenster oft den

eigentlichen Editor, was den visuellen Kontext des Entwicklers unterbricht.

Abbildung 8: Der klassische ABAP Debugger in einem separaten Fenster, losgelöst von der Entwicklungsumgebung.

Die ADT integrieren den Debugging-Prozess hingegen nahtlos in die IDE. Durch die

spezielle "Debug-Perspektive" bleibt der Quellcode im Editor sichtbar, während

Variablen und Breakpoints in dedizierten Views angeordnet werden (vgl.

Lordieck/Sprenger, 2024, Kap. 6.3).

Abbildung 9: Die integrierte Debug-Perspektive in Eclipse: Quellcode und Variablen-Ansicht in einer gemeinsamen

Entwicklungsumgebung.

Es ist jedoch anzumerken, dass der klassische SAP-GUI-Debugger bei bestimmten

Analyseaufgaben weiterhin klare Vorteile bietet. Dies zeigt sich insbesondere bei

dialogorientierten Programmen sowie bei der Untersuchung komplexer Kontrollflüsse.

Wie in Abbildung 8 dargestellt, stellt der SAP-GUI-Debugger den vollständigen ABAP-

und Dynpro-Aufrufstack dauerhaft und übersichtlich dar. Ereignisse wie START-OF-

SELECTION, FORM-Aufrufe oder Dynpro-Events sind klar voneinander getrennt

sichtbar und erlauben eine schnelle zeitliche Einordnung des Programmablaufs.

Gerade bei tief verschachtelten Funktionsaufrufen, der Analyse von Includes oder bei

der Fehlersuche in klassischen Dynpro-Anwendungen erleichtert diese permanente

Stack-Darstellung das Verständnis des Kontrollflusses erheblich. Auch systemnahe

Aspekte wie Update-Tasks, RFC-Kontexte oder Benutzerinteraktionen lassen sich im

SAP-GUI-Debugger häufig transparenter nachvollziehen.

Die Debug-Perspektive der ABAP Development Tools integriert den Debugging-

Prozess zwar nahtlos in die Entwicklungsumgebung und ist für den täglichen,

codezentrierten Entwicklungsprozess komfortabler. Bei spezialisierten

Analyseaufgaben erreicht sie jedoch nicht in allen Fällen die gleiche Übersichtlichkeit

und Detailtiefe wie der klassische SAP-GUI-Debugger (vgl. Lordieck/Sprenger, 2024,

Kap. 6.3).

Ein technologisches Alleinstellungsmerkmal von Eclipse ist zudem die ABAP Profiling

Integration. Während Laufzeitanalysen (Transaktion SAT) in der SE80 oft mühsam

konfiguriert werden müssen, erlaubt Eclipse den direkten Start eines Profiling-Laufs aus

dem Editor heraus. Es werden hierbei die visuellen Auswertungsmöglichkeiten betont,

die es erlauben, Performance-Flaschenhälse ("Hotspots") grafisch im Code-Fluss zu

identifizieren, ohne tief in technische Trace-Dateien einsteigen zu müssen (vgl.

Lordieck/Sprenger, 2024, Kap. 6.3).

4.5 Unterstützung moderner ABAP-Konzepte (S/4HANA)

Neben der Effizienz ist die Wahl der Entwicklungsumgebung heute eine Frage der

technischen Machbarkeit im Kontext von S/4HANA. Mit der Einführung moderner

Paradigmen verschiebt sich die Anwendungslogik zunehmend auf die Datenbank

("Code-to-Data").

Zentrales Element hierfür sind die Core Data Services (CDS). Hardy (2021) klassifiziert

diese als „Datenbank-Views der nächsten Generation“, welche die funktionalen

Möglichkeiten klassischer SE11-Views weit übertreffen. Da CDS-Views mittels einer

eigenen DDL-Syntax definiert werden, ist deren Bearbeitung in der SE80 technisch

nicht mehr möglich. Für die Umsetzung moderner Anforderungen ist der Einsatz der

ABAP Development Tools in Eclipse somit faktisch alternativlos (vgl. Hardy, 2015,

Kap. 15.2.1).

4.6 Automatisierte Qualitätssicherung und Test-Driven Development

(TDD)

Die Qualitätssicherung in ABAP-Projekten umfasst heute weit mehr als die reine

Fehlerbehebung im laufenden System. Neben statischer Codeanalyse (z. B. über das

ABAP Test Cockpit) sind automatisierte Unit-Tests und ein strukturierter

Refactoring‑Prozess entscheidend, um Änderungen risikoarm und nachvollziehbar

umzusetzen (vgl. Hardy, 2021, Kap. 10).

Test‑Driven Development (TDD) in ABAP folgt dem Prinzip „Red‑Green‑Refactor“:

Zunächst wird ein Test formuliert, der erwartetes Verhalten beschreibt und (noch)

fehlschlägt; danach wird die minimal notwendige Implementierung erstellt, bis der Test

grün ist; abschließend wird der Code refaktoriert, ohne die Fachlogik zu verändern. In

ABAP wird dieses Vorgehen typischerweise mit ABAP Unit umgesetzt, wobei

Testklassen als lokale Klassen mit dem Zusatz FOR TESTING definiert werden und

Assertions über CL_ABAP_UNIT_ASSERT erfolgen (vgl. Hardy, 2015, Kap. 15.2.1).

Listing 1: Beispiel einer ABAP-Unit-Testklasse (TDD) mit setup und assert_equals

Listing 1 zeigt eine kompakte ABAP-Unit-Testklasse für eine Rechner-Klasse („Class

Under Test“). Der Aufbau mit setup (Initialisierung vor jedem Test) und einer

Testmethode, die über assert_equals ein erwartetes Ergebnis prüft, entspricht dem

üblichen Muster für Einstiegsbeispiele in ABAP Unit (vgl. Hardy, 2015, Kap. 15.2.1).

Unterstützung durch ADT im Vergleich zur ABAP Workbench (SE80): Während sich

Qualitätssicherungs-Transaktionen in der ABAP Workbench eher als getrennte

Werkzeuge anfühlen, bindet ADT viele Funktionen direkt in den Editor‑Kontext ein.

Dazu zählen insbesondere Quick Fixes/Quick Assist (z. B. Strg+1) für Refactorings und

Code‑Erzeugung sowie die Möglichkeit, Prüfergebnisse und Fundstellen über

Navigations- und Link‑Funktionen schnell anzuspringen (vgl. Lordieck/Sprenger, 2024,

Kap. 4.6.3; Lordieck/Sprenger, 2024, Kap. 4.10).

Einordnung für die Evaluation: Für die im Seminartitel geforderte Gegenüberstellung

lässt sich festhalten, dass ADT eine stärkere „In‑Editor“-Integration von Testen,

Refactoring und Analyse bietet. Dadurch verkürzen sich Feedback‑Zyklen, was

insbesondere bei iterativen Vorgehensmodellen (wie TDD) die

Entwicklungsproduktivität und die Codequalität unterstützen kann. Die ABAP

Workbench bleibt in vielen Systemlandschaften weiterhin relevant, erreicht jedoch bei

modernen Entwicklungspraktiken weniger Bedienkomfort und Kontextkohärenz als

ADT (vgl. Hardy, 2015, Kap. 15.2.1).

5 Diskussion der Ergebnisse

5.1 Zusammenfassende Bewertung

Die Analyse offenbart eine signifikante technologische Divergenz. Hinsichtlich der

Entwicklungseffizienz zeigen die ADT durch Features wie Content Assist eine

deutliche Überlegenheit gegenüber den statischen Wizards der SE80. Das Kriterium der

Funktionalität und Refactoring stellt den deutlichsten Unterschied dar: Was in der SE80

manuelle Arbeit ist, wird in Eclipse zum automatisierten Standard. Bezüglich der

Zukunftsfähigkeit zeigt sich, dass die SE80 für klassische ABAP-

Entwicklungsaufgaben weiterhin geeignet ist, bei der Umsetzung moderner S/4HANA-

spezifischer Technologien jedoch funktionale Einschränkungen aufweist. Zentrale

Konzepte wie Core Data Services (CDS) lassen sich ausschließlich in den ABAP

Development Tools umsetzen, wodurch sich ADT insbesondere für Neuentwicklungen

als notwendige Ergänzung zur klassischen ABAP Workbench etabliert.

Die Bewertung berücksichtigt dabei, dass eine technische Überlegenheit einzelner

Werkzeuge nicht automatisch bedeutet, dass diese in jedem organisatorischen,

historischen oder projektbezogenen Kontext uneingeschränkt überlegen sind.

5.2 Strategische Implikationen

Für IT-Organisationen empfiehlt sich ein prozessualer "Hybrid-Ansatz". Für reine

Wartungsaufgaben im klassischen Report-Umfeld bietet die SE80 weiterhin einen

weiterhin sinnvollen Einsatzrahmen. Für sämtliche Neuentwicklungen und Refactoring-

Maßnahmen ist der Einsatz von Eclipse ADT jedoch aus Effizienz- und

Qualitätsgründen als ratsam anzusehen.

6 Fazit und Ausblick

Die vorliegende Arbeit evaluierte die Entwicklungsumgebungen SE80 und Eclipse

ADT. Die Untersuchung zeigt, dass der Wechsel von der serverzentrierten SE80 zur

clientbasierten Eclipse-Plattform eine deutliche Veränderung der Entwicklungsweise

darstellt. Es konnte nachgewiesen werden, dass die ADT durch asynchrone

Kommunikation, Multi-Tasking und tiefe Integration moderner Syntax-Konzepte (CDS)

die Produktivität signifikant steigern. Die SE80 verbleibt als robustes, aber funktional

limitiertes Werkzeug für den Bestandsschutz. Für ABAP-Entwickler gewinnt die

Nutzung von Eclipse ADT zunehmend an Bedeutung, insbesondere im Kontext

moderner ABAP- und S/4HANA-Entwicklungen.

Erklärung

Literaturverzeichnis

Hardy, Paul David (2015):

ABAP to the Future

Hardy, Paul David (2021):

Improving the Quality of ABAP Code

Lordieck, Thomas; Sprenger, Manfred (2024):

SAP-Schnelleinstieg: ABAP-Entwicklung in Eclipse - 2., erweiterte Auflage

Pęgiel, Łukasz (2021):

ABAP in Eclipse: Install, Configure, Use, and Enhance Your ADT

