Evaluation der Entwicklung von Programmen in der SAP
Programmiersprache ABAP in den Programmierumgebungen
Objekt Navigator im SAP Graphical User Interface im Vergleich
zu Eclipse mit ABAP Development Tools

Hamza Yavuz (Matr. Nr: 3620816)
Seminar
RWTH Aachen Abteilung 5.2

Dezember 2025

Inhaltsverzeichnis

Evaluation der Entwicklung von Programmen in der SAP Programmiersprache ABAP
in den Programmierumgebungen Objekt Navigator im SAP Graphical User Interface im

Vergleich zu Eclipse mit ABAP Development TOOIScccvveeeiieeiiiieciieeciee e 0
ADSITACT ...ttt ettt b et sh e e ae bt et ebe et e et e eaeen 2
I BANICIEUNG. ..ottt e et e e et e e ensaee e aseeennaeeennaeennnes 3
1.1 Problemstellung und MOtIVALIONcecuiieriieeeiieeeiie et 3
1.2 Zielsetzung der ATDEItcooiieiiiiiiiieeie ettt 3
1.3 AUTDAU @I ATDEIL .. ettt 4
2 Theoretische Grundlagen und technischer Kontext............ccoevvieeviiiniiieiiiiecieeciees 4
2.1 Historische Evolution der ABAP-Entwicklungsumgebungen..............ccccoceenneene. 4
2.2 Der Objekt Navigator (SE80) im SAP GUIL.........cccoovviiiiiiiiiiiieieeeeeeee 5
2.3 Die Eclipse-Plattform und ABAP Development Tools (ADT)cccceevevveenveennee. 6
2.4 Gegeniiberstellung der SystemarchiteKturenccceeevveeeciieeeciieeecieeeieeeee e 7
3 Methodik der EvValUationcccooiiiiiiiiiiniieieeieseeecee et 8
3.1 Vorgehensweise und Kriterienauswahlccccceeviiniiieniienieniieiecieeieeeee e, 8
3.2 Definition der EvaluationsKriteriencooueeiuieiiiiiieniienieeeececeee e 9
4 Vergleichende Analyse der Entwicklungsumgebungencccoccieiiiniiiiinniiieneenne 9
4.1 Code-Erstellung und Editor-Funktionen..............ccceeeeveenieniiieniieniienieeieeeee e 9
4.2 Navigation und Suche 1m RepoOSItOTYeevviiiiiiieiiiiecieeeieecee e 11
4.3 Unterstiitzung von Refactoring-MalBnahmen..........c..cccccocveviiiiniiiniinnnicnicncenne. 14
4.4 Analyse- und Debugging- Werkzeuge..........c.ccoveviienieniieniiiiieeieeieeeve e 16
4.5 Unterstiitzung moderner ABAP-Konzepte (S/AHANA)......cccvvveieeviieeeieeeiiens 18
4.6 Automatisierte Qualititssicherung und Test-Driven Development (TDD).......... 19
5 Diskussion der ErgebniSseccccuieiiiiiiiriiiiiieeie ettt 21
5.1 Zusammenfassende BEeWeTrtUngc.cocviiruiieiiienieeiieeie e 21
5.2 Strategische IMplKationencoocveiiiiiiiiiiieiie e 21
6 Fazit und AUSDIICKooiiiiiii e 21
EIKIATUNG ..ot ettt ettt ettt et essbe e s e enbeensaesnseens 23

Lt atUIVEIZEICIINIS oot e e e e e e e e e e e e e e e e aeeaeeenes 24

Abstract

Die digitale Transformation und die strategische Neuausrichtung der SAP auf
S/4AHANA fiihren in der ABAP-Entwicklung zu einem tiefgreifenden
Paradigmenwechsel. Wihrend der klassische Objekt Navigator (SE80) im SAP GUI
iiber Jahrzehnte das dominierende Entwicklungswerkzeug war, treibt SAP zunehmend
die Nutzung der modernen ABAP Development Tools (ADT) auf Eclipse-Basis voran.
Die parallele Existenz beider Umgebungen, deren Funktionsumfang sich in vielen
Bereichen iiberschneidet, erzeugt in der Praxis erhebliche Unsicherheiten hinsichtlich

Werkzeugwahl, Effizienz und strategischer Ausrichtung der Entwicklungslandschatft.

Ziel dieser Seminararbeit ist die systematische Evaluation und der kritische Vergleich
beider Programmierumgebungen. Untersucht wird, inwiefern sich SE80 und ADT
hinsichtlich Funktionalitdt, Entwicklungseffizienz, Usability und Zukunftsfidhigkeit
unterscheiden und welche Implikationen diese Unterschiede fiir den ABAP-

Entwicklungsprozess haben.

Methodisch erfolgt eine kriterienbasierte Analyse, die auf einer fundierten Darstellung
der technischen Grundlagen und der jeweiligen Systemarchitektur aufbaut. Als zentrale
Evaluationskriterien werden Entwicklungseffizienz, Benutzerfreundlichkeit,
Refactoring-Unterstiitzung sowie die Abdeckung moderner ABAP-Syntax und -
Entwicklungsparadigmen definiert. Anhand dieser Kriterien werden die Starken und
Schwichen beider Werkzeuge entlang des gesamten Entwicklungsprozesses, von der
Code-Erstellung iiber Strukturierungs- und AnpassungsmafBnahmen bis hin zum

Debugging, systematisch herausgearbeitet.

Die Arbeit schafft damit eine analytische Grundlage, die es Entwicklern und IT-
Verantwortlichen ermdglicht, den Einsatz der beiden Entwicklungsumgebungen
differenziert zu bewerten und auf dieser Basis eine strategisch fundierte Entscheidung

iiber die zukiinftige Ausrichtung ihrer ABAP-Entwicklungslandschatft zu treffen.

1 Einleitung

1.1 Problemstellung und Motivation

Die digitale Transformation und die strategische Neuausrichtung der SAP SE auf
S/4AHANA und Cloud-Technologien fiihren in der ABAP-Entwicklung zu einem
tiefgreifenden technologischen Wandel. Uber Jahrzehnte hinweg bildete der Objekt
Navigator (Transaktion SE80) im SAP GUI den Standard fiir die Entwicklung von
Geschéftsanwendungen. Dieses monolithische, serverzentrierte Werkzeug prigte die

Arbeitsweise ganzer Entwicklergenerationen.

Mit der Einfiihrung der ABAP Development Tools (ADT) auf Basis der offenen
Eclipse-Plattform etablierte SAP jedoch eine konkurrierende Umgebung, die moderne
Entwicklungsparadigmen adressiert. In der betrieblichen Praxis fiihrt die parallele
Existenz beider Werkzeuge hiufig zu Unsicherheiten: Es fehlt oft an fundierten
Entscheidungsgrundlagen, wann welches Werkzeug effizienzsteigernd eingesetzt

werden kann und ob der Migrationsaufwand zu Eclipse 6konomisch gerechtfertigt ist.

1.2 Zielsetzung der Arbeit

Ziel dieser Seminararbeit ist die systematische Evaluation und der kritische Vergleich
der beiden Entwicklungsumgebungen SE80 und Eclipse ADT. Es soll untersucht
werden, inwiefern sich die Werkzeuge hinsichtlich ihrer Systemarchitektur,

Funktionalitidt und Effizienz unterscheiden.

Im Fokus steht dabei die Beantwortung der Forschungsfrage, ob die ADT lediglich eine
moderne Alternative darstellen oder eine notwendige Voraussetzung fiir die
Entwicklung im S/4HANA-Kontext bilden. Die Arbeit dient somit als

Entscheidungsgrundlage fiir die strategische Ausrichtung von Entwicklungsprozessen.

1.3 Aufbau der Arbeit

Die Arbeit gliedert sich in einen theoretischen und einen empirisch-analytischen Teil.
Kapitel 2 legt die theoretischen Grundlagen und analysiert die unterschiedlichen
Systemarchitekturen (Server-Side vs. Client-Side Rendering). Kapitel 3 definiert die
Methodik und die Evaluationskriterien. Darauf aufbauend erfolgt in Kapitel 4 die
detaillierte vergleichende Analyse anhand konkreter Anwendungsfille (,,Use Cases®)
aus der Entwicklungspraxis. Die Arbeit schlie8t in Kapitel 5 und 6 mit einer Diskussion
der Ergebnisse und einem Ausblick auf die zukiinftige Relevanz der

Entwicklungsumgebungen.

2 Theoretische Grundlagen und technischer Kontext

2.1 Historische Evolution der ABAP-Entwicklungsumgebungen

Im Zuge der strategischen Neuausrichtung von SAP hin zu S/4AHANA und Cloud-
basierten Technologien geriet das klassische Entwicklungsmodell auf Basis der SAP
GUI zunehmend an seine Grenzen. Die bisherigen Werkzeuge waren stark auf
traditionelle Entwicklungsprozesse ausgelegt und boten nur eingeschriankte
Unterstiitzung fiir moderne Anforderungen wie bessere Toolintegration, hohere

Entwicklungsproduktivitit oder zeitgeméfBe Test- und Qualitidtskonzepte.

Vor diesem Hintergrund entschied sich SAP, die ABAP-Entwicklung auf eine neue
technische Grundlage zu stellen und fiihrte die ABAP Development Tools (ADT) auf
Basis der Eclipse-Plattform ein. Ziel war es, eine offenere und erweiterbare
Entwicklungsumgebung bereitzustellen, die sich besser in moderne
Entwicklungsprozesse einfligt und gleichzeitig die bestehenden ABAP-Konzepte
weiterhin unterstiitzt. Dieser Schritt kann als ein grundlegender Wandel weg von der
rein serverzentrierten Entwicklungsweise hin zu einer stirker clientbasierten
Arbeitsweise verstanden werden, bei der ein Grof3teil der Entwicklungsarbeit lokal in
der IDE erfolgt, wihrend die Anbindung an das SAP-System erhalten bleibt (vgl.
Hardy, 2021, Kap. 1).

2.2 Der Objekt Navigator (SE80) im SAP GUI

Einen visuellen Eindruck der klassischen Arbeitsweise vermittelt Abbildung 1. Der
Objekt Navigator (Transaktion SE80) stellt sich als monolithische
Entwicklungsumgebung innerhalb des SAP GUI dar. Das zentrale Steuerungselement
bildet hierbei der Repository Browser am linken Bildschirmrand. Dieser erlaubt die

Navigation durch die hierarchische Baumstruktur der Entwicklungsobjekte.

& Workbench Bearbeiten Springen Hilfsmittel Umfeld System Hilfe w
[/] v« ene TR ew

Object Navigator

= [i] [Objekt bearbeiten

a'w Repository Browser

Paket ~ = r

ZSARA FI TV v

4 »

hed 1 1P e
Objektname
- = Z5ARA_FLTV
[Unterpakete
[Dictionary-Objekte
[Klassenbibliothek
[Programme
[Funktionsgruppen
[Includes
[Transaktionen
[Nachrichtenklassen
1 GW Service Builder Projects
7 Erweiterungen

AR DE1(1)100 ™ SAPDE101 INS

)

Abbildung 1: Der Objekt Navigator (Transaktion SE80) mit dem hierarchischen Repository Browser und der integrierten
Werkzeugleiste im SAP GUI.

Architektonisch basiert die SE80 auf dem klassischen Multiple Document Interface
(MDI). Konkret impliziert dies, dass samtliche Werkzeuge vom Editor iiber den Screen
Painter bis zur Tabellendefinition in einem einzigen Fensterrahmen eingebettet sind.
Charakteristisch fiir diese Architektur ist die enge Kopplung an den SAP
Applikationsserver. Technisch wird die Darstellung als Server-Side Rendering
klassifiziert. Zwar gewéhrleistet dieser Ansatz eine hohe Datenkonsistenz, fiihrt in der
Praxis jedoch hiufig zu Latenzen, da jeder Arbeitsschritt die Antwort des Servers

abwarten muss (vgl. Lordieck/Sprenger, 2024, Kap. 2)

2.3 Die Eclipse-Plattform und ABAP Development Tools (ADT)

Demgegeniiber verfolgen die ABAP Development Tools (ADT) einen architektonisch
differenzierten Ansatz. Anstatt auf einer monolithischen Server-Struktur zu verharren,
setzen sie auf der offenen, lokal installierten Eclipse-Plattform auf. Abbildung 2

illustriert, wie sich die Darstellung von der starren Ein-Fenster-Logik der SE80 16st.

Eclipse organisiert die Arbeitsfléche stattdessen modular in sogenannten Perspektiven

und Views (vgl. Lordieck/Sprenger, 2024, Kap. 1).

Abbildung 2: Die ABAP Development Tools in Eclipse mit dem Project Explorer zur Navigation in der Paketstruktur und dem

zentralen Editor-Bereich.

Der Screenshot verdeutlicht dies am Beispiel der Standard-ABAP-Perspektive: Der
links angeordnete Project Explorer tiibernimmt die Funktion des Navigators. Im Kontrast
zur SE80 erlaubt dieser nicht nur die Sicht auf ein isoliertes System, sondern ermdglicht
die parallele Verwaltung mehrerer ABAP-Projekte. Zwar bleibt die hierarchische
Strukturierung erhalten, jedoch werden Inhalte hier bedarfsgerecht vom Server

nachgeladen ("Lazy Loading").

Ein wesentlicher Unterschied ist das parallele Arbeiten an mehreren Objekten. Wahrend
die SE80 oft durch das Modus-Konzept limitiert ist, ermoglichen die ADT das
gleichzeitige Bearbeiten beliebig vieler Artefakte in Tabs, was die Effizienz bei
komplexen Aufgabenstellungen signifikant erhoht (vgl. Pegiel, 2021, Kap. 4).

Gleichzeitig ist zu berticksichtigen, dass die hhere Funktionsdichte und die
Komplexitit der Eclipse-Plattform insbesondere fiir langjédhrige SAP-GUI-Nutzer eine
erhohte Einstiegshiirde darstellen konnen und anfanglich zu Produktivititseinbuflen

fiihren (vgl. Pegiel, 2021, Kap. 1).

2.4 Gegeniiberstellung der Systemarchitekturen

Die Architektur der ADT unterscheidet sich somit fundamental von der SAP GUI
basierten Entwicklung. Eclipse fungiert als vollwertige Integrierte
Entwicklungsumgebung (IDE). Ein Vorteil der Client-basierten Architektur liegt in der
Unterstiitzung moderner Entwicklungsparadigmen. Komplexere Artefakte wie Core
Data Services (CDS) lassen sich aufgrund ihrer Syntax-Anforderungen nur in einer

solchen modernen IDE effizient handhaben (vgl. Hardy, 2015, Kap. 15.2.1).

Zusammenfassend stellt die folgende Tabelle die architektonischen und funktionalen

Unterschiede gegeniiber:

Objekt Navigator
Merkmal Eclipse ADT
(SES80)

Client-basiert / Lokale IDE
Server-basiert / Terminal-

Architektur (vgl. Lordieck/Sprenger,
Emulation
2024, Kap. 1)
DIAG-Protokoll RFC / REST (Ressourcen-
Kommunikation

(Synchron / Hohe Latenz) Ladung bei Bedarf)

Flexibel (Views,

Monolithisches MDI (Ein Perspektiven, Multi-
Benutzeroberfliache
Fenster) Monitor) (vgl. Pegiel,

2021, Kap. 4)

Objekt Navigator
Merkmal Eclipse ADT
(SE80)

Server-Side Rendering
Client-Side Rendering (Nur

Rendering (Pixel/Layout vom
Dateniibertragung)
Server)
Nein
Offline-Lesbarkeit (Verbindungsabbruch = Code im Cache lesbar
Datenverlust)

3 Methodik der Evaluation

3.1 Vorgehensweise und Kriterienauswahl

Die vorliegende Arbeit verfolgt einen qualitativen, analytischen Ansatz. Zur objektiven
Gegentiberstellung der Entwicklungsumgebungen SE80 und Eclipse ADT wird eine

kriteriengeleitete Untersuchung angewandt. Die Methodik gliedert sich in zwei Phasen:

1. Literaturanalyse: Aufarbeitung der theoretischen Grundlagen (siche Kapitel 2).

2. Empirischer Funktionsvergleich: Gegeniiberstellung beider Werkzeuge

anhand konkreter Anwendungsfille ("Use Cases") in Kapitel 4.

3.2 Definition der Evaluationskriterien

Kriterium Definition und Fragestellung

Wie zeiteffizient lassen sich Standardaufgaben
Entwicklungseffizienz erledigen? Bewertet werden Features wie Code-

Vervollstindigung und Templates.

Wie intuitiv gestaltet sich die
Usability

(Gebrauchstauglichkeit)

Benutzeroberflache? Betrachtet werden

Navigation und Fenster-Management.

Welche Werkzeuge stehen zur

Funktionalitit & . . ' .
Qualitatssteigerung bereit? Fokus auf Refactoring
Refactoring
und Debugging.
Zukunftsfihigkeit Inwieweit unterstiitzt das Werkzeug moderne
(Modern ABAP) Paradigmen wie S/4AHANA und CDS?

4 Vergleichende Analyse der Entwicklungsumgebungen

4.1 Code-Erstellung und Editor-Funktionen

Besonders evident wird die Diskrepanz im taglichen Arbeiten bei der Erstellung von
Quellcode. In der SE80 ist der Entwicklungsprozess oft durch assistentengestiitzte
Dialoge ("Wizards") geprégt, da der Editor selbst nur geringe kontextsensitive Hilfe
bietet (vgl. Lordieck/Sprenger, 2024, Kap. 4.2).

Bei der Implementierung eines Funktionsbausteins erfolgt der Aufruf in der SES0
entweder durch manuelle Eingabe der bendtigten Parameter oder mithilfe der Funktion
,»Muster einfligen* (Strg+F6). Wie Abbildung 3 zeigt, 6ffnet sich dabei ein separates
Dialogfenster, das den Aufruf des Funktionsbausteins als Code-Block generiert. Erst

nach Bestétigung generiert das System den Code-Block. Der Nachteil: Nachtrdgliche
Anderungen (z. B. ein neuer Parameter) werden nicht automatisch erkannt und das
Muster muss oft neu eingefiigt werden. Zwar erfordern auch in den ADT nachtrigliche
Schnittstellendinderungen eine Anpassung der Aufrufstellen, diese wird dort jedoch

durch kontextsensitive Hinweise und automatische Quick Fixes wesentlich unterstiitzt.

[E DE1(1)/100 Muster einfiigen =3

Anweisungen
() CALL FUNCTION T
(JABAP Objects Muster
{ 'MESSAGE
Klasse
Typ v
Nummer
(JSELECT * FROM
(' PERFORM
JAUTHORITY-CHECK
{JWRITE Muster
()CASE zu Status

Strukturiertes Datenobjekt
()mit Feldern aus Struktur

() mit TYPE->Struktur

{)CALL DIALOG

(") Anderes Muster

v][]

Abbildung 3: Der statische Dialog zur Muster-Einfiigung (Pattern Wizard) fiir Funktionsbausteine in der SE80.

Im Gegensatz dazu bieten die ADT in Eclipse eine intelligente Code-Vervollstdndigung
(Content Assist), aufrufbar iiber Strg+Leertaste. Abbildung 4 demonstriert dies am
Beispiel der Klasse cl_salv_table. Eclipse analysiert den Kontext direkt an der Cursor-
Position und schlidgt nicht nur den Methodennamen vor, sondern visualisiert in einem
Overlay sofort die komplette Signatur inklusive aller Import- und Export-Parameter

(wie ,,r_salv_table®).

Abbildung 4: Die kontextsensitive Code-Vervollstandigung (Content Assist) in den ADT mit Anzeige von Methodensignaturen.

Wie im Screenshot ersichtlich, weist die IDE kontextsensitiv auf Funktionen wie die
vollstdndige Signatur-Einfiigung (Shift + Enter) hin. Im Unterschied zur SE80, deren
Code-Vervollstindigung (Strg + Leertaste) iiberwiegend statisch bleibt oder {iber
separate Dialoge (,,Muster einfiigen*) erfolgt, ist diese Funktionalitét in den ADT direkt
in den Editor-Kontext integriert. Dadurch wird der Schreibfluss weniger unterbrochen
und der Bedarf an expliziten Kontextwechseln reduziert (vgl. Lordieck/Sprenger, 2024,
Kap. 4.2).

4.2 Navigation und Suche im Repository

Die Navigation innerhalb der SE80 ist primér hierarchisch organisiert und stark an die
Paketstruktur gebunden. Zwar stehen auch Suchfunktionen zur Verfiigung, diese sind
jedoch hiufig auf bestimmte Objekttypen beschrinkt oder erfordern den Wechsel in
separate Dialoge. Eclipse verfolgt demgegeniiber einen konsequent suchbasierten
Ansatz: Mit der Funktion ,,Open ABAP Development Object* (Strg + Shift + A),
dargestellt in Abbildung 5, konnen Entwickler systemweit und objekttypiibergreifend

nach Entwicklungsartefakten suchen.

& Open ABAP Development Object O

Project: * DE1 1 [][]_sk?1?325_de Browse...

Enter search string and /or filter criteria (see help for details)
, Z'.J.'

Matching items:

== Z001 (ABAP Package) Kunden-Entwicklungsklasse
P ZOSAP 12
Z124T0P
¥ Z124_MERGE
P Z2048
B z2ADD4DCCF97534F906797B91B5823

P ZAA

CdzAA ABWEICHER VKOSTL
CdzAA ANLAGENGITTER
CdzAA AR28

CdzAA BARCODES

P ZAA_FORMULAR FORMS
P ZAA_RAHISTO2
C4zABAON INT

& More than 50 results

w= 7001
7

Abbildung 5: Der zentrale Suchdialog "Open ABAP Development Object" (Strg+Shift+A) zur systemweiten Suche in Eclipse.

Ein entscheidender Vorteil liegt in der Unterstiitzung von Wildcards und der
CamelCase-Suche. Dies beschleunigt den Zugriff auf Entwicklungsobjekte signifikant
(vgl. Lordieck/Sprenger, 2024, Kap. 4.1).

Um die Diskrepanz in der Bedienungsgeschwindigkeit zu quantifizieren, lohnt sich ein

Blick auf die Tastenkiirzel (Shortcuts). Wahrend die SE80 stark mausorientiert ist,

erlauben die ADT eine fast vollstindige Steuerung {iber die Tastatur.

SAP GUI/
Funktion Eclipse ADT Kommentar
SE80
Manuelle
Baum- . ' .
o Strg + Shift + Eclipse-Suche ist
Objekt offnen Navigation
A objektiibergreifend
oder
SE24/SE38
Identisch (Standard
Aktivieren Strg + F3 Strg + F3
SAP)
Strg + F6
Strg +
(Muster
Code-) Leertaste, Eclipse ist
einfligen) ' .
Vervollstindigung anschlieflend kontextsensitiv
oder Strg +
Shift + Enter
Leertaste
Nicht
Element Alt + Shift + Refactoring iiber alle
vorhanden
umbenennen R Verwendungsstellen
(Manuell)
Methode Nicht Alt + Shift + Automatische Code-
extrahieren vorhanden M Kapselung

SAP GUI/
Funktion Eclipse ADT Kommentar
SES80
F2 zeigt Details im
Definition Doppelklick
F3 oder F2 Overlay ohne
anzeigen (Navigation) o
Navigation
Fenster Nicht moglich Fokus auf den Code-
Strg + M
maximieren (MDI) Editor
Strg + Alt + Standard-IDE-
Zeile duplizieren Strg + D
Unten Verhalten

Diese Tabelle verdeutlicht, dass Eclipse ADT etablierte Standards moderner IDEs (wie
Visual Studio oder IntelliJ) adaptiert, was insbesondere jlingeren Entwicklern den

Einstieg erleichtert.

4.3 Unterstiitzung von Refactoring-Mafinahmen

Defizite der SE80 offenbaren sich insbesondere im Bereich des Refactorings. In der
klassischen Umgebung miissen Aufgaben wie das Umbenennen von Methoden manuell

durchgefiihrt werden, was fehleranféllig ist.

Die ADT stellen hierfiir automatisierte Werkzeuge bereit. Wie das Kontextmenii in
Abbildung 6 demonstriert, bietet Eclipse Funktionen wie "Rename" (Alt+Shift+R) oder
"Extract Method" (Alt+Shifi+M) an (vgl. Hardy, 2021, Kap. 1.2.4).

- Ctrl+Shift+U
«- Outline

B °. 8 age Assignment F2
Alt+F2

Share Link for Selection.

100, SAP... SK717.

Abbildung 6: Das Kontextmenii fiir Source-Code-Operationen in Eclipse, inklusive automatisierter Refactoring-Funktionen wie
"Extract Method".

Bei Selektion eines Code-Blocks und Ausfiithrung von "Extract Method" analysiert
Eclipse den Datenfluss und generiert automatisch eine neue Methode mit korrekten
Parametern. Dies senkt die Hemmschwelle fiir qualititssichernde Mafinahmen (vgl.
Hardy, 2021, Kap. 1.2.4). Gleichzeitig erfordert der Einsatz automatisierter Refactoring-
Werkzeuge ein hohes Vertrauen in die IDE, da insbesondere bei komplexen Legacy-
Strukturen eine nachtriigliche manuelle Uberpriifung der Anderungen weiterhin

notwendig bleibt.

Ein wesentliches Differenzierungsmerkmal zwischen der SE80 und den ABAP
Development Tools (ADT) in Eclipse ist die Unterstiitzung durch sogenannte "Quick
Fixes" (in Eclipse iiber das Tastenkiirzel Strg + 1 erreichbar). Wahrend Refactoring in
der SE80 oft manuelle Eingriffe in verschiedenen Transaktionen erfordert, ermoglichen

die ADT einen assistierten Ansatz direkt im Quellcode.

Ein exemplarisches Szenario fiir die Effizienzsteigerung ist die "Usage-First"-
Entwicklungsmethodik. Hierbei schreibt der Entwickler zunédchst den Aufruf einer
Methode, die noch gar nicht existiert. In der SE80 wiirde dies zu einem Syntaxfehler
fiihren, der den Entwickler zwingt, den Editor zu verlassen, in die Klassendefinition
(SE24) zu wechseln, die Methode samt Signatur manuell anzulegen und anschlieBend
zum Aufruf zuriickzukehren. Hardy beschreibt diesen Prozess in Eclipse als signifikant
effizienter: Durch die Anwendung eines Quick Fixes auf den fehlerhaften

Methodenaufruf generiert die IDE automatisch die Methodendefinition und -

implementierung, wobei die Typisierung der Parameter direkt aus dem Kontext des
Aufrufs abgeleitet wird (vgl. Hardy, 2021, Kap. 1.2.3). Dieser Automatismus reduziert
nicht nur den manuellen Schreibaufwand, sondern minimiert auch den Kontextwechsel

("Context Switch"), was den kognitiven "Flow" des Entwicklers aufrechterhilt.

1tung @1 dpc=>makh was
 buchhaltung 01 _dpc

= Metl

Abbildung 7: Automatisierte Methodengenerierung durch Quick Fixes in Eclipse ADT.

Die praktische Anwendung dieses Features wird in Abbildung 7 veranschaulicht. Das
Beispiel zeigt einen Methodenaufruf, der im Code implementiert wurde, bevor die
Methode technisch existierte (Usage-First-Ansatz). Wéhrend dies in der SE80 einen
manuellen Abbruch des Arbeitsflusses erfordern wiirde, bietet Eclipse ADT {iber das
Quick-Fix-Menii (Strg + 1) kontextsensitiv die automatische Generierung der fehlenden
Methode an (siehe rechter Bildteil). Wie der Screenshot verdeutlicht, erkennt die IDE
dabei automatisch die benétigten Parameter und Signaturen, wodurch fehleranfillige

manuelle Eingaben entfallen.

4.4 Analyse- und Debugging- Werkzeuge

Ein kritischer Erfolgsfaktor in der Softwareentwicklung ist die effiziente Fehleranalyse.
In der SE80 wird der klassische ABAP Debugger als eigenstindiges Fenster (separater
Modus) ausgefiihrt. Wie Abbildung 7 zeigt, liberlagert dieses Fenster oft den

eigentlichen Editor, was den visuellen Kontext des Entwicklers unterbricht.

DE1(1)/100 Programm Z_AUFGABE0801 —./

(] e ok o SR e
Programm Z. [E Debugger Bearbeiten Springen Breakpoints [Einstelungen Sonstiges System Hife w_
el] l«ed @ =HBk B ew
LoJ
Oberschrift ABAP Debugger(1) (exklusiv)(SAPDE101_DE1_00)
SO_BANKS = Oschrittweite @G [Watchpoint Fglayout A7 Debugger-Layer konfigurieren
SO_LIFNR -
& |z2_aurFGaBE0801 /| %_RUFGABE0B01_FO1 /|77 SY-SUBRC 4 .
5 FORM / SHOW_ALV = sY. 1
Desktop1 Desktop2 | Desktop3 ~ Standard Strukturen | Tabellen | Objekte | Detailanzeige Data Explorer Break-/Watc... ’
1s_ausgabe-landl = ls_rahmendaterf‘ﬁ ABAP und Dynpro Stack
1s_ausgabe-ort0l = ls_rahmendater _ m o - y
1s_ausgabe-stras — ls_rahmendater - S B ::'Emg""“’ Ersionis o
1s ausgabe bankl = ls rahmendater =@ = % = FORM SHOW_ALV]
1s_ausgabe bankn = l3_rahmendater [3 & Event START-OF-SELECTION ra
15_ausgabe banks ~ ls_rahmendater = M lnay s e e —_
APPEND ls_ausgabe TO ch_ausgabe. “r >
ENDLOOP. id
F Variablen 1 | Variablen 2 | Locals | Globals | A... +JEIE
&= | CLEAR 1s fieldcat. =
1s_fieldcat-col_pos = =
1s_fieldcat-outputlen . - TEBREE = @ [
G 1s fieldcat-fieldname = - St.. \Variable W... [Wert -
L 4 =
aOr r
) Standard-Layout gezogen (Userspezifisches Layout -> Langtext) SAPd @ DE1(2)100 ™ SAPDEIOI INS &
Session "1" connected to Debugger ... DE1(1)100 ™ SAPDEIOL INS o

Abbildung 8: Der klassische ABAP Debugger in einem separaten Fenster, losgelost von der Entwicklungsumgebung.

Die ADT integrieren den Debugging-Prozess hingegen nahtlos in die IDE. Durch die
spezielle "Debug-Perspektive" bleibt der Quellcode im Editor sichtbar, wahrend
Variablen und Breakpoints in dedizierten Views angeordnet werden (vgl.

Lordieck/Sprenger, 2024, Kap. 6.3).

de - Eclipse IDE

Smart Insert

Abbildung 9: Die integrierte Debug-Perspektive in Eclipse: Quellcode und Variablen-Ansicht in einer gemeinsamen

Entwicklungsumgebung.

Es ist jedoch anzumerken, dass der klassische SAP-GUI-Debugger bei bestimmten
Analyseaufgaben weiterhin klare Vorteile bietet. Dies zeigt sich insbesondere bei
dialogorientierten Programmen sowie bei der Untersuchung komplexer Kontrollfliisse.
Wie in Abbildung 8 dargestellt, stellt der SAP-GUI-Debugger den vollstindigen ABAP-
und Dynpro-Aufrufstack dauerhaft und iibersichtlich dar. Ereignisse wie START-OF-
SELECTION, FORM-Aufrufe oder Dynpro-Events sind klar voneinander getrennt

sichtbar und erlauben eine schnelle zeitliche Einordnung des Programmablaufs.

Gerade bei tief verschachtelten Funktionsaufrufen, der Analyse von Includes oder bei
der Fehlersuche in klassischen Dynpro-Anwendungen erleichtert diese permanente
Stack-Darstellung das Verstdndnis des Kontrollflusses erheblich. Auch systemnahe
Aspekte wie Update-Tasks, RFC-Kontexte oder Benutzerinteraktionen lassen sich im

SAP-GUI-Debugger héufig transparenter nachvollziehen.

Die Debug-Perspektive der ABAP Development Tools integriert den Debugging-
Prozess zwar nahtlos in die Entwicklungsumgebung und ist fiir den téglichen,
codezentrierten Entwicklungsprozess komfortabler. Bei spezialisierten
Analyseaufgaben erreicht sie jedoch nicht in allen Fillen die gleiche Ubersichtlichkeit
und Detailtiefe wie der klassische SAP-GUI-Debugger (vgl. Lordieck/Sprenger, 2024,
Kap. 6.3).

Ein technologisches Alleinstellungsmerkmal von Eclipse ist zudem die ABAP Profiling
Integration. Wéhrend Laufzeitanalysen (Transaktion SAT) in der SE80 oft miihsam
konfiguriert werden miissen, erlaubt Eclipse den direkten Start eines Profiling-Laufs aus
dem Editor heraus. Es werden hierbei die visuellen Auswertungsmoglichkeiten betont,
die es erlauben, Performance-Flaschenhélse ("Hotspots") grafisch im Code-Fluss zu
identifizieren, ohne tief in technische Trace-Dateien einsteigen zu miissen (vgl.

Lordieck/Sprenger, 2024, Kap. 6.3).

4.5 Unterstiitzung moderner ABAP-Konzepte (S/4HANA)

Neben der Effizienz ist die Wahl der Entwicklungsumgebung heute eine Frage der
technischen Machbarkeit im Kontext von S/4HANA. Mit der Einfiihrung moderner
Paradigmen verschiebt sich die Anwendungslogik zunehmend auf die Datenbank

("Code-to-Data").

Zentrales Element hierfiir sind die Core Data Services (CDS). Hardy (2021) klassifiziert
diese als ,,Datenbank-Views der nidchsten Generation®, welche die funktionalen
Moglichkeiten klassischer SE11-Views weit libertreffen. Da CDS-Views mittels einer
eigenen DDL-Syntax definiert werden, ist deren Bearbeitung in der SE80 technisch
nicht mehr moglich. Fiir die Umsetzung moderner Anforderungen ist der Einsatz der
ABAP Development Tools in Eclipse somit faktisch alternativlos (vgl. Hardy, 2015,
Kap. 15.2.1).

4.6 Automatisierte Qualititssicherung und Test-Driven Development

(TDD)

Die Qualitdtssicherung in ABAP-Projekten umfasst heute weit mehr als die reine
Fehlerbehebung im laufenden System. Neben statischer Codeanalyse (z. B. iiber das
ABAP Test Cockpit) sind automatisierte Unit-Tests und ein strukturierter
Refactoring-Prozess entscheidend, um Anderungen risikoarm und nachvollziehbar

umzusetzen (vgl. Hardy, 2021, Kap. 10).

Test-Driven Development (TDD) in ABAP folgt dem Prinzip ,,Red-Green-Refactor*:
Zunichst wird ein Test formuliert, der erwartetes Verhalten beschreibt und (noch)
fehlschldgt; danach wird die minimal notwendige Implementierung erstellt, bis der Test
griin ist; abschlieBend wird der Code refaktoriert, ohne die Fachlogik zu verdndern. In
ABAP wird dieses Vorgehen typischerweise mit ABAP Unit umgesetzt, wobei
Testklassen als lokale Klassen mit dem Zusatz FOR TESTING definiert werden und
Assertions liber CL_ ABAP_UNIT ASSERT erfolgen (vgl. Hardy, 2015, Kap. 15.2.1).

CLASS ltc_calculator DEFINITION FOR TESTING
DURATION SHORT
RISK LEVEL HARMLESS.

PRIVATE SECTION.
DATA: mo_cut TYPE REF TO zcl_calculator. " Class Under Test

METHODS: setup.
METHODS: test_addition FOR TESTING.
ENDCLASS.

CLASS ltc_calculator IMPLEMENTATION.
METHOD setup.
" Wird vor jedem Test ausgefiihrt
mo_cut = NEW #().
ENDMETHOD .

METHOD test_addition.
" GIVEN: Zwei Zahlen
DATA(lv_sum) = mo_cut->add{ i_a =5 i b =3).

" THEN: Erwarte Ergebnis 8
cl_abap_unit_assert=>assert_equals(
act = lv_sum

exp = 8
msg = 'Addition fehlgeschlagen'
).
ENDMETHOD .
ENDCLASS.

Listing 1: Beispiel einer ABAP-Unit-Testklasse (TDD) mit setup und assert_equals

Listing 1 zeigt eine kompakte ABAP-Unit-Testklasse fiir eine Rechner-Klasse (,,Class
Under Test*). Der Aufbau mit setup (Initialisierung vor jedem Test) und einer
Testmethode, die iiber assert_equals ein erwartetes Ergebnis priift, entspricht dem

iiblichen Muster fiir Einstiegsbeispiele in ABAP Unit (vgl. Hardy, 2015, Kap. 15.2.1).

Unterstiitzung durch ADT im Vergleich zur ABAP Workbench (SE80): Wéhrend sich
Qualitétssicherungs-Transaktionen in der ABAP Workbench eher als getrennte
Werkzeuge anfiihlen, bindet ADT viele Funktionen direkt in den Editor-Kontext ein.
Dazu zédhlen insbesondere Quick Fixes/Quick Assist (z. B. Strg+1) flir Refactorings und
Code-Erzeugung sowie die Moglichkeit, Priifergebnisse und Fundstellen tiber

Navigations- und Link-Funktionen schnell anzuspringen (vgl. Lordieck/Sprenger, 2024,

Kap. 4.6.3; Lordieck/Sprenger, 2024, Kap. 4.10).

Einordnung fiir die Evaluation: Fiir die im Seminartitel geforderte Gegeniiberstellung
lasst sich festhalten, dass ADT eine stérkere ,,In-Editor*“-Integration von Testen,
Refactoring und Analyse bietet. Dadurch verkiirzen sich Feedback-Zyklen, was
insbesondere bei iterativen Vorgehensmodellen (wie TDD) die
Entwicklungsproduktivitit und die Codequalitét unterstiitzen kann. Die ABAP
Workbench bleibt in vielen Systemlandschaften weiterhin relevant, erreicht jedoch bei
modernen Entwicklungspraktiken weniger Bedienkomfort und Kontextkohidrenz als

ADT (vgl. Hardy, 2015, Kap. 15.2.1).

5 Diskussion der Ergebnisse

5.1 Zusammenfassende Bewertung

Die Analyse offenbart eine signifikante technologische Divergenz. Hinsichtlich der
Entwicklungseffizienz zeigen die ADT durch Features wie Content Assist eine
deutliche Uberlegenheit gegeniiber den statischen Wizards der SE80. Das Kriterium der
Funktionalitit und Refactoring stellt den deutlichsten Unterschied dar: Was in der SEQ0
manuelle Arbeit ist, wird in Eclipse zum automatisierten Standard. Beziiglich der
Zukunftsfahigkeit zeigt sich, dass die SE80 fiir klassische ABAP-
Entwicklungsaufgaben weiterhin geeignet ist, bei der Umsetzung moderner S/4AHANA -
spezifischer Technologien jedoch funktionale Einschrinkungen aufweist. Zentrale
Konzepte wie Core Data Services (CDS) lassen sich ausschlieBlich in den ABAP
Development Tools umsetzen, wodurch sich ADT insbesondere fiir Neuentwicklungen

als notwendige Ergidnzung zur klassischen ABAP Workbench etabliert.

Die Bewertung beriicksichtigt dabei, dass eine technische Uberlegenheit einzelner
Werkzeuge nicht automatisch bedeutet, dass diese in jedem organisatorischen,

historischen oder projektbezogenen Kontext uneingeschrankt iiberlegen sind.

5.2 Strategische Implikationen

Fiir IT-Organisationen empfiehlt sich ein prozessualer "Hybrid-Ansatz". Fiir reine
Wartungsaufgaben im klassischen Report-Umfeld bietet die SEQ0 weiterhin einen
weiterhin sinnvollen Einsatzrahmen. Fiir simtliche Neuentwicklungen und Refactoring-
MaBnahmen ist der Einsatz von Eclipse ADT jedoch aus Effizienz- und

Qualitétsgriinden als ratsam anzusehen.

6 Fazit und Ausblick

Die vorliegende Arbeit evaluierte die Entwicklungsumgebungen SE80 und Eclipse
ADT. Die Untersuchung zeigt, dass der Wechsel von der serverzentrierten SE80 zur
clientbasierten Eclipse-Plattform eine deutliche Verdnderung der Entwicklungsweise

darstellt. Es konnte nachgewiesen werden, dass die ADT durch asynchrone

Kommunikation, Multi-Tasking und tiefe Integration moderner Syntax-Konzepte (CDS)
die Produktivitit signifikant steigern. Die SE80 verbleibt als robustes, aber funktional
limitiertes Werkzeug fiir den Bestandsschutz. Fiir ABAP-Entwickler gewinnt die
Nutzung von Eclipse ADT zunehmend an Bedeutung, insbesondere im Kontext

moderner ABAP- und S/4HANA-Entwicklungen.

Erklarung

SST ‘,”:"" Erkilaru

Literaturverzeichnis

Hardy, Paul David (2015):
ABAP to the Future

Hardy, Paul David (2021):
Improving the Quality of ABAP Code

Lordieck, Thomas; Sprenger, Manfred (2024):
SAP-Schnelleinstieg: ABAP-Entwicklung in Eclipse - 2., erweiterte Auflage

Pegiel, Lukasz (2021):
ABAP in Eclipse: Install, Configure, Use, and Enhance Your ADT

