Fachhochschule Aachen

Campus Jiilich

UNIVERSITY OF APPLIED SCIENCES

FH AACHEN

Department 9: Medical Engineering and Technomathematics

Program of Study: Applied Mathematics and Computer Science B.Sc.

A Literature-Based Comparison of Machine Learning Algorithms
for Anomaly Detection in Multivariate Time Series
for the Local Real-Time Monitoring of Mechanical Ventilation

Seminar Paper
Tobias C. von Brevern
Matr. No.: 3657801
ORCID ID: 0009-0001-5530-5595

First Examiner (Reviewer): Prof. Dr. Florian Heinrichs, FH Aachen

Second Examiner (Supervisor): Nils Freyer, M.Sc., IMI UKA

Aachen, 19.12.2025

Declaration

Declaration

I, Tobias C. von Brevern, hereby declare that | have written this seminar paper independently and
have used no sources or aids other than those indicated. All passages taken verbatim or in substance
from other works are clearly marked and this paper has not previously been submitted, in whole or
in part, for any course or examination. As agreed with both examiners, | was permitted to use LLMs
such as ChatGPT solely for correcting language and phrasing. | affirm that, as the author, | take full
responsibility for the content of this work.

| undertake to retain a copy of the seminar paper for five years and to provide it, upon request, to the

Examination Office of the Department of Medical Engineering and Technomathematics.

Tobias C. von Brevern C(\/- g\/w

(Aachen, 19.12.2025)

Abstract

Abstract

Introduction: Mechanical ventilation plays a crucial role in modern medical care, as it is the primary
treatment for various respiratory and breathing disorders. However, like other medical devices, me-
chanical ventilators are prone to generate false alarms. These can lead to alarm fatigue, a state in
which medical personnel exhibit a reduced ability to notice or respond to alarms or to treatment errors
when staff incorrectly assume the alarm to be valid. Because no established method exists for deal-
ing with frequent false alarms, this work aims to identify viable algorithms for use in an autonomous
system that can detect and appropriately handle false alarms resulting from equipment errors.
Methods: To identify viable candidates, | used an existing comparison study of algorithms for time
series anomaly detection by Schmidl et al. [1]. | defined the requirements that the intended application
imposes on a viable algorithm and developed a context-based evaluation scheme using multi-attribute
decision making. | then validated the weighting of the scheme using a Monte Carlo simulation and
ranked the algorithms according to their viability, separately for each machine-learning type.
Results: | identified seven key requirements, including runtime constraints, hardware demands,
anomaly-detection performance and input-data characteristics. For all but one requirement, | was
able to obtain relevant metrics from the available dataset and construct a scoring function using multi-
attribute decision making. | selected weights for this scoring function and assessed their robustness
and stability through a Monte Carlo simulation. In the simulation it became evident, that the most
viable algorithms are PCC for unsupervised learning, RBForest and RobustPCA for semi-supervised
learning and Normalizing Flows for supervised learning.

Discussion: All highly viable algorithms exhibited both high mean ranks, indicating high viability and
low standard deviations, indicating high rank stability, across the Monte Carlo simulation. Nonethe-
less, the scoring function has limitations: the dataset was restricted, runtime requirements for the
specific clinical use case were unavailable, one requirement could not be quantified and algorithm
crashes during time series execution may have introduced bias into the dataset.

Conclusion: Future work is required to identify the most viable algorithm or ensemble for developing
an autonomous alarm management system for mechanical ventilation. Such work could leverage the
evaluation scheme | proposed in this work, using simulated patient data and incorporating additional
context regarding available processing times. Nevertheless, given the Monte Carlo validation and the
focus on algorithm rankings rather than raw scores, the resulting algorithm ranking | presented in this

work provides a robust guideline for future work.

Contents

Contents
1_Intr ion [1]
T4 MOTIVATION] . -« et e e e e e e e e e
[1.2 Research OBJECHIVES|.ouiitit i
[.3 PrelimiNariEs].ottt ettt e e e e et e et e e e
(5l
BT ReqUIrEMENTS|. ...
[3.7.7 Runtime RequIreMeNts|ouuiuiiiiii e
[3.1.2 Hardware Requirements|......... ...
[3.1.3 Output Quality Requirements|cooiiiiiii i
[3.1.4 Input Data Requirements|.................... 8|
[3.1.5 Optional Requirements and Tie Breaker|..............cooviiiiiiiiiiiiiianns 8]
13.2 Defining the Evaluation Scheme|.................. 9
[3.2.1 Selection of Algorithm Attributes|.....................]
[3.2.2 Classification of Algorithm Attributes| ...
2. ndardization of Attri Values|. ...
[3.2.4 Form Weighted Sum|........ ..o
(3.3 Applying the Evaluation Scheme)........... ...
[3.3.1 Weight SeleCtion|ouuiiii e
3.3.2 RObUSINESS TeSt] ...
[4 _Discussion|
[4.1 Interpretation]oooiii e
[4.2 LIMIatiONS] . ..o
[5 Conclusion]
24]
Appendix 25

1 Introduction

1 Introduction

1.1 Motivation

Mechanical ventilation plays an important role in modern medical care [2-5]. It is used in various
environments such as anesthesia, emergency care, intensive care and patient transport [5}|6]. Me-
chanical ventilation is the primary therapeutic intervention for managing acute respiratory distress
syndrome (ARDS) and acute lung injury (ALI) and it is essential for sustaining patients’ lives during
these high-mortality conditions [7]. The use of mechanical ventilation also helped to reduce mortality
rates for patients drastically, for example during the 1952 Copenhagen poliomyelitis epidemic or the
COVID-19 pandemic [2].

The number of cases of mechanical ventilation is continuously rising [3]. At the same time mechanical
ventilation is a critical intervention. Complications may result in patient harm, potentially including
death [8]. Therefore the risk for complications during ventilation should be minimized.

To ensure patient safety and to alert medical staff in the event of a complication, a ventilator can trig-
ger a wide range of audible and visual alarms [6,9]. For example some ventilators measure various
ventilation parameters, such as volume and flow. If a manually set parameter exceeds or falls below
its predefined threshold, an alarm is triggered [4, 6]. Since these alarm thresholds typically must be
set manually, there is a high risk of selecting suboptimal values, which can result in either excessive
alarms, contributing to alarm fatigue (Definition or insufficient alarms, thereby endangering patient
safety.

The number of alarms in clinical environments is steadily increasing [10]. This number of especially
audible alarms leads to alarm fatigue among medical staff [6//10/|11]. This causes a significant hazard
to patient safety [6) [10], for example when medical staff, due to alarm fatigue, fails to recognize an
alarm and does not react to it [11]. Meanwhile 85% to 99% of alarms generated by all medical devices
do not require any action from medical staff but are instead false alarms, for example due to improper
alarm thresholds or faulty equipment like sensors or wires [12].

Currently, the primary approach for reducing false alarms during ventilation is to adjust the alarm
thresholds to the optimal settings for a given patient [10]. However, if the device itself measures
wrong data, for example due to a compromised measuring line of a transport ventilator [9], this
approach does not help.

1.2 Research Objectives

Besides optimizing alarm thresholds another approach to reducing false alarms is the integration of
data from the mechanical ventilator and additional medical devices, enabling joint analysis across
multiple data sources [12]. Theoretically, it should be possible to apply anomaly detection algorithms
to this combined time series dataset to identify false alarms. Ideally, such analysis would be per-
formed on a small and cost-effective device.

The overarching goal is to reduce the frequency of false alarms in mechanical ventilation by automat-
ically identifying and suppressing alarms triggered by measurement errors, such as a compromised
measuring line and instead generating more targeted and informative alerts. To contribute to this

1 Introduction

goal, the present work aims to identify feasible algorithms suitable for this task. Specifically, the
objectives of this work are:

(O1) To define the requirements that alarm management for mechanical ventilation imposes on any
suitable algorithm

(O2) To develop an evaluation scheme to quantify the extent to which each algorithm fulfills these
requirements

(O3) To apply this evaluation scheme to provide an ordered list of suitable algorithms across the
categories of supervised, semi-supervised and unsupervised learning

1.3 Preliminaries

In this section, | will provide a brief introduction to the preliminaries of this work.

Definition 1 (Alarm fatigue). Alarm fatigue is a phenomenon that occurs when individuals are ex-
posed to a high frequency of audible alarms, such as in intensive care units (ICUs). As a result,
affected individuals may become desensitized to these alarms, leading to a reduced ability to notice
or respond to them appropriately [6].

Definition 2 (Time series). A Time series is an ordered set T = {T,T>,...,T,,} of m real-valued,
potentially multidimensional data points, where each T; € R" [1]. If n = 1, T is referred to as a
univariate time series. Otherwise, it is a multivariate time series. In the latter case, correlations may
exist between the different dimensions [13].

Definition 3 (Anomaly). An Anomaly, in the context of time series (Definition[2), refers to one or
more data points in one or, in the context of multivariate time series, more dimensions that deviate
significantly from the usual distribution, values, correlations or general pattern within the time se-
ries [1,113+16]. Only a small portion of a time series can be considered anomalous, as it represents
a deviation from the normal pattern [13].

Definition 4 (Anomaly detection). Anomaly Detection describes the process of finding anomalies
(Definition |3) in time series. Typically this is achieved by assigning every data point in a time series
either an anomaly score, which describes how anomalous it is, or a binary label, either anomalous
or non-anomalous [1}[13,15]. There are different types of anomaly detection approaches, including
statistical clustering, distance-based, density-based, pattern matching, predictive, deep learning and
ensembles of the former [13}[15].

Definition 5 (Anomaly Types). There are three main Anomaly Types in the context of time series
(Figure[1):

* A Point Anomaly (or outlier, global outlier or global anomaly) is a single data point that is
anomalous in the context of the entire time series, for example due to an unusually high or low
value or an atypical correlation [13+16].

1 Introduction

Different anomaly types in univariate sine wave time series

1.5 A

1.0 A

0.5 A

Tm

0.0 A

—-0.5 1

_1.0 .

T T T T T T
50 100 150 200 250 300 350
m

o

Figure 1: Example of the three types of anomalies in one time series (m = 350 data points). The underlying
pattern is a simple sine wave, including a point anomaly (blue), a sequence anomaly (orange) and a
contextual anomaly (green).

* A Sequence Anomaly (or collective, group, pattern or subsequence anomaly) is a continuous
series of anomalous data points (n > 1). Individual points within the sequence may not appear
anomalous on their own, but the pattern they form (or break) constitutes the anomaly [14-H16].

» A Context Anomaly (or contextual anomaly or local outlier) is a data point or a series of data
points that are not anomalous with respect to their global values but are considered anomalous
in the context of neighboring points, for example due to an unusually high increase or decrease
in value [13+16].

Definition 6 (Learning types). There are three Learning Types in machine learning related to this
work:

* Unsupervised Learning (or Type | learning) is a type of machine learning that discovers hid-
den structures or patterns in unlabeled data based solely on its intrinsic characteristics, without
requiring prior knowledge or labeled training data. There is no separate training phase. Instead,
learning occurs continuously during execution. In the context of time series analysis, unsuper-
vised methods model normal behavior, enabling deviations from these patterns to be detected
as potential anomalies [1}/13].

» Supervised Learning (or Type Il learning) is a type of machine learning in which the algorithm
is trained on labeled data, meaning each input is paired with a known output. The algorithm
learns to map inputs to outputs and can then predict or classify new, unseen data based on
this mapping. The learning objective of supervised learning can be defined as minimizing
the models error on yet unseen data [17]. In time series analysis, supervised methods can
be trained to recognize normal and anomalous patterns when labeled examples of both are

1 Introduction

available. However, supervised learning is uncommon in time series analysis, as sufficiently
large labeled datasets are typically rare [1,/13].

+ Semi-Supervised Learning (or Type lll learning) is a hybrid approach that combines elements
of supervised and unsupervised learning. In time series analysis, the algorithm is typically
trained on data that contains no anomalies or is assumed to be anomaly-free, in order to build
a model of normal behavior. Deviations from this model are then detected and classified as
potential anomalies [1}|13].

Definition 7 (Real-Time Evaluation). Real-Time Evaluation refers to the process of evaluating data
as events occur [12]. In the context of this work, it describes an algorithm’s ability to process incoming
data continuously and output results without accumulating delays, maintaining a consistent, minimal
latency relative to the arrival of new data points.

Definition 8 (Edge Computing). Edge Computing is a type of computing in Internet of Things (loT)
systems that enables devices to process data locally, close to the source, rather than relying solely on
a central server. Each edge device can analyze data from multiple sensor nodes, using results locally
or performing partial computations before sending processed data to a central server or cloud [18].

2 Methods

2 Methods

To achieve the first research objective (O1), | first derived the requirements for any suitable algorithm
from the given use case using SOPHIST requirement templates [19]. For this purpose, | defined the
importance of various algorithm features based on the characteristics of the use case. Namely, those
were: runtime, hardware requirements, quality metrics and the type of processable data.

Next, to achieve the second research objective (O2), | developed a context-based evaluation scheme
using multi-attribute decision making [20H24] to systematically assess the feasibility and performance
of algorithms within this use case. To achieve a decision in multi-attribute decision making and
thereby creating such an evaluation scheme, several steps must be carried out:

« Definition of the set of alternatives, in the context of this work the algorithms, between which a
choice is to be made.

+ Selection of use-case—specific relevant attributes from the overall set of available attributes.

+ Classification of attributes into binary-scored attributes, which determine whether an alternative
is admissible and continuously-scored attributes, which increase or decrease the suitability of
an alternative.

 Standardization of attribute values.
+ Selection of a weight for each attribute.

« Computation of the resulting score as weighted sum for all alternatives.

The performance data used in this study was obtained from Schmidl et al. [1], who evaluated a range
of algorithms across the three different learning types (Definition|[6). This work does not replicate
or extend those evaluations, but rather uses them as a basis for algorithm selection tailored to the
specific use case. The work of Schmidl et al. is well suited as such a basis since it includes a high
number of comparable results, comparing 71 machine learning algorithms for anomaly detection in
time series, 33 of which are capable of processing multivariate data, across 976 datasets, 74 of which
are multivariate. They provided the following parameters for each algorithm-dataset combination:
training preprocess time, training main time, execution preprocess time, average precision over all
datasets, the area under the curve (AUC) for the receiver operating characteristic (ROC), the AUC
of the precision—recall curve (PR), the AUC of the range-based precision range-based recall curve
(PrRt) overall time and an error status indicator. However the limited number of resulting parameters
poses some limitations on the evaluation scheme.

Established frameworks exist for selecting an appropriate algorithm for a given use case based on the
cost and frequency of misclassifications [25}126]. However, due to the lack of comparable parameters,
particularly the specific elements of the confusion matrices, as well as measures such as specificity
and sensitivity, these frameworks are not applicable in the present context.

| applied the scoring function which resulted from multi-attribute decision making to all algorithms
provided by Schmidl et al. Since no domain-specific weighting guidelines were available, the weights

2 Methods

were selected based on reasoned argumentation. The evaluation was conducted separately for the
three different learning types.

To verify the weight selection, | conducted a robustness analysis by performing a Monte Carlo sim-
ulation. For this analysis, | applied the algorithm described by Jangid et al. in their stability and
robustness study [27]:

 Step 1: Initialize Parameters
Let W; be a random variable representing the i-th weight in any iteration. The random variable
is normal distributed with

Wi~N(p=w;, 0 =a-w,) (2.1)
where « is an uncertainty factor controlling the variance and w; is the preselected value for the
i-th weight. The random variables W;, W; are independent for i = j.

+ Step 2: Monte Carlo Simulation
For each simulation s = 1 to T, | repeated the following steps:
— Sample the weights Wy, ..., W, from their respective distributions.
— Apply the evaluation scheme S with the sampled weights.
— Calculate the algorithm ranking form the resulting scores.
+ Step 3: Stability Analysis of Rankings
The simulation provides one score per algorithm per repetition. | used the scores to calculate

the rank of each algorithm relative to each other per repetition. From that, | calculate the mean
ranks and standard deviations.

+ Step 4: Visualize Ranking Variability
| visualized the results using a boxplot and a scatterplot with error bars, where each dot indi-
cates mean rank per algorithm and the error bars indicate standard deviation.

Finally, to achieve the last research objective (O3), | provide a ranked list of the top-performing algo-
rithms within each category based on the results of the Monte Carlo Simulation.

3 Results

3 Results

3.1 Requirements

The objective of this work is to identify effective machine learning algorithms for anomaly detection in
multivariate time series data. In practice, an algorithm is supposed to classify data generated during
mechanical ventilation, identifying anomalous sequences that may result from faulty measurements.
These classifications are used to suppress these false alarms and instead generate alerts that guide
medical staff toward the underlying equipment issue. For an algorithm to be considered effective,
it must satisfy several requirements derived from the use case that can be grouped into four main
categories, as shown in Table[T]and described in more detail below.

Category ID | Requirement: The algorithm...

Runtime R1 | ...shall process each incoming data point in real-time
Runtime R2 | ...shall run stable, i.e. without errors and crashes
Hardware R3 | ...shall be executable on embedded hardware

Output Quality | R4 | ...shall minimize the number of false positives

Output Quality | R5 | ...shall minimize the number of false negatives

Input Data R6 | ...shall be capable of anomaly detection on multivariate time series

Input Data R7 | ...should be focused on detecting sequence anomalies

Table 1: Overview of the requirements for the algorithms

3.1.1 Runtime Requirements

(R1) The algorithm shall process each incoming data point in real time (Definition . Therefore
each data point must be processed at least as fast as it is generated by the sensors. An insufficient
processing speed would lead to buffering delays or data loss.

(R2) The algorithm shall run stable, meaning without errors and crashes. This is important for the
algorithm to reliably perform its task.

3.1.2 Hardware Requirements

(R3) The algorithm shall be executable on a Raspberry Pi 5 or equivalent embedded hardware.
The use of edge computing (Definition[8) for time-series anomaly detection is becoming increasingly
prevalent as advances in hardware enable embedded systems to execute machine learning algo-
rithms [18]. Edge computing offers the advantage of processing data close to its source, eliminating
the need to transmit it to a central server. This approach provides significant benefits in terms of pri-
vacy, security and network latency compared to more centralized architectures [18]. The Raspberry

3 Results

Pi 5 features a 64-bit quad-core ARM processor operating at 2.4 GHz and up to 16 GB of RAM [28].
It serves as a benchmark platform for this work due to its widespread use in this domain [18].

3.1.3 Output Quality Requirements

(R4) The algorithm shall minimize the number of false positives. This is the primary performance
criterion. A false positive classification poses severe risks, as it classifies a non-anomalous sequence
as anomalous. In the context of this work, such misclassification might lead to the suppression of
a genuine alarm, which could result in direct patient harm, including death. It also would lead to
an unnecessary misleading alarm signaling faulty equipment, adding to instead of reducing alarm
fatigue and presumably taking attention away from a potentially critical patient.

(R5) The algorithm shall minimize the number of false negatives. This is a secondary performance
criterion. A false negative is an undesirable classification outcome, as it classifies an anomalous
sequence as non-anomalous. In the context of this work, such misclassification results in alarms
caused by faulty equipment not being suppressed, but instead processed by the mechanical ven-
tilator. Although the ventilator may be capable of detecting the equipment fault, alarms generated
by measurement errors may override this detection [9]. Consequently, this leads to misleading false
alarms for medical staff, thereby contributing to alarm fatigue and potentially prompting inappropriate
medical interventions [29].

In general, both false positives and false negatives should be minimized. However, the complete
elimination of these errors is rarely achievable in practice. It is therefore important to note that a
false negative is deemed more tolerable, as it only preserves the existing state without the benefits
of integrated alarm management, while a false positive has the potential to actively worsen a critical
situation.

3.1.4 Input Data Requirements

(R6) The algorithm shall be capable of performing anomaly detection (Definition |[4) on multivariate
time series (Definition[2), since the intended use is to identify anomalies in time series across multiple
input channels.

(R7) The algorithm should be focused on detecting sequence anomalies (Definition 2) rather than
point anomalies (Definition 1). The overarching goal is to prevent incorrect clinical interventions
triggered by false alarms. Clinically relevant anomalous situations in mechanical ventilation are typ-
ically not isolated single data points but manifest as broader anomalous patterns persisting over a
longer period of time [9].

3.1.5 Optional Requirements and Tie Breaker

Some attributes of the algorithms, such as ease of implementation, are not essential for achieving
good performance in our use case. However, these attributes may be used as tie-breakers if two or
more algorithms obtain identical or very similar scores.

3 Results

3.2 Defining the Evaluation Scheme

The problem of evaluating and comparing different algorithms can be reduced to comparing their
relevant attributes. Because the relative importance and impact of these attributes are not imme-
diately evident, | used multi-attribute decision making (also known as multi-attribute utility theory or
multi-criteria evaluation) to aggregate and rank candidate algorithms [20+24]. Multi-attribute decision
making is a method for comparing a set of alternatives based on their respective attributes within
the context of a specific use case or requirement scenario. As this work builds upon the analysis
conducted by Schmidl et al., the set of alternatives considered here is restricted to the algorithms
evaluated in their analysis. | denote this set of algorithms as A. In the following sections, | present
my results based on applying multi-attribute decision making to identify viable solutions to this deci-
sion problem.

3.2.1 Selection of Algorithm Attributes

Due to the limited data available for each algorithm-dataset run in the analysis by Schmidl et al.,
not all requirements can be directly evaluated or quantified. Instead, | used reasonable substitute
metrics where necessary. Consequently, each algorithm A € A is represented by a vector (ay,...,a,)"
containing its relevant attributes to this evaluation, as reported in the analysis by Schmidl et al.

To evaluate a model’s responsiveness and execution efficiency (R1), an established metric such as
the mean time to detect (MTTD) would be ideal [13]. However, the data required to compute this
metric are not available from the analysis by Schmidl et al. As an alternative, the mean processing
time per data point on time series comparable to those expected in the operational setting could serve
as an appropriate metric. Since the time series used in the given analysis cannot be assumed to
match the number of channels, complexity or sampling frequency of those encountered in a clinical
environment, | use the algorithm’s mean execution time per time series (a;) as the corresponding
performance indicator, excluding potential training times. Since all time series considered in this
evaluation are synthetically generated and of equal length |1], this metric reflects the general relative
differences in processing speed between algorithms.

The error rate (a,,,) is an important metric, as algorithms prone to frequent errors or crashes are
unsuitable for the intended use case (R2). However, this metric should not be overemphasized,
since the algorithms are evaluated on hardware platforms different from those used in the future
of this project [1] and therefore may differ in computational capability and stability. Moreover, cer-
tain implementation-related errors in otherwise promising algorithms may be identified and corrected
through further optimization or debugging, as has been demonstrated in previous work [1].

The hardware requirement (R3) can be assessed by comparing the computational resources avail-
able in future work using this evaluation scheme with those used by Schmidl et al. Since the hardware
resources allocated to each algorithm in their study are generally lower than those provided by the
Raspberry Pi 5, any algorithm that successfully executed on their hardware can be reasonably ex-
pected to run on the Raspberry Pi 5 as well.

In terms of performance metrics (R4 and R5) the analysis by Schmidl et al. is limited. In their study,
the anomaly detection algorithms first assigned an anomaly score to each data point in a time series.

3 Results

These scores were then classified as anomalous or non-anomalous using thresholds on the anomaly
scores. The available metrics reflect this classification. They include: average precision across all
classifiers, AUC ROC, AUC PR and the AUC PrRt. Among these, the latter is the most significant, as
it is specifically designed to evaluate an algorithm’s ability to detect range-based patterns in skewed
datasets, which is characteristic of anomaly detection tasks [1//30]. Consequently, this work will focus
exclusively on this performance metric moving forward.

The ability of an algorithm to detect anomalies in multivariate time series (R6) can be directly derived
from the evaluation by Schmidl et al., as anomaly detection on time series was used as an inclusion
criterion in their study. For each algorithm, they explicitly reported whether it is capable of handling
multivariate time series, allowing this requirement to be adopted without further analysis.

The ability of an algorithm to detect sequence anomalies rather than point anomalies (R7) cannot
be quantified using the available algorithm attributes. Therefore, this criterion is excluded from the
evaluation scheme and potential approaches to address this limitation are discussed in chapter[4]

3.2.2 Classification of Algorithm Attributes

In an ideal scenario, all evaluation criteria would allow for a clear distinction between acceptable and
unacceptable algorithms. This would result in two distinct sets: one comprising algorithms that fully
satisfy all criteria and are considered equally ‘perfect, and another comprising algorithms that fail at
least one criterion and are deemed unsuitable.

In practice, however, not all criteria can be meaningfully reduced to a simple yes-or-no distinction.
For some attributes, it is difficult or impossible to define a precise threshold separating acceptable
from unacceptable values. Such limitations may arise from insufficient empirical evidence or from the
intrinsic impossibility of achieving an optimal value for certain characteristics.

To incorporate this variability into the evaluation scheme, some algorithm attributes are not treated
as binary attributes. Instead, fuzzy logic is applied [21} 22| 24} [31}32]. In fuzzy logic, an element is
not strictly included or excluded from one set but may exhibit degrees of membership between 0 and
1 [32]. These degrees are expressed using membership functions. In classical set theory, an element
x either belongs to a set A or does not and the corresponding membership function is defined as

c 1, ifxeA
pylx) = (3.1)

0, ifxeA
Fuzzy logic, in contrast, allows membership functions to take continuous values between 0 and 1.
Typical choices include linear, polynomial, Gaussian, sigmoid and other functional forms [22} |31} |32].
This means attributes in the evaluation framework are classified into two categories: binary-scored
and continuously-scored. Binary-scored attributes follow classic set theory, as their score can take
one of two possible states, a; € {true, false} or {0,1}. A binary score may be assigned based on
qualitative fulfillment of a requirement, by exceeding a defined quantitative threshold or through any
other assessment that yields a clear distinction between fulfillment and non-fulfillment. Algorithms

that fail to satisfy such attributes (i.e., receive a value of 0) are excluded from further consideration.

Continuously scored attributes follow the principles of fuzzy logic, as they cannot be evaluated as
simply fulfilled or not fulfilled. Instead, they are assessed according to their degree of fulfillment.

10

3 Results

These attributes are represented as real numbers, a4; € R and contribute quantitatively to the overall
evaluation score that determines the suitability of an algorithm.
The classification of attributes are summarized in Table[2 and discussed below.

Requirement | Name Meaning Scoring
(R1) a; mean overall execution time of algorithm continuous
(R2) Aery error rate of algorithm continuous
(R3) Anardware | €Xpected to run on raspberry pi 5 binary
(R4), (R5) ap, R, mean AUC of ranged based PR of algorithm | continuous
(R6) apmvap | for multivariate anomaly detection on TS binary
(R7) - - -

Table 2: Overview of the used algorithm attributes for evaluation per requirement including how they are scored.
Note that there is no available attribute to quantify an algorithms ability to detect sequence rather than
point anomalies. Therefore this requirement is excluded from this evaluation. Further discussion can
be found in chapter|4]

The hardware requirement (R3) and the requirement that the algorithm must support multivariate
time-series anomaly detection (R6) are both evaluated as binary requirements, as each can only be
either satisfied or not. This corresponds directly to the binary attributes ay;;, 447 @Nd apryap-
Execution time could, in principle, be treated as a binary attribute, as an algorithm may either be
capable of real-time evaluation (Definition [7) or not. The Patient-mounted sensors generate data
points at a fixed rate and the algorithm must be able to process these points at least as quickly
as they are produced (R1). However, the generation time per data point may vary depending on
the hardware used and the generation rate may be adjustable to some extent. There may exist a
maximum generation rate, corresponding to the smallest interval at which new data points can be
produced, as well as a minimum feasible generation rate, below which the data stream becomes
too slow to be useful for this application. To incorporate this variability into the evaluation scheme,
execution time is not treated as a binary attribute.

The error rate is treated as a continuous-valued attribute because, as discussed in Chapter
future work will involve different hardware, which can introduce unexpected errors and crashes or po-
tentially eliminate them. In addition, some implementation-related errors may be fixable, as demon-
strated previously [1]. Therefore, it is not feasible to define a fixed cutoff for how many errors and
crashes of the algorithm are tolerable on the basis of the available data.

The performance metric PrRy AUC is treated as continuous because, like other similar metrics, it
represents a trade-off and is unlikely, if not impossible, to achieve an ideal value |30} 33|. Therefore,
defining a fixed cutoff is not feasible. Instead, the metric is interpreted according to the principle that
higher values indicate better performance.

11

3 Results

3.2.3 Standardization of Attribute Values

In multi-attribute decision making, attributes are processed to be quantitative and comparable [22].
For binary-scored attributes, this means mapping them from boolean to numeric values. For continu-
ously-scored attributes, this means normalization [20H23].

The binary-scored attributes ay,,, 4., and ap v 4p are mapped using the indicator function:

1, if a; satisfies the requirement R
1gr(a;) = (3-2)
0, else

For continuously-scored attributes, | applied appropriate normalization methods to map their values
onto the interval [0, 1], resulting in normalized scores a; for the different attributes a;. This ensures
comparability across attributes with different scales and units.

For execution time (a;), the goal is to assign full membership (value 1) to algorithms whose execution
time per data point is faster than the maximum generation rate, since additional speed offers no
further benefit. Conversely, algorithms slower than the minimum feasible generation rate should
receive no membership (value 0), as they cannot process the data stream in real time. Algorithms
whose execution time falls between these two boundaries should be mapped linearly to a score in
[0,1]. This results in the following Z-shaped membership function:

1, if £ < by
* z bZ_t :
ay = fbl;bz(t) = W, if bl <t< bz (33)
0, if t > by

where by represents the maximum generation rate (lower bound) and b, the minimum feasible gen-
eration rate (upper bound).

04 ¢ by 10 —ewel b by

- b by
0.8 0.8
0.6 1 0.6 1

F(t) F(t)

0.4 1 0.4
0.2 0.2
0.0 0.0

0 500 1000 1500 2000 2500 3000 0 20 40 60 80 100

t (time in seconds) t (time in seconds)

Figure 2: f* applied to the algorithm execution time, with the bounds b, and b, set to the first and third quartiles
(90.25 and qq.75), respectively. The full function is shown over the entire data set (leff) and over the
interval [0,100] (right).

At present, the actual values of b; and b, are unknown. Since neither the bounds of the sensor gen-
eration rate nor the expected number of data channels can be reliably estimated, these parameters

12

3 Results

cannot be set meaningfully. Therefore, in this work b; and b, are approximated by the first and third
quartiles, q¢.,5 and q 75, respectively (Figure. This serves as a proof of concept and these values
should be replaced with empirically grounded estimates once they become available.

For both error rate (a,,,) and the performance attribute AUC PrRr (ap.g,), | applied min—-max nor-
malization. The only difference is that the normalized error-rate score is replaced by its complement.
This ensures that lower error rates correspond to higher final scores, which aligns the direction of all

metrics.
* Aerr — min(aerr)

=1- 4
ferr max(aerr) - min(aerr) (3)

ap.r, —min(ap.g,)
max(ap,g,)—min(ap,g,)

a*PTRT =
with
A(i):{ai|(a1---ﬂi---an)T:Ae‘/A} -

Even though min-max normalization is not robust in this form, it comes with the advantage of retaining
the original distribution of scores [34]. It is also an established way of processing attribute data for
multi-attribute decision making [22]. The results of normalization can be seen in Figure

3000 . 1 1 1 —r
2700 0.9 : 0.9 0.9 l
2400 0.8 ’ 0.8 0.8
2100 0.7 0.7 0.7
1800 0.6 . 0.6 0.6
o . N
S
© 1500 0.5 ° 0.5 0.5
>
1200 = 0.4 0.4 0.4
900 0.3 0.3 0.3
600 0.2 — 0.2 0.2
300 0.1 0.1 —l— 0.1
,;I;‘
0 - 0 0 0 P, - o5 e
Runtime Error Rate Range AUC PR Time Score Error Score Range PR Score
(Before Normalization) (After Normalization)

Figure 3: Distribution of continuous algorithm attributes. Left: raw measurements without normalization, right:
corresponding scores after their respective normalization.

3.2.4 Form Weighted Sum

The evaluation scheme S is designed to assign each algorithm A € A a score s 4 €[0,1]:

S:A—[0,1], Ab>sy (3.7)

13

3 Results

A straightforward approach following multi-attribute decision making [20] is to define S as a weighted
sum of the relevant attributes of A:

n

S(A) = Zai w; (3.8)
i=1
where A = (ay,...,a,)T represents the attribute values of an algorithm and w = (w,...,w,)T denotes
the corresponding weights. This allows a user of this evaluation scheme to tune it to the needs of any
use case. However, this approach alone is insufficient due to the binary scoring of requirements (R3)
and (R6), as it does not impose a sufficiently strong penalty for their violation. Instead, the overall
score is divided into two separate functions, which are multiplied to obtain the final score [21]:

S(A)=B(A)-C(A) (3.9)
The first function,

B: A —{0,1} (8.10)
ensures compliance with all binary-scored requirements. The second function,

C:A—[0,1] (3.11)

computes the continuous performance score of the algorithm. The function B is defined as the product
of the fulfillment of all binary-scored requirements, which, in this case, is the product of the fulfillment
of ajraware @aNd apry ap, the attributes corresponding to the two binary-scored requirements (R3) and
(R6):

B(A) = 1r3(anardware) 1r6(@rmvap) (3.12)

With this definition, | can multiply B(.A) with any score, as shown in Eq. to retain the score if the
algorithm satisfies both binary-scored requirements or set it to the minimum value of zero if it does
not.

The normalized continuous performance metrics are added as a weighted sum to a linear term. In
order for the score to be in the interval [0, 1], the term must also be normalized by dividing it by the
sum of all weights. This leads to the complete Term

1 * * *
C(-A) = Z?:l w; . (wt At Wepp * Aoy + wPTRT) aPTRT) (31 3)
or in vector notation:
_ 1 T(* * * T
CA) = sy (Tl i iy,)T) (314

This leads back to the complete form of S as

T
T * * *
w (at’ Aerrs aPTRT)

3
21:1 wi

S(A) = 1r3(anardware) - 1re(@mvap) - (3.15)

14

3 Results

3.3 Applying the Evaluation Scheme

To ensure the best comparability between the different evaluations, particularly across the differ-
ent learning types, only results from algorithms applied to the synthetically generated GutenTAG
datasets were included, as these datasets provide controlled anomaly types, well-defined pat-
terns and perfectly labeled data.

3.3.1 Weight Selection

One established approach for choosing weights is equal weighting [22], which sets all attribute
weights to the same value, i.e. w; = w;V i,j (Figure.

1 Unsupervised Semi-Supervised Supervised
Training Type
0.9 = Range PR Score
0.8 = Time Score
= Error Score
0.7
0.6
[0)]
80.5 I
()
0.4 l
0.3
: I I I I
0.1
0Il III_ m
@ A
QDR ”7?1/,15 ooo, Ot T % s 00 %
KON OO’?Q xS‘ R AN ’o,%”zq %
@,)) s 2 %, "9/1/ /l'/l/o YV
Figure 4: Application of the evaluation scheme with equal weighting.
1 Unsupervised Semi-Supervised Supervised
Training Type
0.9 = Range PR Score
0.8 = Time Score

= Error Score

Figure 5: Application of the evaluation scheme with w, = 0.8, w,,, = 0.5 and wp, g, = 1.

15

3 Results

However, as mentioned, the error score aj,, should not be overemphasized, since differences in
hardware or minor code modifications could lead to substantially different results. The time score
a;, while important, is only partially reliable because the actual time budget per data point remains
uncertain and more powerful hardware may alter the measured values. The most critical metric is
the performance score “*PTRT' Based on this rationale, | set the weights to w;, = 0.8, w,,, = 0.5 and
wp.Rr, = 1 (Figure. This means that the time score a; contributes approximately 35 % to the final
score, the error score a;,, about 22 % and the performance score aj, p about 43 %.

3.3.2 Robustness Test

In order to evaluate the robustness of the ranking of algorithms under the evaluation scheme, | used
a Monte Carlo simulation. A Monte Carlo simulation models the behavior of a system by repeat-
edly sampling input parameters from parameter-specific probability distributions and analyzing the
resulting outputs [35] 136]. Depending on the use case, the specific steps may vary slightly, but they
typically involve generating a static model, identifying the input distributions, sampling random vari-
ables from these distributions and feeding them into the model and finally analyzing the resulting
outputs |35!/36].

The goal is to apply the evaluation scheme while varying the weights in order to analyze the effect on
the ranking of algorithms. In this context the evaluation scheme from Eq.[3.15|can be interpreted as
a function dependent on the weight vector w rather than directly on the algorithm A. In other words,
the weights become input arguments, while the algorithm attributes serve as fixed weights for each
algorithm. This perspective allows the use of the same analytical procedures as if the weights were
fixed and the input values were varying.

| set the uncertainty factor to a = 0.1 and the weights to w; = 0.8, w,,, = 0.5 and wp r, = 1 as
discussed in Chapter[3.3.1] This results in the following weight distributions:

W, ~ N (4= 0.8, o = 0.08) (3.16)
W,y ~ N (1= 0.5, 0 = 0.05) (3.17)
Wpr, ~N(p=1, 0 =0.1) (3.18)

| used T = 100,000 to ensure statistical significance. This is well above established numbers like
1000 [27]. The numbers for mean rank and standard deviation can be seen in Table [A1]and are
visualized in Figures|[6|and[7}

The best-performing algorithms according to the mean rank are PCC for unsupervised learning, RB-
Forest and RobustPCA for semi-supervised learning and Normalizing Flows for supervised learning
(Table[3). All four achieve a mean rank better than five and exhibit a low standard deviation.

16

3 Results

Training Type i

. 8 Unsupervised

% ? : © Semi-Supervised * *
. %l . - @ Supervised + T

V. dn B 2 & £ O <o <

Oe(OOoA Oo,oooé% % %o@’%ofl/,l/ %G B, ", P o%f)%'%%%%@% ‘9@@;@;@% 4’0604,, e % %,%%%

<~ (S) R > 8,) %
%, LR W0 S o, % T T, 2 “%
%
11/6‘
Figure 6: Results of the Monte Carlo simulation by rank.
1 . 3)
S 3 Training Type -
= 5 3 ® Unsupervised
% 7 I () © Semi-Supervised
o [} ® Supervised
T 9 [} 3
T 1 3
©
g1 (])
® 15 [)
©
£17 I I [
x19 3 I
%21
s 1 g1l
9]
e T -
27 -
Qx2S %08 T, 00 0 B B, P % S % g S8y o O, R B B, B e %, %,
o, % 2 O, 8, Q 0y Oy U Ui My “Sn 7%y 7o On Z
X o) N o RN «/,)/\ % 66‘@ (73 “% foN 4”0 %6, Sy %, 4747 %,
% oY, v /;,e// o, /?9»
Z /011’

Figure 7: Results of the Monte Carlo simulation. Each dot indicates the mean rank of an algorithm over all
runs. The error bars indicate standard deviation and therefore consistency of the mean rank.

Name Training Type Mean rank | Standard deviation
Normalizing Flows | Supervised 1.21289 0.4234733063563865
RBForest Semi-Supervised | 1.79299 0.4051647831253533
RobustPCA Semi-Supervised | 2.99412 0.07645576534729474
PCC Unsupervised 4.38314 0.5215040364796812

Table 3: Best performing algorithms from the Monte Carlo simulation. For semi-supervised learning | included
two algorithms, as both mean ranks are close together.

17

4 Discussion

4 Discussion

In this work, I first formulated a set of requirements that define a suitable algorithm for alarm manage-
ment in mechanical ventilation (Table (O1). Based on these requirements, | developed a context-
based evaluation scheme for anomaly detection algorithms using multi-attribute decision making
(Eq. (O2). Finally, | applied this scheme using reasoned weights (Figures[4and [5), conducted
a Monte Carlo simulation to identify algorithms with consistently high ranks and strong stability under
weight variation (Figures|[6]and[7) and provided the resulting ordered list (Table [AT) (O3).

4.1 Interpretation

The score obtained by applying the evaluation scheme S to an algorithm A reflects its expected
usefulness in the context of alarm management for mechanical ventilation. The score is normalized
such that S(A) € [0,1], where 1 is the best possible score and 0 the worst. Due to normalization
within the scoring process, scores should be interpreted as relative to the set of algorithms under
consideration. The evaluation scheme is context-based, as it is highly specialized for this specific
use case and the available data used for evaluation. The scheme is not intended to be generalized
beyond this application. However, it may be useful for addressing similar problems. For meaningful
comparisons between algorithms, | recommend the following steps when applying the evaluation
scheme:

Define a set of algorithms between which a choice is to be made.

Evaluate all algorithms on the same datasets.

Compute the required metrics: execution time, error rate (i.e., crash rate) and PrRt AUC. Ap-
propriate execution-time thresholds must be defined.

Compute the final scores using reasonable weights and compare the results.

On this basis, one may either rank all algorithms or simply select the highest-scoring option.

The Monte Carlo simulation provides the mean rank and standard deviation for each algorithm under
predefined weight uncertainty. The mean rank implies the viability of one algorithm relative to the
other algorithms in the decision problem, whereas the standard deviation reflects the variability of
this result or, in other words, the confidence one may place in the ranking [27]. Using this argumen-
tation and the results from my Monte Carlo simulation (Figure , it becomes evident that several
algorithms can be regarded as highly viable with high confidence, as they consistently achieve high
ranks (PCC, RBForest, RobustPCA, Normalizing Flows). Similarly, some algorithms can be regarded
as highly unviable with high confidence (OmniAnomaly, TAN0oGAN, HIF), while for others | can draw
no confident conclusion due to their high variability in rank (DBStream, k-means, LSTM-AD).

For general-purpose applications, an unsupervised algorithm with a similar score may be preferred
over a supervised one, as it requires substantially less training effort. Supervised algorithms depend
on labeled datasets, which are rare for time series [13]. However, since | expect meaningful differ-
ences between learning types due to the problem’s complexity | conducted the evaluation separately

18

4 Discussion

for the three learning types. Mechanical ventilation involves diverse, complex patterns, including non-
anomalous pattern shifts, so a supervised algorithm may be better suited, as it can explicitly learn to
distinguish anomalous from non-anomalous patterns.

4.2 Limitations

Several limitations must be considered when interpreting the results of this work.

First, | could not determine execution-time thresholds, reducing the significance of the time score
and therefore the overall numeric score. Although most algorithms achieved high scores in this
attribute (median > 0.9, Figure[3), the impact of this limitation on the resulting rankings cannot be
fully assessed and should be evaluated once appropriate thresholds are available.

Second, the weights were set by reasoned argument rather than a case study or expert consultation,
as such would have exceeded the scope of this work. Alternative weight choices could yield different
rankings. Nonetheless, | am confident in the robustness of the results, as the Monte Carlo simulation
proofed the robustness and stability of leading algorithms under weight variations (Figures [6] [7).
Third, | could not quantify requirement (R7), concerning an algorithm’s focus on detecting sequence
anomalies rather than point anomalies. | explored the approach of evaluating algorithms only on
sequence-anomaly datasets. This proved problematic, as available datasets were univariate and
therefore not representative of the intended multivariate use case [1]. In practice, it may be possible
to filter point anomalies using highly specialized algorithms or to preprocess the time series in other
ways to mitigate their impact. However exploring such approaches was beyond the scope of this
work.

A key concern is the error rate, how frequently algorithms crash. Algorithms with high crash rates,
such as Normalizing Flows, may introduce bias in other attributes, as failures are more likely on time
series that would otherwise yield below-average scores. To mitigate this effect, the analysis was
restricted to time series from the GutenTAG dataset, which ensures comparability. These time series
are synthetically generated [1], providing clean labels, uniform length and only predefined patterns,
trends and anomaly types.

Taken together, these limitations imply that while rankings offer a useful guide for algorithm selec-
tion, numerical scores should be interpreted cautiously and validated with domain-specific data and
thresholds. Therefore, my focus in this work was on algorithm ranking rather than absolute scores.

19

5 Conclusion

5 Conclusion

False alarms in medical devices pose a significant danger in modern healthcare, as they can lead to
alarm fatigue and inappropriate treatment. Despite the severity of the problem, no general solution
has yet been established. A prominent example of this issue, as discussed in Chapter is sensor
failure in medical equipment such as mechanical ventilators.

In this work | took the first step toward addressing the gap in detecting sensor failures in mechanical
ventilation by developing a comprehensive, context-based evaluation scheme to assess the suitability
of algorithms for this application. To do so | applied an established approach for solving decision prob-
lems, multi-attribute decision making, to determine which algorithm demonstrates the highest viability
for this purpose. The results of the Monte Carlo simulations (Figures[6]and[7) confirm the robustness
and stability of my proposed solution to the decision problem. Based on these findings, | recommend
the following algorithms for investigation on tailored datasets: PCC for unsupervised learning, RB-
Forest and RobustPCA for semi-supervised learning and Normalizing Flows for supervised learning
(Table[3).

In future work these algorithms may be used in a system capable of autonomously detecting and,
where appropriate, suppressing false alarms or correctly classifying the source of an alarm, distin-
guishing between acute patient danger and equipment malfunction. Further evaluation to find the
most viable algorithm or ensemble for this task need to be done using simulated medical data. For
that simulation, | may use the facilities of the simulation and usability laboratory of the Institute for
Medical Informatics at Uniklinik RWTH Aacherﬂ as the lab provides the necessary equipment to
generate such data. Later stages of future work may focus on implementation and validation within
the simulated embedded environment.

Thttps://www.ukaachen.de/kliniken-institute/institut-fuer-medizinische-informatik/simlab/

20

References

References

[1] Schmidl S, Wenig P, Papenbrock T. Anomaly detection in time series: a comprehensive eval-
uation. Proceedings of the VLDB Endowment. 2022 May;15(9):1779-1797. Available from:
https://dl.acm.org/doi/10.14778/3538598.3538602

[2] Collange O, Mongardon N, Allacouchiche B, Miatello J, Bouhemad B, Trouiller P, et al. Inven-
tion of intensive care medicine by an anaesthesiologist: 70 years of progress from epidemics
to resilience to exceptional healthcare crises. Anaesthesia Critical Care & Pain Medicine.
2022 Oct;41(5):101115. Available from: https://www.sciencedirect.com/science/
article/pii/S2352556822000960

[3] Goligher E, Ferguson ND. Mechanical ventilation: epidemiological insights into current prac-
tices:. Current Opinion in Critical Care. 2009 Feb;15(1):44-51. Available from: http:
//journals.lww.com/00075198-200902000-00008.

[4] Larsen R, ZiegenfuB3 T. Beatmung Grundlagen und Praxis. 4th ed. Springer; 2009.

[5] Coldewey B, Diruf A, Rbéhrig R, Lipprandt M. Causes of use errors in ventilation devices -
Systematic review. Applied Ergonomics. 2022 Jan;98:103544. Available from: https://www.
sciencedirect.com/science/article/pii/S0003687021001915

[6] Scott JB, De Vaux L, Dills C, Strickland SL. Mechanical Ventilation Alarms and Alarm Fatigue.
Respiratory Care. 2019 Oct;64(10):1308—1313. Publisher: Daedalus Enterprises for the Amer-
ican Association for Respiratory Therapy. Available from: https://www.liebertpub.com/
doi/full/10.4187/respcare.06878

[7] Fan E, Needham DM, Stewart TE. Ventilatory Management of Acute Lung Injury and Acute
Respiratory Distress Syndrome. JAMA. 2005 Dec;294(22):2889-2896. Available from: https:
//doi.org/10.1001/jama.294.22.2889.

[8] Pham JC, Williams TL, Sparnon EM, Cillie TK, Scharen HF, Marella WM. Ventilator-Related
Adverse Events: A Taxonomy and Findings From 3 Incident Reporting Systems. Respiratory
Care. 2016 May;61(5):621—631. Publisher: Daedalus Enterprises for the American Association
for Respiratory Therapy. Available from: https://www.liebertpub.com/doi/10.4187/
respcare.04151.

[9] Lipprandt M, Klausen A, Alvarez-Castillo C, Bosch S, Weyland A, Rdhrig R. Systematic failure
analysis of critical incidents caused by kinked flow measurement cables from transport ventila-
tors. Anasth Intensivmed. 2020;.

[10] Wang F, Gu W, Fu R. Method for identifying and eliminating ventilator false alarms of ventilator
based on clinical data analysis. Proceedings of the Institution of Mechanical Engineers, Part C:
Journal of Mechanical Engineering Science. 2023 Feb;p. 09544062231154086. Available from:
https://journals.sagepub.com/doi/10.1177/09544062231154086.

21

References

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

Comission J. Medical device alarm safety in hospitals. Joint Commission Inter-
national. 2013 Apr;50. Available from: |https://www.jointcommission.org/en/

knowledge-library/newsletters/sentinel-event-alert/issue-50.

Alarms Pose Challenges to Healthcare Facilities. Biomedical Instrumentation & Technology.
2011 Mar;45(s1):5-5. Publisher: AAMI. Available from: |https://array.aami.org/doi/
10.2345/0899-8205-45.s1.5.

Zamanzadeh Darban Z, Webb Gl, Pan S, Aggarwal C, Salehi M. Deep Learning for Time Series
Anomaly Detection: A Survey. ACM Computing Surveys. 2025 Jan;57(1):1—42. Available from:
https://dl.acm.org/doi/10.1145/3691338

Ruff L, Kauffmann JR, Vandermeulen RA, Montavon G, Samek W, Kloft M, et al. A Unifying Re-
view of Deep and Shallow Anomaly Detection. Proceedings of the IEEE. 2021 May;109(5):756—
795. Available from:|https://ieecexplore.ieee.org/document /9347460/

Cook AA, Misirli G, Fan Z. Anomaly Detection for loT Time-Series Data: A Survey. IEEE
Internet of Things Journal. 2020 Jul;7(7):6481-6494. Available from: https://ieeexplore.
ieee.org/document/8926446/|

Blazquez-Garcia A, Conde A, Mori U, Lozano JA. A Review on Outlier/Anomaly Detection in
Time Series Data. ACM Computing Surveys. 2022 Apr;54(3):1-33. Available from: https:
//dl.acm.org/doi/10.1145/3444690.

James G, Witten D, Hastie T, Tibshirani R, Taylor J. An Introduction to Statistical Learning.
Springer; 2023. Available from: https://www.statlearning.com.

Trilles S, Hammad SS, Iskandaryan D. Anomaly detection based on Atrtificial In-
telligence of Things: A Systematic Literature Mapping. Internet of Things. 2024
Apr;25:101063. Available from: https://www.sciencedirect.com/science/article/
pii/S2542660524000052,

Rupp C, Joppich R. Anforderungsschablonen — der MASTER-Plan fur gute Anforderungen.
In: Requirements-Engineering und -Management. 6th ed. Mlinchen: Carl Hanser Verlag GmbH
& Co. KG; 2014. p. 215-246. Available from: http://www.hanser—-elibrary.com/doi/
abs/10.3139/9783446443136.010

Jansen S. The Multi-attribute Utility Method. In: The Measurement and Analysis of Housing
Preference and Choice. Springer; 2011. p. 101-125.

Cardoso de Lima GS, Lopes EC, Motta JG, Asano R, Valverde M, Suyama R, et al. Sustainable
development enhanced in the decision process of electricity generation expansion planning.
Renewable Energy. 2018 Aug;123:563-577. Available from: https://www.sciencedirect.
com/science/article/pii/S0960148118301551.

22

References

[22] Shao M, Han Z, Sun J, Xiao C, Zhang S, Zhao Y. A review of multi-criteria decision mak-
ing applications for renewable energy site selection. Renewable Energy. 2020 Sep;157:377—
403. Available from: |https://www.sciencedirect.com/science/article/pii/
S0960148120306753

[23] Kim BS, Shah B, He T, Kim KI. A survey on analytical models for dynamic resource manage-
ment in wireless body area networks. Ad Hoc Networks. 2022 Oct;135:102936. Available from:
https://www.sciencedirect.com/science/article/pii/S1570870522001196.

[24] Aydin NY, Kentel E, Duzgun S. GIS-based environmental assessment of wind energy systems
for spatial planning: A case study from Western Turkey. Renewable and Sustainable Energy
Reviews. 2010 Jan;14(1):364-373. Available from: https://www.sciencedirect.com/
science/article/pii/S1364032109001610.

[25] Drummond C, Holte RC. Cost curves: An improved method for visualizing classifier perfor-
mance. Machine Learning. 2006 Oct;65(1):95—130. Available from: https://doi.org/10.
1007/s10994-006-8199-5.

[26] Aguirre J, Padilla N, Ozkan S, Riera C, Feliubadalé L, de la Cruz X. Choosing Variant Interpreta-
tion Tools for Clinical Applications: Context Matters. International Journal of Molecular Sciences.
2023 Jan;24(14):11872. Publisher: Multidisciplinary Digital Publishing Institute. Available from:
https://www.mdpi.com/1422-0067/24/14/11872

[27] Jangid P, Kumar T, Jahnvi, Dhanuk K, Sharma MK. A stability and robustness anal-
ysis of multi-criteria decision methods in logistics. Decision Analytics Journal. 2025
Sep;16:100618. Available from: jhttps://www.sciencedirect.com/science/article/
pii/S2772662225000748!

[28] Ltd RP. Buy a Raspberry Pi 5; 2025. Available from: https://www.raspberrypi.com/
products/raspberry-pi-5/.

[29] Bosch S. Alert - Irrefihrende Beatmungsparameter infolge eines lagerungsbedingten Knicks der
Flowmessleitung. BDAktuell / DGAInfo. 2015 Jul;56:674—67. Available from: https://www.
cirs—ains.de/cirs—ains/publikationen/bda-und-dgai/fall-des-monats/
564-alert-irrefuehrende-beatmungsparameter-infolge—-eines-lagerungsbedingten—-kn
html.

[30] Tatbul N, Lee TJ, Zdonik S, Alam M, Gottschlich J. Precision and Recall for Time Series. Ad-
vances in Neural Information Processing Systems 31. 2019 Jan;ArXiv:1803.03639 [cs]. Avail-
able from:|http://arxiv.org/abs/1803.03639

[31] Nath Mandal S, Pal Choudhury J, Bhadra Chaudhuri SR. In Search of Suitable Fuzzy
Membership Function in Prediction of Time Series Data. ResearchGate. 2025 Aug;Available
from: |https://www.researchgate.net/publication/267408339_In_Search of_

Suitable_Fuzzy Membership_Function_in_Prediction_of Time_Series_Data,

23

References

[32]

[33]

[34]

[35]

[36]

Worden K, Staszewski WJ, Hensman JJ. Natural computing for mechanical systems re-
search: A tutorial overview. Mechanical Systems and Signal Processing. 2011 Jan;25(1):4—
111. Available from: https://www.sciencedirect.com/science/article/pii/
S0888327010002499]

Sofaer HR, Hoeting JA, Jarnevich CS. The area under the precision-recall curve as a perfor-
mance metric for rare binary events. Methods in Ecology and Evolution. 2019;10(4):565-577.
_eprint: https://besjournals.onlinelibrary.wiley.com/doi/pdf/10.1111/2041-210X.13140. Available
from: https://onlinelibrary.wiley.com/doi/abs/10.1111/2041-210X.13140.

Jain A, Nandakumar K, Ross A. Score normalization in multimodal biometric systems. Pat-
tern Recognition. 2005 Dec;38(12):2270-2285. Available from: https://linkinghub.
elsevier.com/retrieve/pii/S0031320305000592.

Harrison RL. Introduction To Monte Carlo Simulation. AIP conference proceedings.
2010 Jan;1204:17-21. Available from: https://pmc.ncbi.nlm.nih.gov/articles/
PMC2924739/|

Raychaudhuri S. INTRODUCTION TO MONTE CARLO SIMULATION. In: 2008 Winter Sim-
ulation Conference; 2008. p. 91-100. Available from: https://ieeexplore.ieee.org/
abstract/document/47360509.

24

Appendix

Appendix

Name Training Type Mean rank | Standard deviation
PCC Unsupervised 4.38314 0.5215040364796812
HBOS Unsupervised 5.98055 0.6374917736391703
EIF Unsupervised 6.10048 0.8725430550487666
DBStream Unsupervised 7.0907 3.1468067201411456
KNN Unsupervised 7.66678 0.7134490323037948
COPOD Unsupervised 8.99132 0.8951383526174641
iForest Unsupervised 11.00118 | 0.5622470709729723
IF-LOF Unsupervised 12.33022 | 0.6325019780107589
LOF Unsupervised 12.95211 0.8712428700089224
k-Means Unsupervised 14.27735 2.171343852281632
CBLOF Unsupervised 14.41665 | 0.722978564329567
Torsk Unsupervised 19.31624 | 0.7389977832018424
COF Unsupervised 22.15662 | 0.953624281146777
RBForest Semi-Supervised | 1.79299 0.4051647831253533
RobustPCA Semi-Supervised | 2.99412 0.07645576534729474
LaserDBN Semi-Supervised | 9.34276 0.6297932587726608
Hybrid KNN Semi-Supervised | 16.67022 | 1.2942340986154808
LSTM-AD Semi-Supervised | 17.02354 1.864741440791844
Telemanom Semi-Supervised | 17.20744 | 0.5472765676661253
HealthESN Semi-Supervised | 22.1031 0.933551876004246
EncDec-AD Semi-Supervised | 22.10911 1.2685744364092248
DeepAnT Semi-Supervised | 23.51706 | 0.7579410934545046
OmniAnomaly Semi-Supervised | 25.00032 | 0.02366227375025433
TAnoGAN Semi-Supervised | 27.0 0.0

Normalizing Flows | Supervised 1.21289 0.4234733063563865
MultiHMM Supervised 19.36361 1.1019663838788842
HIF Supervised 25.9995 0.02279814022134308

Table A1: Results of the scoring using a Monte Carlo simulation with T = 100,000 repetitions. Weights selected

asw; = 0.8, wer, = 0.5 and wp, g, = 1 with W; ~ N'(p = w;, 0 = 0.1-w;). Results grouped by algorithm
learning type and ordered by mean rank.

25

