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 Processor
 Fetch program from memory

 Execute program instructions

 Load data from memory

 Process data

 Write results back to memory

 Main Memory
 Store program

 Store data

 Input / Output is not covered here!

Single Processor Systems (1 / 2)

core

memory
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 CPU 
 Fast (order of 3.0 GHz)

 Main Memory
 Slow (order of 0.3 GHz)

 Large (order of GB)

 Caches
 Fast, but expensive

 Small (order of MB)

 Usage of Cache is mandatory for good performance on parallel 
applications.

Single Processor Systems (1 / 2)

core

off-chip cache

on-chip cache L1

L2

memory
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 The CPU would get too hot!

Why aren’t CPUs getting faster anymore?

Fast clock cycles make 
processor chips more 

expensive, hotter and more 
power consuming.
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 Since 2005/2006 dual-core processors
are produced for the home user.

 Number of cores per chip increases 
since then
 Today: up to 8 cores per chip for a

standard CPU

 Any recently bought PC or Laptop
is a multi-core system already.

Multi-Core Processor Systems

Core

off-chip cache

memory

Core

on-chip cache
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 Implicit data distribution

 Implicit communication

 Different types of shared-memory architectures

 Programming via …
 OpenMP

 Java-Threads

Shared-Memory Parallel Systems

Process Process Process

interconnect

Memory
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 Abbr. for Symmetric Multi Processing

 Memory access time is uniform on 
all cores

 Limited scalability

 Example: Intel Woodcrest
 Two cores per chip, 3.0 GHz

 Each chip has 4 MB of L2 cache on-chip,

shared by both cores

 No off-chip cache

 Bus: Frontsidebus

SMP

Core

memory

Core

on-chip cache

Core Core

on-chip cache

bus

on-chip cache
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 Abbr. for cache-coherent Non-Uniform
Memory Architecture

 Memory access time is non-uniform

 Scalable

 Example: AMD Opteron
 Two cores per chip, 2.4 GHz

 Each core has separate 1 MB of L2-

cache on-chip

 No off-chip cache

 Interconnect: Hypertransport

ccNUMA

Core

memory

Core

on-chip
cache

Core

memory

on-
chip

cache

on-
chip

cache

Core

interconnect

on-chip
cache

on-chip
cache

on-chip
cache
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 If there are multiple caches not shared by all cores in the system, 
the system takes care of the cache coherence.

 Example:
int a[some_number]; //shared by all threads
thread 1: a[0] = 23;     thread 2: a[1] = 42;
--- thread + memory synchronization (barrier) ---
thread 1: x = a[1];      thread 2: y = a[0];

 Both a[0] and a[1] are stored in caches of thread 1 and 2

 Changes to data in the cache is at first only visible for the CPU that modified 

its cache

 After synchronization point all threads need to have the

same view of (shared) main memory

Cache Coherence (cc)
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 Explicit data distribution

 Explicit communication

 Scalable

 Programming via MPI

Distributed-memory Parallel Systems

Process

Memory Memory Memory

Process Process

interconnect
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 Various independent computers are connected to each other over a 
non-cache-coherent second level interconnect 
 Infiniband

 Latency: <= 5 µs
 Bandwidth: >= 1200 MB/s

 GigaBit Ethernet

 Latency: <= 60 µs
 Bandwidth: >= 100 MB/s

Clusters

Latency: 
Time required to send a message of
size zero
(time to setup the communication)

Bandwidth: 
Rate at which large messages (>= 2 
MB) are transferred

2nd level interconnect (network)
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 A process is the abstraction of a program in execution

 It can be in different states
 Running

 Waiting

 Ready

 Each process has its own address-space
 No common variables between processes

Processes
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 A thread is a lightweight process

 In difference to a process, a thread shares the address-space with 
all other threads of the process it belongs to, but has its own stack.
 Common variables between threads

Threads
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 Even on a multi-socket / multi-core system you should not make any 
assumption which process / thread is executed when an where!

 Two threads on one core:

 Two threads on two cores:

Process and Thread Scheduling by the OS

Thread1      Thread 2                 System thread

thread migration

“pinned” threads
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 Memory can be accessed by several threads running on different 
cores in a multi-socket / multi-core system

Shared-memory Parallelization

a=4

CPU1

a
c=3+a

CPU2
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 Each process has its own distinct memory
 Communication via Message Passing

Distributed-memory Parallelization

send a

CPU1 CPU2

areceive a a

local memory

transfer
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 Time using 1 CPU: 

 Time using CPUs: 

 Speedup : 	 	

 Measures how much fast the parallel computation is

 Efficiency : 	 	

Speedup and Efficiency (1 / 2)



Parallel Programming, Spring 2012RZ: Jens Hollmann Folie 27

 Example:
 1 6 , 2 4

 2 1.5

 2 . 0.75

 Ideal case: /


 1.0

Speedup and Efficiency (2 / 2)
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 Describes the influence of the serial part onto scalability (without
taking any overhead into account).


∗ 	 ∗

 : serial part (0 1)

 1 : time using 1 CPU

 : time using p CPUs

 : speedup; 

 : efficiency; 

 It is rather easy to scale to a small number of cores, but any 
parallelization is limited by the serial part of the program!

Amdahl’s Law
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 If 80% (measured in program runtime) of your work can be 
parallelized and “just” 20% are still running sequential, then your 
speedup will be:

Amdahl’s Law illustrated

1 processor:
time: 100%
speedup: 1

2 processors:
time: 60%
speedup: 1.7

4 processors:
time: 40%
speedup: 2.5

 processors:
time: 20%
speedup: 5
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 After the initial parallelization of a program, you will typically see 
speedup curves like this:

Speedup in Practice

sp
ee
du

p

1 2 3 4 5 6 7 8 . . .

1

2

3

4

5

6

7

8

p

Speedup according to Amdahl’s law
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 Chances for concurrent execution:
 Look for tasks that can be executed simultaneously

(task decomposition)

 Decompose data into distinct chunks to be processed independently

(data decomposition)

Finding Concurrency



Parallel Programming, Spring 2012RZ: Jens Hollmann Folie 32

 Parallelization on a High Level (low granularity)
 Chances of low synchronization / communication cost

 Danger of load balancing issues

 Parallelization on a Low Level (high granularity)
 Danger of high synchro-

nization / communication cost

 Chances of avoiding load

balancing issues

 Compute intensive programs may employ multiple levels of
parallelization, maybe even with multiple parallelization paradigms
(hybrid parallelization).

Granularity
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 You can still run into all issues of Serial Programming  !

 Additional issues:
 Is your parallelization correct?

 It is harder to debug parallel code than serial code!

 Specific issues of Parallel Programming:
 Introduction of overhead by parallelization

 Data Races / Race Conditions

 Deadlocks

 Load Balancing

 Serialization

 Irreproducibility / Different numerical results

Issues in Parallel Programming: Overview
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 Overhead introduced by the parallelization:
 Time to start / end / manage threads

 Time to send / exchange data

 Time spent in synchronization of threads / processes

 With parallelization:
 The total CPU time increases,

 The Wall time decreases,

 The System time stays the same.

 Efficient parallelization is about minimizing the overhead introduced
by the parallelization itself!

Parallelization Overhead
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 Data Race: Concurrent access of the same memory location by
multiple threads without proper synchronization
 Let x be initialized with 1

 Depending on which thread is faster, you will see either 1 or 5

 Result is nondeterministic (i.e. depends on OS scheduling)

 Data Races (and how to detect and avoid them) will be covered in 
more detail later!

Data Races / Race Conditions

x=5; printf(x);
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 When two or more threads / processes are waiting for another to
release a resource in a circular chain, the program appears to
„hang“:

Deadlock

I want to write!

Give me 
the 

paper!

Give me
the pen!
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 All threads / processes finish at the same time

 Some threads / processes take longer than others

 But: All threads / processes have to wait for the slowest thread / 

process, which is thus limiting

the scalability

Load Balancing

perfect load balancing
tim

e

load imbalance

tim
e
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 Serialization: When threads / processes wait „too much“
 Limited scalability, if at all

 Simple (and stupid) example:

Serialization

Send Recv
Data

Transfer

SendRecv
Data

Transfer

Send Recv
Data

Transfer

Calc

Calc

Wait

Wait
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Java-Threads
Thread-Parallelization in Java
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 A Thread is in either on of the following states
 New

 Runnable

 Active

 Blocked

 Waiting (Timed-Waiting)

 Terminated

State of Java Threads
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State of Java Threads

New

Runnable

Active

Blocked
Waiting

Timed_Waiting

new Thread()

start()

acquire lock

Lock released

Terminated

yield()

wait()
join()
sleep()

Time elapsed
notify()
notifyAll()
interrupt()

Methoden von
Thread (static)
Object
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 A thread has to know in which line of code it starts

 Idea
 The new thread calls a method

 The thread is destroyed after the method has ended

 Problem
 A function pointer would be good, but since Java has no function pointers, 

there is another method:

 Calling the native Thread-class with an own object, implementing the 

Runnable-Interface

Starting a Thread in Java
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public class MyRunnable implements Runnable
{

public void run()
{
// do something useful

}
}

[...]

Thread t = new Thread(new MyRunnable());
t.start();

[...]

Starting a Thread in Java - Runnables
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 ThreadBasics - startingThreads

Starting a Thread in Java – Live Demo
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 A thread will destroy itself when the method, that it was executing, is 
over

 Question
 Is there a way to wait unless a thread finishes?

 Answer
 Yes!

Thread t = new Thread (new MyRunnable());

t.start();

// do something useful

[...]

t.join(); // wait for thread

Ending a Thread in Java
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 ThreadBasics - endingThreads

Ending a Thread in Java – Live Demo
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 To avoid race conditions, it’s sometimes necessary to synchronize 
threads
 Synchronization means to actively affect the order of the threads execution

 There are several methods to realize a synchronization
 Atomic operations / atomic data types

 Mutex locks

 Barriers

 …

Motivation for synchronizing Threads
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 ThreadSynchronisation1 - withoutSynchronisation

Race Conditions – Live Demo
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 An atomic operation is a non-interruptible operations
 No other thread or process can perform an operation, while the atomic 

operation is executed

 An atomic data type is a data type which operations are atomic
 For example AtomicInteger in Java

 Example
AtomicInteger atomic = new AtomicInteger(5);

int nonAtomic = atomic.addAndGet(10);

// nonAtomic is now 15

Atomic operation / Atomic data type
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 ThreadSynchronisation1 - atomicDatatypes

Atomic data type – Live Demo



Parallel Programming, Spring 2012RZ: Jens Hollmann Folie 53

 A mutex lock (abbr. for mutual exclusion) takes care for only one 
thread entering a certain part of the code (critical region) at a time

 Example
ReentrantLock mutex = new ReentrantLock();

mutex.lock();

// do something useful }

mutex.unlock();

 The code between lock() and unlock() is executed by only one 
thread at a time

Mutex Lock (1)
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 ThreadSynchronisation1 – mutexLock – reentrantLock

Mutex Lock – Live Demo
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 A mutex can also be used with a synchronized-block.
 A synchronized-Block needs an object as mutex

 Also the this-object can server as mutex

 All synchronized-Blocks, that share the same object, thus the object with 

the same memory address, belong together

 Example
SomeObject mutex = new SomeObject();

synchronized( mutex );

{

// do something useful }

}

Mutex Lock (2)
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public synchronized void func()
{

// do something useful }
}

is the same as

public void func()
{

synchronized(this)
{

// do something useful
}

}

Mutex Lock (3)
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 ThreadSynchronisation1 – mutexLock – synchronizedBlock

Mutex Lock – Live Demo
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 A pipe (also called queue) is an uni- or bidirectional datastream, that 
works with the FIFO (first in, first out)  principle

 Example
LinkedBlockingQueue < Integer > queue =

new LinkedBlockingQueue < Integer >();

// Thread a

int t = queue.take (); // blocks if queue is empty

// Thread b

int p = 5;

queue.put(p)

Pipe
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 ThreadSynchronisation2 – pipe

Pipe – Live Demo
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 A barrier blocks all threads arriving at the barrier until a certain 
number of threads has reached the barrier
 The number of waiting threads is adjustable

 When the last thread reaches the barrier, all threads are released

 The barriers “breaks”.

 Example
int n = 4;

CyclicBarrier barrier = new CyclicBarrier(n);

try

{

barrier.await();

}

catch( Exception e) { /* do something /* }

Barrier (1)
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Barrier (2)
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 ThreadSynchronisation2 – barrier

Barrier – Live Demo
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 A future is an object which acts as placeholder for data, that will be 
available in the future

 Example
ExecutorService pool =

Executors.newFixedThreadPool(5);

Callable <String > task = new TaskImplementation();

Future <String > f = pool.submit( task );

// Do something useful…

String result = f.get (); // blocks if necessary

Threadpool
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 ThreadSynchronisation2 – threadPool – runnables

Threadpool – Live Demo
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 A threadpool is a group of threads
 Each thread in the pool sleeps, until it gets a task

 After finishing a task a thread returns to the pool

 New tasks are queued if all threads are busy

 Example
ExecutorService pool =

Executors.newFixedThreadPool (5);

Runnable task = new TaskImplementation();

pool.execute( task );

Future
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 ThreadSynchronisation2 – threadPool – futures

Future – Live Demo
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MPI – Part I
Basics

General Information, Communication via Message Passing
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 MPI means Message Passing Interface 
 Messages are data packets exchanged between processes

 Interface definition only

 MPI is a de-facto industry standard API for message passing

 Latest Version 2.2, September 2009

 Different implementations exist:
 typically provided as libraries with C, C++, Fortran bindings

 free MPI implementations:

 MPICH2 http://www.mcs.anl.gov/research/projects/mpich2

 LAM/MPI (OpenMPI) http://www.lam-mpi.org

 OpenMPI (we use this) http://www.open-mpi.org

What is MPI? (1 / 3)
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 Since the finalization of the first standard, MPI has replaced many 
previous message passing approaches

 The MPI API is very large (>300 subroutines), but with only 
6 – 10 different calls serious MPI applications can be programmed

 Tools for debugging and runtime analysis are widely available

What is MPI? (2 / 3)
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 MPI is easy to learn, but may be hard to apply to real world 
applications (practice!)

 OpenMP is an interesting alternative for shared memory 
architectures like today’s multicore processors

What is MPI? (3 / 3)
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 Version 1.0 (1994) Fortran77 and C supported, 129 routines

 Version 1.1 - 1.3 corrections and clarifications

 Version 2.0 (1997) 193 routines, major enhancements
 one-sided communications

 parallel I/O

 dynamic process generation

 Fortran90 and C++ support

 thread safety

 Version 2.1 - 2.2 (2009) corrections and clarifications

 Major work of current MPI Forum is preparation of MPI 3.0

MPI History
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 Official standard defines language bindings for Fortran, C, and C++; 
however, in 2.2 C++ binding is deprecated …

 Several unofficial bindings for other languages exist:
 Java: mpiJava, MPJ

 .NET: PureMPI.NET

 Python: ScientificPython, MYMPI, pyMPI

 Ruby: ruby-mpi

 Matlab: CMTM

Other Computer Languages
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 Parallel processes with local address spaces

 Processes communicate (typical pattern for parallel programming)
 two-sided operation

 send & receive

 receiver has to wait until

the data has been sent

 synchronization

Basic Concepts of MPI

send recvdata
transfer
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 Performance of communication primitives of parallel computers is 
critical for the overall system performance

 Characterization of communication overhead is very important to 
estimate the global performance of parallel applications and to 
detect possible bottlenecks

 Goal: optimize the trade off between computations and 
communications in parallel applications 

Message Passing Overhead
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 Process handling
 Process pool and process identification

 Synchronization mechanisms

 Message handling
 Send and receive messages (with data)

 One-to-One, One-To-All, All-to-All, …

 Wait for data or not

 Data handling
 different memory layouts and structures

 IO handling
 Work with large data

Parallelization Issues



Parallel Programming, Spring 2012RZ: Jens Hollmann Folie 78

 Process handling
 Communicators, Groups, Ranks; Collective Commands

 Message Handling
 Blocking, non-blocking, synchronous, asynchronous; send and receive; 

 Data  handling
 Various datatypes and memory handling

 IO Handling
 Large file and memory handling

Parallelization Issues - MPI Answers
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 Parallel Programming With MPI
Peter Pacheco
Morgan Kaufmann (1996)

 Using MPI 2: Advanced Features of the 
Message-Passing Interface
Gropp, Thakur, Lusk
The MIT Press (1999)

 Patterns for Parallel Programming
Mattson, Sanders, Massingill
Addison Wesley (2004)

 MPI: A Message-passing Interface Standard
Version 2.2

Literature
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 Message Passing Interface Forum
http://www.mpi-forum.org

 mpiJava Interface
http://www.hpjava.org/mpiJava.html

 MPI: The Complete Reference
Volume 1 - The MPI Core
Snir, Otto, Huss-Lederman, Walker, Dongarra
The MIT Press; 2 Edition (1998) 
http://www.netlib.org/utk/papers/mpi-book/mpi-book.html

Further Information
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#include <stdio.h>
#include <stdlib.h>

/*
* gcc -o hello hello.c
* ./hello
* mpiexec -np 3 ./hello
*/

int main(int argc, char* argv[]) 
{

printf("Hello World\n");
return EXIT_SUCCESS;

}

Example: Hello World
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 Program produces the same result several times

 Program is spawned by OS and
runs simultaneously on multiple
processors / cores

 Program execution progress 
depends on system load 
 Exec. and finish time unknown

 What is missing:
 processes communication,

identification and synchronization

 Purpose of MPI commands

Output of Hello World

Process0
hello.out Process1

hello.out

Process2
hello.out

OS – CreateProcess()

time

> mpiexec hello.out
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 Each processor must initialize and finalize an MPI process 

 Initialization of the MPI environment
 Must be done at the very beginning of the program

 int MPI_Init(int* argc, char ***argv)

 no MPI function calls before

 Finalization of the MPI environment
 Typically done at the end of the program

 int MPI_Finalize(void)

 no MPI function calls after

Initialization and Finalization
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 All MPI routines return an error value or, in C++, throws an exception

 The function format in C is
 int error = MPI_Xxxx(parameter-list)

 Before returning an error, the MPI error handler is called

 By default the handler aborts the MPI job!!!

 Without changing the error handler, you will
 get a 0 as return value in case of success

 or the MPI job will abort in case of an error

MPI Error Handling
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#include <stdio.h>
#include <stdlib.h>
#include "mpi.h"

/*
* mpicc -std=c99 error.c -o error
* mpiexec -np 3 error
*/

int main(int argc, char* argv[]) 
{

int procRank,procCount, error;

MPI_Init(&argc,&argv);
MPI_Comm_size(MPI_COMM_WORLD,&procCount);

error = MPI_Comm_rank(MPI_COMM_WORLD,&procRank);
printf("Start[%d]/[%d], error %d \n",procRank,procCount,error);

MPI_Finalize();

return EXIT_SUCCESS;
}

Example: Error
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1. Check Development Environment

2. Hello World

Exercises
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 A group is an ordered set of processes

 Each process in a group is associated with a unique integer rank

 One process can belong to two or more groups

 Groups are dynamic objects in MPI and can be created and 
destroyed during program execution (Part II)

Group

0
1

3

2 4
6

5

ending with (size-1)

starting with 0
each process has an ID (rank)
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 MPI communication always takes place within a communicator

 Within a communicator a group is used to describe the participants 
in a communication "universe"

 User can associate an error handler with a communicator

 Communicators are dynamic, i.e., they can be created and destroyed 
during program execution (Part II)

Communicator

0
1

3

2 4 6

5

communicator
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 MPI_COMM_WORLD 

 includes all of the started processes

 MPI_COMM_SELF

 includes only the process itself

 They are properly defined after MPI_Init(…) has been called

Predefined Communicators
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 Size
 Number of processes within a group

 Can be determined using

 int MPI_Comm_size(MPI_Comm comm, int *nprocs)

 Rank
 Identifies processes within a group

 Can be determined using

 int MPI_Comm_rank(MPI_Comm comm, int *myrank)

Size and Rank
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#include <stdio.h>
#include <stdlib.h>
#include "mpi.h"

/*
* mpicc ranks.c -o ranks
* ./ranks
* mpiexec -np 3 ranks
*/

int main(int argc, char* argv[]) 
{

int procRank,procCount;

MPI_Init(&argc,&argv);

MPI_Comm_size(MPI_COMM_WORLD,&procCount);
MPI_Comm_rank(MPI_COMM_WORLD,&procRank);

printf("Start[%d]/[%d] \n",procRank,procCount);

MPI_Finalize();

return EXIT_SUCCESS;
}

Example: Size and Rank
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 If necessary, specific behavior is done programmatically, e.g. 
by evaluation of some special process identifier

 Usually one process acts as a so-called `master´
 does initial stuff , distributes tasks, …

 usually this is process with rank zero

Single Program Multiple Data (SPMD)

if (processID == specialID) {
/* specific behavior here */

} else {
/* default behavior here */

}
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 Basic concept of message passing

 Initialization and finalization

 Communicators MPI_COMM_WORLD, MPI_COMM_SELF

 Size & rank

Summary
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3. The first MPI Program

Exercises
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 Introduction

 Structure of MPI Programs

 Groups and Communicators

 Point to Point Communication

 MPI Data Types

 Collective Communication

 Summary of Part I

MPI – Part I - Contents
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 How does sender and receiver know, that a message is sent, and 
from whom?

 What kind of data is sent?
 How large is the message?

 What datatype is used?

 What about little and big endian?

 Waiting
 Does a sending operation wait until 

message is delivered?

 Does a receiving operation wait until 

a message comes?

Communication Issues
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 How does sender and receiver know, that a message is sent, and 
from whom?
 Program logic, i.e. the programmer is responsible (usually)

 What kind of data is sent?
 Message infos facts

 MPI datatypes

 MPI takes care

 Waiting
 Different send and receive functions available

 Blocking, non-blocking, synchronous, asynchronous

Communication Issues - MPI Answers
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 Communication between exactly two processes

 Communication takes place within a communicator

 Identification of processes by their rank numbers in the 
communicator

Point to Point Communication (1 / 2)

rank numbers
0

1
3

2 4 6

5

communicator
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[…]
int message = -1;
enum { tagSend = 1 };

printf("Message undef.: %i\n",message);

// root defines a message and sends it to the worker
if (0 == procRank) 
{

message = 42;

// remember &message returns address of message
MPI_Send(&message, 1, MPI_INT, 1, tagSend, MPI_COMM_WORLD);

}
// if (1==procRank); only one worker and worker receives the message
else
{

// parameters must match!!!
MPI_Recv(&message, 1, MPI_INT, 0, tagSend, MPI_COMM_WORLD, 

MPI_STATUS_IGNORE);

printf("Recv. Message: %i\n",message);
}

[…]

Example: Simple Send
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[…]
const int length = 5; // change output if length!=5
int message[length];
enum { tagSend = 1 };

if (0 == procRank) // root recv.
{

for (int i=1; i<procCount; ++i) 
{

// receive from process i
MPI_Recv(message, length, MPI_INT, i, tagSend, 

MPI_COMM_WORLD, MPI_STATUS_IGNORE);
}

}
else // workers send
{

for (int i=0; i<length; ++i)
{

message[i]=procRank+i;
}

MPI_Send(message, length, MPI_INT, 0, tagSend, MPI_COMM_WORLD);
}

[…]

Example: More Send
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 int MPI_Send(void *buf, int count, 
MPI_Datatype datatype, int dest, int tag,
MPI_Comm comm)

 buf: starting address of the message

 count: number of elements

 datatype: type of each element

 dest: rank of destination in communicator comm

 tag: message identification

 comm: communicator

Send
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 int MPI_Recv(void *buf, int count, 
MPI_Datatype datatype, int src , int tag, MPI_Comm
comm, MPI_Status *status)

 buf: starting address of the message

 count: number of elements

 datatype: type of each element

 src: rank of source in communicator comm

 tag: message identification

 comm: communicator

 status: envelope information (message information)

Receive
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 MPI uses pre-defined data types which correspond to the data types 
of the used language

 Different MPI types for Fortran

 Complete list in MPI reference

MPI Data Types

MPI Type C Type
MPI_CHAR signed char
MPI_INT signed int
MPI_LONG signed long int
MPI_UNSIGNED unsigned int
MPI_FLOAT float 
MPI_DOUBLE double
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 Sender specifies a valid destination

 Receiver specifies a valid source

 Communicator is the same

 Matching tags

 Matching data types

 Receiver’s buffer large enough!!!

Requirements
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 3 processes

Data Chain – Timing Example

process
rank 0

synchr. 
send

process
rank 1

send 
data=0

process
rank 2

recv. 
data=2

send 
data=1

wait in 
recv. 

wait in 
recv. 

recv. 
data=1

send 
data=2

wait in 
recv. 

synchr. 
send

synchr. 
send

recv. 
data=0
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 It is possible to receive messages from any other process and with 
any message tag by using MPI_ANY_SOURCE and MPI_ANY_TAG

 Actual source and tag are included in the status variable

MPI_ANY_SOURCE and MPI_ANY_TAG
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 Source:
 int src = status.MPI_SOURCE;

 Tag:
 int tag = status.MPI_TAG;

 Message size (element count of data):
 MPI_Get_count(*status, mpi_datatype, *count)

Status Variable contains Envelope information



Parallel Programming, Spring 2012RZ: Jens Hollmann Folie 110

[…]
if (0 == procRank) // root recv.
{

// receive messages from the other processes in arbitrary order
for (int i=1; i<procCount; ++i) 
{

MPI_Status status;

// receive from process i
MPI_Recv(message, length, MPI_INT, MPI_ANY_SOURCE, 

MPI_ANY_TAG, MPI_COMM_WORLD, &status);

printf("Message: %i %i %i %i %i\n",message[0], 
message[1],message[2],message[3],message[4]);

printf("Source:  %d\n",status.MPI_SOURCE);
printf("Tag:     %d\n",status.MPI_TAG);

}
}

[…]

Example: Anytag
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 MPI_Probe is a call that returns only after a matching message has 
been found (test for incoming messages)
 int MPI_Probe(int source, int tag, MPI_Comm comm, 

MPI_Status *status)

 Processes can find out the message length using the status variable
 int MPI_Get_count(MPI_Status *status, MPI_Datatype

datatype, int *count)

 Later they can receive the message (of length count)

Receiving Messages of unknown Length
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[…]
MPI_Status status;
MPI_Probe(0, tagSend, MPI_COMM_WORLD, &status);
int k;

MPI_Get_count(&status,MPI_INT, &k);
int* message = (int*)malloc(k*sizeof(int));

// !!! message is still a pointer to the buffer !!!
MPI_Recv(message, k, MPI_INT, 0, tagSend, MPI_COMM_WORLD, &status);
printf("Recv. Message, proc %d, length %d: ... %d 

...\n",procRank,k,message[2]);

free(message);
[…]

Example: Message of unknown Length
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 Send and receive operations

 Data types in MPI

 Receive messages of unknown length from unknown source

Summary
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4. Ping Pong

5. Send Data to all Processes, Part I

Exercises
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 Introduction

 Structure of MPI Programs

 Groups and Communicators

 Point to Point Communication

 MPI Data Types

 Collective Communication

 Summary of Part I

MPI – Part I - Contents
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 Collective operation over a communicator

 All processes in the communicator must call the same routine

 Collective operations include synchronization between processes

 What we learn:
 barriers

 time

 broadcast

 scatter, gather

 global reduction operations

Collective Communication
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 Synchronizes all processes in a communicator
 int MPI_Barrier(MPI_Comm comm)

 Each process must wait until all have reached the barrier

 Usually never needed as all synchronization is done by data 
communication

 Used for debugging, profiling or time measurement

Barriers

P0 P1

barrier barrier barrier
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 To measure the runtime one can use
 double MPI_Wtime(void)

 Returns a floating-point number of seconds representing elapsed wall-clock 

time since some time in the past

 The “time in the past'' is guaranteed not to change during the life of 
the process

Time Measurement
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[…]
double tm0, tm1;

tm0 = MPI_Wtime();

sleep(procRank);

// comment out
MPI_Barrier(MPI_COMM_WORLD); // all wait

tm1 = MPI_Wtime();

printf("proc %d, Wtime %lf \n",procRank,(tm1-tm0));
[…]

Example: Time and Barrier
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 A one-to-many operation

 Again, called by all processes

 Root distributes a message among all processes
 int MPI_Bcast(void *buf, int count, MPI_Datatype

datatype, int root, MPI_Comm comm)

 root: rank of broadcast process

in comm

Broadcast (One-To-All)

broadcast
a

a

a

a

before: after:

P0

P1

P2

P0

P1

P2



Parallel Programming, Spring 2012RZ: Jens Hollmann Folie 121

[…]
int message = -1;
enum { tagSend = 1 };

// init for master
if (0 == procRank)
{  

message = 42;
}

MPI_Bcast(&message,1, MPI_INT, 0, MPI_COMM_WORLD);

printf("proc %d recv. bcast %d \n",procRank,message);
[…]

Example: Broadcast
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 All processes, i.e. sender and receiver must execute MPI_Bcast

 Don´t try to receive with MPI_Recv !

 Reason: all processes have to work together to make the broadcast 
most efficient

Broadcast Strategy

P0

P1

P2

P3

P4

P5

P6

Broadcast strategy depends
on the MPI implementation, but
is probably like this
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6. Send Data to all Processes, Part II

7. Send Data to all Processes, Part III

Exercises
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 Scatters an array of data to many processes;

 array index is rank number
 int MPI_Scatter(void* sendbuf, int sendcount, 

MPI_Datatype sendtype, void* recvbuf, int recvcount, 

MPI_Datatype recvtype, int root, MPI_Comm comm)

MPI_Scatter (One-To-All)

sendcount/sendtype and 
recvcount/recvtype can 
be different when self 
defined data types are 
in use

scatter
a

b

c

cba cba
before: after:

P0 P0

P1

P2

P1

P2
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[…]
const int k = 20;
const int l = k/4;
int vector1[k], buffer[l];

// init for master
if (0 == procRank)
{  

for (int i=0; i<k; ++i) 
{

vector1[i]=i*35;   
}

}

MPI_Scatter(vector1, 5, MPI_INT, buffer, 5, MPI_INT, 0, MPI_COMM_WORLD);

for (int i=0; i<l; ++i) 
printf("Process %i has %i -th element

%i\n",procRank,i, buffer[i]);
[…]

Example: Scatter an Array (1 / 2)
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 4 processes, vector length 20, buffer length 5

Example: Scatter an Array (2 / 2)

Vector1
(master)

Buffer
(all)

scatter
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 Inverse operation of  MPI_Scatter
 int MPI_Gather(void* sendbuf, int sendcount, MPI_Datatype

sendtype, void* recvbuf, int recvcount,MPI_Datatype

recvtype, int root, MPI_Comm comm) 

MPI_Gather (All-To-One)

sendcount/sendtype and 
recvcount/recvtype can 
be different when self 
defined data types are 
in use

gather
a

b

c

cba
before: after:

P0 P0

P1

P2

P1

P2

a

b

c
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[…]
const int k = 20;
const int l = k/4;
int vector2[l], buffer[k];

// compute!
for (int i=0; i<l; ++i) 

vector2[i] = i - 10;

MPI_Gather(vector2,5,MPI_INT,buffer,5,MPI_INT,0,MPI_COMM_WORLD);

if (0 == procRank)
{  

for (int i=0; i<k; ++i) 
printf("vectors %i-th element: %i\n", i, buffer[i);

}
[…]

Example: Gather an Array (1 / 2)
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 4 processes, vector length 20, buffer length 5

Example: Gather an Array (2 / 2)

Buffer
(all)

Vector2
(master)

gather
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 Collects data and combines it with a reduction operation

 Places the result in one process
 int MPI_Reduce(void* sendbuf, void* recvbuf, int count, 

MPI_Datatype datatype, MPI_Op op, int root, MPI_Comm

comm)

 op: reduce operation

Reduce (All-To-One) (1 / 2)

reduce
a

b

c

before: after:

P0 P0

P1

P2

P1

P2

a

b

c

abc
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 Predefined MPI reduction operations available, such as
 MPI_MAX maximum over all data

 MPI_MIN minimum over all data

 MPI_SUM sum …

 MPI_PROD product …

 MPI_LAND log. AND …

 MPI_LOR log. OR …

 …

Reduce (All-To-One) (2 / 2)
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[…]
// compute local results
int result = procRank * procCount;

// sum up
int sum = 0;
MPI_Reduce(&result, &sum, 1, MPI_INT, MPI_SUM, 0, MPI_COMM_WORLD);

if (0 == procRank)
{  

printf("sum %d \n",sum);
}

[…]

Example: Reduce (1 / 2)
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Example: Reduce (2 / 2)

1 2 3 4 5Vector
(master)

Buffer
(all)

15

sum
(master)

scatter

compute

210

reduce

LocalSum
(all)

1 2 3 4 5
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 Computes the same result as reduce 

 Returns the result in all processes
 int MPI_Allreduce(void* sendbuf, void* recvbuf, int 

count, MPI_Datatype datatype, MPI_Op op, MPI_Comm comm)

Allreduce (All-To-All)

allreduce
a

b

c

before: after:

P0 P0

P1

P2

P1

P2

a

b

c

abc

abc

abc
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[…]
// compute local results
int result = procRank * procCount;

// sum up
int sum = 0;
MPI_Allreduce(&result, &sum, 1, MPI_INT, MPI_SUM, MPI_COMM_WORLD);

printf("proc %d: sum %d \n",procRank,sum);
[…]

Example: Allreduce



Parallel Programming, Spring 2012RZ: Jens Hollmann Folie 136

 Barriers

 Time

 Broadcast

 Scatter and Gather

 Reduce and Allreduce

 Some routines not mentioned: Allgather, …

Summary
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8. Integer Array, Part I

9. Integer Array, Part II

10. Integer Array, Part III

11. Integer Array, Part IV

12. Numerical Integration

13. Matrix Vector Multiplication

14. Clean Buggy Code

Exercises



Parallel Programming, Spring 2012RZ: Jens Hollmann Folie 138

 Introduction

 Structure of MPI Programs

 Groups and Communicators

 Point to Point Communication

 MPI Data Types

 Collective Communication

 Summary of Part I

MPI – Part I - Contents
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 MPI History and Basics

 Structure of MPI Programs

 Point to Point Communication

 Collective Communication

Summary of Part I
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 Lecture „Introduction to Parallel Programming“
 Introduction

 Java-Threads

 MPI - Part I – Basics

 MPI - Part II – Advanced Topics

 Introduction to OpenMP

 Exercises
 Java-Threads

 MPI

 OpenMP

 Hybrid

Contents
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MPI – Part II
Advanced Topics

More on Communication, Self-defined Datatypes, Self-defined 
Communicators, Load Balancing, Case Study: Game of Life
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 Different Types of Communication

 Complex Data Structures

 Self-defined Communicators

 Load Balancing

 Case Study: Game of Life

MPI – Part II - Contents
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 Where is the data kept until it is received?

 When is a send complete?

Questions
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 Blocking:
 Relates to the completion of an operation in the sense, that used resources, 

i.e. buffers, are free to use again

 Non-blocking:
 Functions return as soon as possible but provided buffers must not be 

touched until another appropriate call successfully indicates that they are not 

in use anymore

 Even read-only access may be prohibited

 Non-blocking communications are primarily used to overlap computation with 

communication to effect performance gains

 Blocking sends can be combined with non-blocking receives and 
vice versa.

Blocking and Non-Blocking
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 In non-blocking send-variants we need to check for the 
communication's completion

 There are two options in checking for a communication's 
completion:
 Wait until the communication is complete using MPI_Wait

 Loop with test until communication is completed using MPI_Test

 To track communication requests an integer request handle is 
provided by the MPI system, e.g.
 int MPI_Isend(... like MPI_Send, MPI_Request *req)

 int MPI_Wait(MPI_Request *req, MPI_Status *status)

Completion of Non-Blocking Operations
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[…]
message=42;
MPI_Request req;
MPI_Issend(&message, 1, MPI_INT, 1, tagSend, MPI_COMM_WORLD, 

&req);

int flag=0;
while (1) 
{

MPI_Test(&req,&flag,MPI_STATUS_IGNORE);

if (1 == flag)
break;

printf("wait ...\n");
sleep(1);

}

printf("Message sent \n");
[…]

Example: Send and wait
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[…]
MPI_Request req;
MPI_Irecv(&message, 1, MPI_INT, 0, tagSend, MPI_COMM_WORLD, 

&req); // no status

int flag=0;
while (1) 
{

MPI_Test(&req,&flag,MPI_STATUS_IGNORE);

if (1 == flag)
break;

printf("wait ...\n");
sleep(1);

}

printf("Recv. Message: %i\n",message);
[…]

Example: Receive and wait



Parallel Programming, Spring 2012RZ: Jens Hollmann Folie 148

 Relation between Sender and Receiver

 Synchronous: 
 send call will only start when the destination has started synchronous receive

 send operation will complete only after acknowledgement that the message 

was safely received by the receiving process (destination has copied data out 

of incoming buffer into memory)

 Asynchronous (buffered): 
 a send operation may "complete" even though the receiving process has not 

actually received the message

 only know that message has left

Synchronous and Asynchronous
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 Note: There is only one receive function for both blocking and non-
blocking send functions

Variants of Communication

semantics

mode

standard synchronous Asynchronous 
(buffered)

blocking MPI_Send
MPI_Recv

MPI_Ssend MPI_Bsend

non‐blocking MPI_Isend
MPI_Irecv

MPI_Issend MPI_Ibsend
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 MPI_Send can be synchronous, asynchronous or both (not declared 
in the MPI standard)

 Behavior is implementation dependent (typical: asynchronous for 
small messages and synchronous for large messages)

 Depending on the system, this can deadlock or not:

Deadlocks with MPI_Send

send

recvrecv

send

P0 P1
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[…]
// force sync. send, wait for rcv. in any case
// MPI_Send(&messageS, 1, MPI_INT, 1-procRank, tagSend, MPI_COMM_WORLD);
MPI_Ssend(&messageS, 1, MPI_INT, 1-procRank, tagSend, MPI_COMM_WORLD);
MPI_Recv(&messageR, 1, MPI_INT, 1-procRank, tagSend, MPI_COMM_WORLD, 

MPI_STATUS_IGNORE);

printf("proc %d finished, message %d \n",procRank,messageR);
[…]

Example: Deadlock
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[…]
// force sync. send, wait for rcv. in any case
// MPI_Send(&messageS, 1, MPI_INT, 1-procRank, tagSend, MPI_COMM_WORLD);
MPI_Bsend(&messageS, 1, MPI_INT, 1-procRank, tagSend, MPI_COMM_WORLD);
MPI_Recv(&messageR, 1, MPI_INT, 1-procRank, tagSend, MPI_COMM_WORLD, 

MPI_STATUS_IGNORE);

printf("proc %d finished, message %d \n",procRank,messageR);
[…]

Example: No Deadlock
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 MPI_Sendrecv combines an asynchronous send and receive

 Send buffer and receive buffer must be disjoint, and may have 
different lengths and data types

 A message sent by a send-receive operation can be received by a 
regular receive operation or probed by a probe operation

 A send-receive operation can receive a message sent by a regular 
send operation

 Useful for data exchange

Send and Receive in one Operation (1)
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 Send and receive buffer must not overlap

 int MPI_Sendrecv(void *sendbuf, int sendcount, 
MPI_Datatype sendtype, int dest, int sendtag, void 
*recvbuf, int recvcount, MPI_Datatype recvtype, int 
source, int recvtag, MPI_Comm comm, MPI_Status
*status) 

 MPI_Sendrecv_replace(void* buf, int count, 
MPI_Datatype datatype, int dest, int sendtag, int 
source, int recvtag, MPI_Comm comm, MPI_Status
*status);

Send and Receive in one Operation (2)
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[…]
if (0 == procRank)
{

messageMaster = 42;

MPI_Sendrecv(&messageMaster, 1, MPI_INT, 1, tagSendMaster, 
&messageWorker, 1, MPI_INT, 1, tagSendWorker, 
MPI_COMM_WORLD, MPI_STATUS_IGNORE);

}
else
{

messageWorker = 43;

MPI_Sendrecv(&messageWorker, 1, MPI_INT, 0, tagSendWorker, 
&messageMaster, 1, MPI_INT, 0, tagSendMaster, 
MPI_COMM_WORLD, MPI_STATUS_IGNORE);

}

printf("proc %d, master %d, worker %d \n", 
procRank, messageMaster, messageWorker);

[…]

Example: Sendreceive
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[…]
if (0 == procRank)
{

message = 42;

MPI_Sendrecv_replace(&message, 1, MPI_INT, 1, tagSendMaster, 
1, tagSendWorker, MPI_COMM_WORLD, MPI_STATUS_IGNORE);

}
else
{

message = 43;

MPI_Sendrecv_replace(&message, 1, MPI_INT, 0, tagSendWorker, 
0, tagSendMaster, MPI_COMM_WORLD, MPI_STATUS_IGNORE);

}

printf("proc %d, message %d \n",procRank, message);
[…]

Example: Sendreceive Replace
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 Also possible in a non-blocking mode:
 int MPI_Iprobe(int src, int tag, MPI_Comm comm,

int* flag, MPI_Status* status)

 flag: non-zero, if there is a matching message

 status: source, tag and size of the message

 Not necessary to receive the message immediately after it has been probed 

for

 The same message may be probed for several times before it is received

Test for Incoming Messages
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15. Test-Receive the measurement

Exercise
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 Different Types of Communication

 Complex Data Structures

 Self-defined Communicators

 Load Balancing

 Case Study: Game of Life

MPI – Part II - Contents
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 Using predefined data types would mean to send very small 
messages many times (e.g. communication of sub arrays)

Motivation
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 Data types in MPI: basic (already known) and derived

 MPI provides data type constructor functions to create derived data
types

 Kinds of data type constructors in MPI:
 contiguous

 vector/hvector

 indexed/hindexed

 struct

Derived Data Types
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 Before a data type handle is used in communication, it needs to be 
committed
 int MPI_Type_commit(MPI_Datatype *datatype)

 After use, a self defined data type can be deallocated
 int MPI_Type_free(MPI_Datatype *datatype)

Committing and Freeing a Data Type
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 Simplest derived data type

 Creates a new data type consisting of contiguous elements of
another data type

 int MPI_Type_contiguous(int count, 
MPI_Datatype oldtype,MPI_Datatype *newtype)

Contiguous Data Type

oldtype

newtype
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 “New” method (derived data type):

 MPI_Type_contiguous(count, datatype, &newtype) 

MPI_Type_commit(&newtype)

MPI_Send(&buffer, 1, newtype, dest, tag, comm)

 “Old” method (simple data type)
 MPI_Send(&buffer, count, datatype, dest, tag, comm)

Transfer of Contiguous Data

count elements of old type

count elements of old type



Parallel Programming, Spring 2012RZ: Jens Hollmann Folie 165

 More general constructor

 Allows replication of a data type into locations that consist of 
equally spaced blocks

 int MPI_Type_vector(int count, int blocklength,
int stride, MPI_Datatype oldtype, MPI_Datatype
*newtype)

Vector Data Type

oldtype

parts not to be transferred
# oldtype: 2 (blocklength)

elements to start of next block: 4 (stride)

# blocks: 3 (count)
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 MPI_Type_vector is fine for sending rectangular blocks from 2D 
arrays

Example: Transfer of 2D Array Data

stride (8 elements)

count (4 blocks)

Note: in Fortran: different memory layout

blocklength (2 elements)
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[…]
MPI_Type_contiguous(3, MPI_INT, &cont_type); // make type: 24 = 8*3 
MPI_Type_commit(&cont_type);

if (0 == procRank)
{

for (int i=0; i<24; i++)
buffer[i] = i;

// send data with new data type to worker
MPI_Send(buffer, 8, cont_type, 1,  tagSendBuffer, MPI_COMM_WORLD);

}
else
{

// receive data with new data type from master
MPI_Recv(buffer, 8, cont_type, 0, tagSendBuffer, MPI_COMM_WORLD, 

MPI_STATUS_IGNORE);

for (int i=0; i<24; i++)
printf("buffer[%d] = %d\n", i, buffer[i]);

}

[…]

Example: Contiguous Data (1 / 2)
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 The contiguous data type created in the source code on the slide 
before looks like this:

Example: Contiguous Data (2 / 2)

1 2 3 4 50 7 8 9 10 116 13 14 15 16 1712 19 20 21 22 2318MPI_INT (24)

10 32 54 76cont_type (8)
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[…]
MPI_Type_vector(3, 6, 9, MPI_INT, &vec_type); // 3 blocks, length 6, stride 9
MPI_Type_commit(&vec_type);

if (0 == procRank)
{

for (int i=0; i<24; i++)
buffer[i] = 2*i;

// send data with new data type to worker
MPI_Send(buffer, 1, vec_type, 1,  tagSendBuffer, MPI_COMM_WORLD);

}
else
{

for (int i=0; i<24; i++)
buffer[i] = -1;

// receive data with new data type from master
MPI_Recv(buffer, 1, vec_type, 0, tagSendBuffer, MPI_COMM_WORLD, 

MPI_STATUS_IGNORE);

for (int i=0; i<24; i++)
printf("buffer[%d] = %d\n", i, buffer[i]);

}
[…]

Example: Vector Data of Basic Type (1 / 2)
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 The vector data type based on a basic data type created in the 
source code on the slide before looks like this:

Example: Vector Data of Basic Type (2 / 2)

1 2 3 4 50 7 8 9 10 116 13 14 15 16 1712 19 20 21 22 2318MPI_INT (24)

1 2 3 4 50 7 8 9 10 116 13 14 15 16 1712 19 20 21 22 2318vec_type
3 blocks
length 6
stride 9
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[…]
MPI_Type_vector(3, 2, 3, cont_type, &vec2_type); //3 blocks, length 2, stride 3
MPI_Type_commit(&vec2_type);

if (0 == procRank)
{

for (int i=0; i<24; i++)
buffer[i] = 3*i;

// send data with new data type to worker
MPI_Send(buffer, 1, vec2_type, 1,  tagSendBuffer, MPI_COMM_WORLD);

}
else
{

for (int i=0; i<24; i++)
buffer[i] = -1;

// receive data with new data type from master
MPI_Recv(buffer, 1, vec2_type, 0, tagSendBuffer, MPI_COMM_WORLD, 

MPI_STATUS_IGNORE);

for (int i=0; i<24; i++)
printf("buffer[%d] = %d\n", i, buffer[i]);

}
[…]

Example: Vector Data of own Data Type (1 / 2)
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 The vector data type based on a self-defined data type created in the 
source code on the slide before looks like this:

Example: Vector Data of own Data Type (2 / 2)

1 2 3 4 50 7 8 9 10 116 13 14 15 16 1712 19 20 21 22 2318MPI_INT (24)

10 32 54 76vec2_type
3 blocks
length 2
stride 3
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16. Vector data type

Exercise
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 Different Types of Communication

 Complex Data Structures

 Self-defined Communicators

 Load Balancing

 Case Study: Game of Life

MPI – Part II - Contents



Parallel Programming, Spring 2012RZ: Jens Hollmann Folie 175

 Communication in a
single row of processes
instead of the whole matrix

 Different tasks for
processes

Why new Communicators?

master

random number generator

workers
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 Base communicator for all MPI communicators is predefined: 
MPI_COMM_WORLD

 One can 
 either construct a new communicator (means to form a new group)

or 

 split a communicator into a group of new communicators

Basics

0
1

3

2 4 6

5

MPI_COMM_WORLD
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 Extract the “process group” from the communicator with
 int MPI_Comm_group(MPI_Comm comm, MPI_Group *group)

 Use MPI_Group-Commands to alter groups

 int MPI_Group_incl(MPI_Group group, int n, int *ranks, 

MPI_Group *newgroup)

 int MPI_Group_excl(MPI_Group group, int n, 
int *ranks, MPI_Group *newgroup)

 Create a communicator around a new group with

 int MPI_Comm_create(MPI_Comm oldcomm, MPI_Group newgroup, 
MPI_Comm *newcomm)

collective command - processes of the old communicator not included get a 
dummy value

Construct new Communicator
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[…]
// remove two processes
int loser[2]; //have to leave the world_group
MPI_Group world_group, win_group;
MPI_Comm win_comm;

// first and last have to go
loser[0]=0;        
loser[1]=procCount-1;

// return group of communicator
MPI_Comm_group(MPI_COMM_WORLD, &world_group);

// create new group without loser
MPI_Group_excl(world_group, 2, loser, &win_group);

// create communicator (subset of group of comm)
MPI_Comm_create(MPI_COMM_WORLD, win_group, &win_comm);

[…]

Example: Construct new Communicator
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 int MPI_Comm_split(MPI_Comm comm, int color, int key, 
MPI_Comm *newcomm)

 A new communicator newcomm is created for each value of color

 Color value MPI_UNDEFINED allowed, in which case newcomm
returns MPI_COMM_NULL

 Within the new communicators, the processes are ranked in the 
order(!) defined by the value of the argument key

 Collective call, but each process can provide different values for 
color and key

Split a Communicator
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[…]
int color = procRank%4;

MPI_Comm newcomm;
MPI_Comm_split(MPI_COMM_WORLD, color, procRank, 

&newcomm);
[…]

Example: Split in 4 Groups (1 / 2)
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Example: Split in 4 Groups (2 / 2)

rank (=key)

new comm

32103210color

76543210

4 new communicators

11110000new rank

32103210
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 int MPI_Comm_free(MPI_Comm *comm)

 Collective operation

 Marks the communication object for deallocation

 Any pending operations that use this communicator will complete 
normally

 The object is actually deallocated only if there are no other active 
references to it

Communicator Destructor
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17. Define Communicators

Exercise
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 Different Types of Communication

 Complex Data Structures

 Self-defined Communicators

 Load Balancing

 Case Study: Game of Life

MPI – Part II - Contents
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 The Mandelbrot set is a set of complex values

 A complex number c is in the Mandelbrot set if, when starting with 
0 0 and applying the iteration x repeatedly, the 

absolute value of never exceeds a certain number

Example: Mandelbrot Set
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 Each process calculates one part of the area

 Process 4 has much more work to do than process
0 and 6

 Load balancing problem

Parallel Calculation of the Set
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 Redesign the distribution of your processes

 The over-all workload is nearly equal for all processes

 The distribution can also 
be determined by random 
numbers

Solution #1

0 1 2 0 1 2 0 1 2
3 4 5 3 4 5 3 4 5
6 7 8 6 7 8 6 7 8
0 1 2 0 1 2 0 1 2
3 4 5 3 4 5 3 4 5
6 7 8 6 7 8 6 7 8
0 1 2 0 1 2 0 1 2
3 4 5 3 4 5 3 4 5
6 7 8 6 7 8 6 7 8
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 Assume process 2 is ready 
first
 gives the results to the master and asks for more work

 process 2 gets the next free block

 and so on …

Master-Worker-Pattern: First Result

1 2 3 4 5 6 7 8 2 
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 Now, let any process be ready:
 no more blocks to calculate

 master sends a message saying: finish your work (e.g. with a special tag)

 when all workers have finished their work, the master finishes, too

 MPI_Finalize is a collective 

operation

 the program ends, when all

processes have called it

Master-Worker-Pattern: Last Results

1 2 3 4 5 6 7 8 2 
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 Different Types of Communication

 Complex Data Structures

 Self-defined Communicators

 Load Balancing

 Case Study: Game of Life

MPI – Part II - Contents



Parallel Programming, Spring 2012RZ: Jens Hollmann Folie 191

 “cellular automaton”
 iterations over a 2d-array

 cells can be live (1) or dead (0)

 each cell interacts with its 8 neighbors

 Rules for each iteration (all cells at the same time!):
 0-1 neighbors live: new state=0 (living cells die)

 2 neighbors live: new state=old state

 3 neighbors live: new state=1 (dead cells come to live)

 4-8 neighbors live: new state=0 (living cells die)

 Example:

Game of Life

0
0

1
01

00

0
1
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 game of life takes place on a m x n grid

 distribute the grid on z processors
(domain decomposition)
 simplest way: row wise or column wise

 more general approach: rectangular areas

(checkerboard partitioning)

 constraints: 

 	%	 0

 	%	 0



 get the best (most compact) distribution with MPI_Dims_Create

Domain Decomposition (1 / 2)

n

m

mz=2

nz=2
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 Initial (master) grid is in process 0

 Parts must get distributed to the other processes

Domain Decomposition (2 / 2)

0
0
2

1
3

master grid worker grids
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 For updating the cells, we need all the neighbours of all the cells
 “ghost cells” around each block are necessary

 This means
 cells are not continuous in memory; neither in the master nor in the worker 

grid

 they are arranged in different ways

Ghost Cells

1
ghost cells

0
master grid worker grid
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 Define new MPI datatypes with

 MPI_Type_vector(count, blocklength, stride, 
oldtype, &newtype)

 The “type signature” of both types matches

 It is possible to send master_type and receive worker_type

New Data Types

0
stride = 6

count
=2

blocklength = 3

1
stride = 5

count
=2

blocklength = 3master_type worker_type
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 Exchange between subdomains to fill the ghost cells

 Each process exchanges borders with all its 4 neighbours

 Use again new MPI data types:
 rows:   MPI_Type_contiguous

 columns:  MPI_Type_vector

 Data exchange with MPI_Sendrecv

Data Exchange

10
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 The calculation is a sequence of iterations and data exchanges
between subdomains

 When the data is to be visualized, all the worker data must be copied
back to the master grid

 More about GOL visualization … 
http://golly.sourceforge.net

Iterations and Visualization
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 Blocking/non-blocking , synchronous/asynchronous

 Derived data types

 New communicators

 Load balancing

Summary of Part II
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Example / Exercise: Heat-Diffusion

   

∆
2
∆
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 Lecture „Introduction to Parallel Programming“
 Introduction

 Java-Threads

 MPI - Part I – Basics

 MPI - Part II – Advanced Topics

 Introduction to OpenMP

 Exercises
 Java-Threads

 MPI

 OpenMP

 Hybrid

Contents
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Introduction to OpenMP
Worksharing, Scoping, Synchronization, Advanced Worksharing, 

Tasking, Miscellaneous
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 Introduction to OpenMP
 Worksharing

 Scoping

 Synchronization

 Advanced Worksharing

 Miscellaneous

 Tasks
 Case Study: Traversing a Tree

Introduction to OpenMP - Contents
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 De-facto standard for Shared-Memory Parallelization.
 1997: OpenMP 1.0 for FORTRAN

 1998: OpenMP 1.0 for C and C++

 1999: OpenMP 1.1 for FORTRAN (errata)

 2000: OpenMP 2.0 for FORTRAN

 2002: OpenMP 2.0 for C and C++

 2005: OpenMP 2.5 now includes both programming languages.

 08/2007: OpenMP 3.0 draft

 05/2008: OpenMP 3.0 release

History

http://www.OpenMP.org



Parallel Programming, Spring 2012RZ: Jens Hollmann Folie 204

 OpenMP: Shared-Memory Parallel Programming Model.

All processors/cores access
a shared main memory.

Parallelization in OpenMP
employs threads.

OpenMP Overview (1 / 2)

Memory

Cache Cache Cache Cache

Proc Proc Proc Proc

Crossbar / Bus
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 OpenMP programs start with just 
one thread: The Master.

 Worker threads are spawned at
Parallel Regions. Together with the
Master they form a Team.

 In between Parallel Regions the
Worker threads are put to sleep.

 Concept: Fork-Join.

 Allows for an incremental
parallelization!

OpenMP Overview (2 / 2)

Master Thread

Serial Part

Parallel
Region

Slave 
ThreadsSlave 
ThreadsWorker
Threads
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 The parallelism has to be expressed explicitly.

 Structured Block
 Exactly one entry point at the top

 Exactly one exit point at the bottom

 Branching in or out is not allowed

 Terminating the program is allowed (abort)

Directives and Structured Blocks

C/C++

#pragma omp parallel
{

...
structured block
...

}
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 Specification of number of threads:

 Environment variable: OMP_NUM_THREADS

 Or: Via num_threads clause:

#pragma omp parallel num_threads(num) {…}

 Or: Via explicit runtime call:

#include <omp.h>

omp_set_num_threads(num);

Starting OpenMP programs
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 Introduction to OpenMP
 Worksharing

 Scoping

 Synchronization

 Advanced Worksharing

 Miscellaneous

 Tasks
 Case Study: Traversing a Tree

Introduction to OpenMP - Contents
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 If only the parallel construct is used, each thread executes the
Structured Block.
 Sharing work between the threads to achieve speedup

 OpenMP‘s most common Worksharing construct: for

 Distribution of loop iterations over all threads in a Team.

 Scheduling of the distribution can be influenced.

 Typically loops account for most of the program runtime!

Worksharing (1 / 3)

C/C++

int i;
#pragma omp parallel for
for (i = 0; i < 100; i++)
{

a[i] = b[i] + c[i];
}
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Worksharing (2 / 3)

do i = 0, 99
a(i) = b(i) + c(i)

end do

do i = 0, 24
a(i) = b(i) + c(i)

end do

do i = 25, 49
a(i) = b(i) + c(i)

end do

do i = 50, 74
a(i) = b(i) + c(i)

end do

do i = 75, 99
a(i) = b(i) + c(i)

end do

A(0)
.
.
.

A(99)

B(0)
.
.
.

B(99)

C(0)
.
.
.

C(99)

MemoryPseudo‐Code
Here: 4 Threads
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 for-construct: OpenMP allows to influence how the iterations are
scheduled among the threads of the team, via the schedule clause:
 schedule(static [, chunk]): Iteration space divided into blocks of

chunk size, blocks are assigned to threads in a round-robin fashion. If chunk
is not specified: #threads blocks.

 schedule(dynamic [, chunk]): Iteration space divided into blocks
of chunk (not specified: 1) size, blocks are scheduled to threads in the order
in which threads finish previous blocks.

 schedule(guided [, chunk]): Similar to dynamic, but block size 
starts with implementation-defined value, then is decreased exponentially
down to chunk.

 Default on most implementations is schedule(static)

Worksharing (3 / 3)
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 Introduction to OpenMP
 Worksharing

 Scoping

 Synchronization

 Advanced Worksharing

 Miscellaneous

 Tasks
 Case Study: Traversing a Tree

Introduction to OpenMP - Contents
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 Challenge of Shared-Memory parallelization: Managing the Data 
Environment.

 Scoping in OpenMP: Dividing variables in shared and private:
 private-list and shared-list on Parallel Region

 private-list and shared-list on Worksharing constructs

 Default is shared

 Loop control variables on for-constructs are private

 Non-static variables local to Parallel Regions are private

 private: A new uninitialized instance is created for each thread

 firstprivate: Initialization with Master‘s value

 lastprivate: Value of last loop iteration is written back to Master

 Static variables are shared

Scoping (1 / 2)
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 Global / static variables can be privatized with the threadprivate
directive
 One instance is created for each thread

 Before the first parallel region is encountered

 Instance exists until the program ends

 Does not work (well) with nested Parallel Region

Scoping (2 / 2)

C/C++

static int i;
#pragma omp threadprivate(i)
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 Introduction to OpenMP
 Worksharing

 Scoping

 Synchronization

 Advanced Worksharing

 Miscellaneous

 Tasks
 Case Study: Traversing a Tree

Introduction to OpenMP - Contents
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 Can all loops be parallelized with for-constructs? No!

 Simple test: If the results differ when the code is executed backwards, the

loop iterations are not independent. BUT: This test alone is not sufficient:

 Data Race: If between two synchronization points at least one thread
writes to a memory location from which at least one other thread
reads, the result is not deterministic (race condition).

Synchronization (1 / 5)

C/C++

int i;
#pragma omp parallel for
for (i = 0; i < 100; i++)
{

s = s + a[i];
}
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Synchronization (2 / 5)

do i = 0, 24
s = s + a(i)

end do

do i = 25, 49
s = s + a(i)

end do

do i = 50, 74
s = s + a(i)

end do

do i = 75, 99
s = s + a(i)

end do

A(0)
.
.
.

A(99)

S
Pseudo‐Code
Here: 4 Threads

do i = 0, 99
s = s + a(i)

end do
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 A Critical Region is executed by all threads, but by only one thread
simultaneously (Mutual Exclusion).

 Do you think this solution scales well?

Synchronization (3 / 5)

C/C++

#pragma omp critical (name)
{

... structured block ...
}

C/C++

int i;
#pragma omp parallel for
for (i = 0; i < 100; i++)
{

#pragma omp critical
{ s = s + a[i];  }

}
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Very bad scalability: Good scalability:
#pragma omp parallel              

{

#pragma omp for
for (i = 0; i < 99; i++)
{   

#pragma omp critical
{

sp = sp + a[i];
}

}

} // end parallel

Synchronization (4 / 5)

do i = 0, 99
s = s + a(i)

end do

do i = 0, 24
s = s + a(i)

end do

do i = 25, 49
s = s + a(i)

end do

do i = 50, 74
s = s + a(i)

end do

do i = 75, 99
s = s + a(i)

end do
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Very bad scalability:                                                Good scalability:
#pragma omp parallel              

{

double sp;

#pragma omp for
for (i = 0; i < 99; i++)
{   

#pragma omp critical
{

sp = sp + a[i];
}

}

#pragma omp critical

{  s += sp; }

} // end parallel

Synchronization (4 / 5)

do i = 0, 99
s = s + a(i)

end do

do i = 0, 24
s = s + a(i)

end do

do i = 25, 49
s = s + a(i)

end do

do i = 50, 74
s = s + a(i)

end do

do i = 75, 99
s = s + a(i)

end do



Parallel Programming, Spring 2012RZ: Jens Hollmann Folie 221

#pragma omp parallel              

{

#pragma omp for
for (i = 0; i < 99; i++)
{   

s    = s    + a[i];

}

} // end parallel

Synchronization (5 / 5)
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#pragma omp parallel              

{

#pragma omp for reduction(+:s)
for (i = 0; i < 99; i++)
{   

s    = s    + a[i];

}

} // end parallel

Synchronization (5 / 5)
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 Introduction to OpenMP
 Worksharing

 Scoping

 Synchronization

 Advanced Worksharing

 Miscellaneous

 Tasks
 Case Study: Traversing a Tree

Introduction to OpenMP - Contents
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 Code in the single-construct is executed by one thread only.
 The thread selection is implementation-defined.

 The thread might change over time and from run to run.

 The master-construct can be used to execute a code block only by
the Master thread.

Advanced Worksharing (1 / 5)

C/C++

#pragma omp parallel
{

...
#pragma omp single
{

...
}

} /* end parallel */



Parallel Programming, Spring 2012RZ: Jens Hollmann Folie 225

 Orphaning allows to syntactically separate the Worksharing
constructs from the Parallel Region.
 Parallelization overhead is reduced if multiple consecuting worksharing

constructs are combined in one Parallel Region.

 The barrier construct implements a synchronization point: All 
threads wait until each single thread of a team has reached the
barrier.

Advanced Worksharing (2 / 5)

C/C++

#pragma omp barrier
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 The sections-construct is used to execute code parts by different 
threads:

 The first section directive may be omitted.

Advanced Worksharing (3 / 5)

C/C++

#pragma omp parallel sections
{

#pragma omp section
{

... structured block ...
}

#pragma omp section
{

... structured block ...
}

}
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 There is an implicit Barrier at Worksharing constructs:

 The Barrier can be omitted by specifying the nowait clause:

Advanced Worksharing (4 / 5)

C/C++

int i;
#pragma omp for
for (i = 0; i < 100; i++)
{

a[i] = b[i] + c[i];
}
/* implicit #pragma omp barrier */

C/C++

int i;
#pragma omp for nowait
for (i = 0; i < 100; i++)
{

a[i] = b[i] + c[i];
}
/* no barrier here */
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 All Worksharing constructs contain an implicit barrier at the end, 
that can be omitted by specifying the nowait clause.
 The master construct is not a worksharing construct, single is.

Be careful using nowait: This code
is only correct when both parallel 
loops have identical boundaries
and use the same scheduling
scheme.

There is always a Barrier at the end
of a Parallel Region.

Advanced Worksharing (5 / 5)

C/C++

#pragma omp parallel {

#pragma omp for nowait
for (i = 0; i < 100; i++) {

a[i] = b[i] + c[i];
}

#pragma omp for nowait
for (i = 0; i < 100; i++) {

b[i] = c[i];
}

} // end omp parallel
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 C and C++:
 If OpenMP is enabled during compilation, the preprocessor symbol _OPENMP

is defined.
 To use the OpenMP runtime library, the header omp.h has to

be included.
 omp_set_num_threads(int): The specified number of threads will be

used for the parallel region encountered next.
 int omp_get_num_threads(): Returns the number of threads in the

current team.
 int omp_get_thread_num(): Returns the number of the calling thread

in the team, the Master has always the id 0.

 Additional functions are available, e.g. to provide locking
functionality.

Runtime Library
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#pragma omp parallel for
for (int i = 0; i < 99; i++) {

a[i] = b[i] + c[i];
}

Use the Runtime Library to distribute the work manually:
#pragma
for (int i = omp_get_thread_num(); i < 99;

i += omp_get_num_threads()) {
a[i] = b[i] + c[i];

}

 Note: if only OpenMP constructs are used with suitable formatting, 
the program can still be compiled with a non OpenMP-aware 
compiler. 

Introduction: Runtime Library
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#pragma omp parallel for
for (int i = 0; i < 99; i++) {

a[i] = b[i] + c[i];
}

Use the Runtime Library to distribute the work manually:
#pragma omp parallel
for (int i = omp_get_thread_num(); i < 99;

i += omp_get_num_threads()) {
a[i] = b[i] + c[i];

}

 Note: if only OpenMP constructs are used with suitable formatting, 
the program can still be compiled with a non OpenMP-aware 
compiler. 

Introduction: Runtime Library
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 Allows to execute a structured block within a parallel loop in 
sequential order

 In addition, an ordered clause has to be added to the Parallel 
Region in which this construct occurs

 Can be used e.g. to enforce ordering on printing of data

 May help to determine whether there is a data race

The ordered construct

C/C++

#pragma omp ordered
... structured block ...
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 OMP_NUM_THREADS: Controls how many threads will be used to
execute the program.

 OMP_SCHEDULE: If the schedule-type runtime is specified in a 
schedule clause, the value specified in this environment variable will 
be used.

 OMP_DYNAMIC: The OpenMP runtime is allowed to smartly guess
how many threads might deliver the best performance. If you want
full control, set this variable to false.

 OMP_NESTED: Most OpenMP implementations require this to be set
to true in order to enabled nested Parallel Regions. 
Remember: Nesting Worksharing constructs is not possible.

OpenMP Environment Variables
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 OpenMP provides a set of low-level locking routines,
similar to semaphores:

 void omp_func_lock (omp_lock_t *lck), with func:

 init / init_nest: Initialize the lock variable

 destroy / destroy_nest: Remove the lock variable association

 set / set_nest: Set the lock, wait until lock acquired

 test / test_nest: Set the lock, but test and return if lock could not be

acquired

 unset / unset_nest: Unset the lock

 Argument is address to an instance of omp_lock_t type

 Simple lock: May not be locked if already in a locked state

 Nested lock: May be locked multiple times by the same thread

OpenMP API: Locks
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 OpenMP: Shared-Memory model
 All threads share a common address space (shared memory)

 Threads can have private data (explicit user control)

 Fork-Join execution model

 Weak memory model
 Temporary View: Memory consistency is guaranteed only after certain points, 

namely implicit and explicit flushes

 Any OpenMP barrier includes a flush

 Entry to and exit from critical regions include a flush

 Entry to and exit from lock routines (OpenMP API) include a flush

Memory Model of OpenMP
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 Enforces shared data to be consistent (but be cautious!)
 If a thread has updated some variables, their values will be flushed to

memory, thus accessible to other threads

 If a thread has not updated a value, the construct will ensure that any local

copy will get latest value from memory

 BUT: Do not use this for thread synchronization
 Compiler optimization might come in your way

 Rather use OpenMP lock functions for thread synchronization

The flush directive

C/C++

#pragma omp flush [(list)]



Parallel Programming, Spring 2012RZ: Jens Hollmann Folie 238

 OpenMP is a parallel programming model for Shared-Memory 
machines. That is, all threads have access to a shared main
memory. In addition to that, each thread can have private data.

 The parallelism has to be expressed explicitly by the programmer. 
The base construct is a Parallel Region:
A Team of threads is created by the runtime system.

 Using the available Worksharing constructs, the work can
be distributed among the threads of a team, influencing
the scheduling is possible.

 To control the parallelization, thread exclusion and synchronization
constructs can be used.

Summary



Parallel Programming, Spring 2012RZ: Jens Hollmann Folie 239

 Introduction to OpenMP
 Worksharing

 Scoping

 Synchronization

 Advanced Worksharing

 Miscellaneous

 Tasks
 Case Study: Traversing a Tree

Introduction to OpenMP - Contents
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 How would you parallelize this code?
typedef list<double> dList;
dList myList;
/* fill myList with tons of items */

dList::iterator it = myList.begin();
while (it != myList.end())
{

*it = processListItem(*it);
it++;

}

 One possibility: Create a fixed-sized array containing all list items
and a parallel loop running over this array
Concept: Inspector / Executor

How to parallelize a While-Loop?
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 Or: Use Tasking in OpenMP 3.0
#pragma omp parallel
{

#pragma omp single
{
dList::iterator it = myList.begin();
while (it != myList.end())
{

#pragma omp task
{

*it = processListItem(*it);
}
it++;

}
}

}

 All while-loop iterations are independent from each other!

How to parallelize a While-Loop?
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 Tasks allow to parallelize irregular problems, e.g.
 unbounded loops

 recursive algorithms

 Producer / Consumer patterns

 and more …

 Task: A work unit which execution may be deferred
 Can also be executed immediately

 Tasks are composed of
 Code to execute

 Data environment

 Internal control variables (ICV)

Biggest change in OpenMP 3.0: Tasks
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 Tasks are executed by the threads of the Team

 Data environment of a Task is constructed at creation time

 A Task can be tied to a thread – only that thread may execute it – or
untied

 Tasks are either implicit or explicit

 Implicit tasks: The thread encountering a Parallel construct
 Creates as many implicit Tasks as there are threads in the Team

 Each thread executes one implicit Task

 Implicit Tasks are tied

→ Different description than in 2.5, but equivalent semantics!

Tasks in OpenMP: Overview
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 Each encountering thread creates a new Task
 Code and data is being packaged up

 Tasks can be nested

 Into another Task directive

 Into a Worksharing construct

 Data scoping clauses:
 shared(list)
 private(list)
 firstprivate(list)
 default(shared | none)

The task directive

C/C++

#pragma omp task [clause [[,] clause] ... ]
... structured block ...
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 At OpenMP barrier (implicit or explicit)

 All tasks created by any thread of the current Team are guaranteed to be

completed at barrier exit

 Task barrier: taskwait

 Encountering Task suspends until child tasks are complete

 Only direct childs, not descendants!

Task synchronization (1 / 2)

C/C++

#pragma omp taskwait
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 Simple example of Task synchronization in OpenMP 3.0:

#pragma omp parallel num_threads(np)
{
#pragma omp task

function_A();
#pragma omp barrier
#pragma omp single

{
#pragma omp task

function_B();
}

}

Task synchronization (2 / 2)

np Tasks created here, one for each thread

All Tasks guaranteed to be completed here

1 Task created here

B‐Task guaranteed to be completed here
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 Some rules from Parallel Regions apply:
 Static and Global variables are shared

 Automatic Storage (local) variables are private

 If no default clause is given:

 Orphaned Task variables are firstprivate by default!

 Non-Orphaned Task variables inherit the shared attribute!

→ Variables are firstprivate unless shared in the enclosing context

 So far no verification tool is available to check Tasking programs for
correctness!

Tasks in OpenMP: Data Scoping
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 Default: Tasks are tied to the thread that first executes them → not 
neccessarily the creator. Scheduling constraints:
 Only the Thread a Task is tied to can execute it

 A Task can only be suspended at a suspend point

 Task creation, Task finish, taskwait, barrier

 If Task is not suspended in a barrier, executing Thread can only switch to a 

direct descendant of all Tasks tied to the Thread

 Tasks created with the untied clause are never tied

 No scheduling restrictions, e.g. can be suspended at any point

 But: More freedom to the implementation, e.g. load balancing

Tasks in OpenMP: Scheduling
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 If the expression of an if clause on a Task evaluates to false

 The encountering Task is suspended

 The new Task is executed immediately

 The parent Task resumes when new Tasks finishes

→ Used for optimization, e.g. avoid creation of small tasks

 If the expression of an if clause on a Parallel Region evaluates to
false
 The Parallel Region is executed with a Team of one Thread only

→ Used for optimization, e.g. avoid going parallel

 In both cases the OpenMP data scoping rules still apply!

Tasks in OpenMP: if clause
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 It is the user‘s responsability to ensure data is alive:

// within Parallel Region
void foo() {

int a[LARGE_N];
#pragma omp task
{

bar1(a);
}
#pragma omp task
{

bar2(a);
}

}

Task pitfalls (1 / 3)

If not shared: Parent Task may have exited
foo() by the time bar() accesses a: a is
variable of automatic storage duration
and thus is disposed when foo() is exited.

Variable a has to be shared in order to
prevent copying to task (default firstprivate).
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 It is the user‘s responsability to ensure data is alive:

// within Parallel Region
void foo() {

int a[LARGE_N];
#pragma omp task shared(a)
{

bar1(a);
}
#pragma omp task shared(a)
{

bar2(a);
}

#pragma omp taskwait
}

Task pitfalls (2 / 3)

Wait for all Tasks that have been created
on this level.
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 Examing your code thoroughly before using untied Tasks:

int dummy;
#pragma omp threadprivate(dummy)

void foo() {dummy = …; }
void bar() {… = dummy; }

#pragma omp task untied
{

foo();
bar();

}

Task pitfalls (3 / 3)

Task could switch to a different Thread 
between foo() and bar().
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 Static schedule guarantees

#pragma omp for schedule(static) nowait
for(i = 1; i < N; i++)

a[i] = …
#pragma omp for schedule(static)

for (i = 1; i < N; i++)
c[i] = a[i] + …

Other news in OpenMP 3.0 (1 / 5)

Allowed in OpenMP 3.0 if and only if:
‐ Number of iterations is the same
‐ Chunk is the same (or not specified)
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 Loop collapsing

#pragma omp for collapse(2)
for(i = 1; i < N; i++)

for(j = 1; j < M; j++)
for(k = 1; k < K; k++)

foo(i, j, k);

Other news in OpenMP 3.0 (2 / 5)

Iteration space from i‐loop and j‐loop is
collapsed into a single one, if loops are
perfectly nested and form a rectangular
iteration space.
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 New variable types allowed in for-Worksharing

#pragma omp for
for (unsigned int i = 0; i < N; i++)

foo(i);

vector v;
vector::iterator it;
#pragma omp for
for (it = v.begin(); it < v.end(); it++)

foo(it);

Other news in OpenMP 3.0 (3 / 5)

Legal in OpenMP 3.0:
‐ Unsigned integer types
‐ Pointer types
‐ Random access iterators (C++)
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 Improvements in the API for Nested Parallelism:
 How many nested Parallel Regions?

 int omp_get_level()

 How many nested Parallel Regions are active?
 int omp_get_active_level()

 Which thread-id was my ancestor, in given level?
 int omp_get_ancestor_thread_num(int level)

 How many Threads were in my ancestor‘s team, at given level?
 int omp_get_team_size(int level)

 This is now well-defined in OpenMP 3.0:
omp_set_num_threads(3);

#pragma omp parallel {

omp_set_num_threads(omp_get_thread_num() + 2);

#pragma omp parallel {

foo();

} }

Other news in OpenMP 3.0 (4 / 5)
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 Improved definition of environment interaction
 Env. Var. OMP_MAX_NESTED_LEVEL + API functions

 Controls the maximum number of active parallel regions

 Env. Var. OMP_THREAD_LIMIT + API functions

 Controls the maximum number of OpenMP threads

 Env. Var. OMP_STACKSIZE

 Controls the stack size of child threads

 Env. Var. OMP_WAIT_POLICY

 Control the thread idle policy:

 active: Good for dedicated systems

 passive: Good for shared systems (e.g. in batch mode)

Other news in OpenMP 3.0 (5 / 5)
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 Introduction to OpenMP
 Worksharing

 Scoping

 Synchronization

 Advanced Worksharing

 Miscellaneous

 Tasks
 Case Study: Traversing a Tree

Introduction to OpenMP - Contents
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[…]
struct node
{

public:
node *left;
node *right;
int value;

};

void process(node*);

void traverse(node* p) 
{

if (p->left)
{

#pragma omp task
traverse(p->left);

}

if (p->right)
{

#pragma omp task
traverse(p->right);

}

process(p);
}
[…]

Traversing a Tree with Tasks
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[…]
struct node
{

public:
node *left;
node *right;
int value;

};

void process(node*);

void traverse(node* p) 
{

if (p->left)
{

#pragma omp task
traverse(p->left);

}

if (p->right)
{

#pragma omp task
traverse(p->right);

}

#pragma omp taskwait
process(p);

}
[…]

Traversing a Tree with Tasks: Postorder
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Exercises

Java-Threads, MPI, OpenMP
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 Introduction to OpenMP
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 Java-Threads

 MPI

 OpenMP

 Hybrid
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 Write a program that reads one integer after another from the user via the 
keyboard. For each of this integers let the program check whether it is 
prime. Perform this check threaded so that reading integers from the 
keyboard can continue while checking. It is up to you which technique you 
use to realize the threaded check. Print for each integer whether it is 
prime or not.

 Hint for all Java-Threads exercises: 

 Try to use large numbers so that the check takes a while. See what happens 

for the different solutions.

Exercise 1 – Prime Search I
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 Write another program similar to the first one. This time use only one 
thread, that performs the prime check in the background. This thread is 
started at the beginning of the program. Each new integer is passed to 
the thread, which checks all passed integers one after another and prints 
the result. Think on your own how you can realize this behavior and 
implement it in at least two different ways.

 Do not use a thread pool.

Exercise 2 – Prime Search II
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 Write a third program that behaves identically to that one from the second 
task, except that it uses several threads to check if the entered numbers 
are prime. This time use a threadpool to solve the exercise.

Exercise 3 – Prime Search III
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 Download and install a SSH-client
 http://pp.bastian-kueppers.de

 Pay attention on choosing the right platform!

 Log in to the RWTH Aachen Linux Cluster 
 Host: cluster-linux-xeon.rz.rwth-aachen.de

 User: Your TIM-ID

 Password: Your password

 Hint: If you cannot log in, you first have to enable the cluster-account in TIM

 Create a directory for your exercises in your home directory

Exercise 1 – Using cluster-linux
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 Implement the classical “Hello World” C-program:

 Create a `hello.c´ file containing the source code above.

 Compile, link and run your program; name it `hello´.

 Use gcc hello.c –o your_executable to compile your program

 Run your program

 Use ./your_executable to run your program

Exercise 2 – Hello World

#include <stdio.h>
#include <stdlib.h>

int main(int argc, char* argv[]) 
{

printf("Hello World\n");
return EXIT_SUCCESS;

}
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 Enhance your “Hello World” program and use the MPI lib:
 Start with your “Hello World” program from Exercise 02.

 Initialize and finalize the MPI library.
 Try what happens if you use a MPI command before initialization or after 

finalization.

 Compile and link your program.
 Use mpicc your_source –o your_executable

 Run your program on three cores simultaneously.
 Use mpiexec –n 3 your_executable

 Query the rank of the process, determine the number of processes available 
and print this information.
 Use more processes than three.

Exercise 3 – The first MPI-Program
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 Play Ping Pong:
 Write a program designed for exactly two processes generating

 Send and receive alternately, i.e. the first process sends a message and 
writes “Ping”, the second process receives it and sends it back – “Pong”, etc. 
Repeat this three times (in a loop!).

 Enhance your program from Exercise 03.

 Send a counter as message data and use it in order to sort output; cf. output 
above.

Exercise 4 – Ping Pong

0
1

0
1

1
0
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 Forward a message from one process to the next:
 Start with the master or root process (process zero) and send data to the next 

process. The last process sends its data back to the master.

 Use an integer as message data.

 Modify your program from Exercise 04.

 Measure the Round-Trip time:
 Repeat the loop above 100 times and calculate the average time for one loop 

with 16 processes.

Exercise 5 – Send Data to all Processes I

0

1

23

4
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 Simulate a Broadcast call:
 Strategy: Start with one process (rank 1) and send data to the following two 

processes (2,3). These processes receive this data and forward it to their 
successors (4,5 and 6,7). Repeat this for all “intermediate” processes. All 
worker processes (rank>0) send their data back to the master process.

 Process zero accepts all messages until all worker processes have sent 
data.

 Use an integer as message data.

 Modify your program from Exercise 05.

 Measure the Round-Trip time similar to Exercise 05.

Exercise 6 – Send Data to all Processes II

0
1

2

4 5 6 7

3
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 Make a Broadcast:
 Send data via Broadcast from master process to all other processes. All 

processes (rank>0) send its data back to the master as in Exercise 06.
 The master should accept all incoming messages until all processes have 

sent their data.
 Use an integer as message data.
 Modify your program from Exercise 06.

Measure the Round-Trip time similar to Exercise 05 and 06.

Exercise 7 – Send Data to all Processes III
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 Scan array for numbers – Preparation:
 Serial solution: the program `arraydistI-serial.c´ creates an array of k 

(here k=50) integer numbers between 0 an 4 and then counts zeros. The 
output looks as follows: 

 Extend `arraydistI-serial.c´ such that the master sends the array, i.e. 
the data vector, to a second process. 

 This second process has to determine the size of the incoming message, i.e. 
the data vector, and has to allocate the memory accordingly.

 Instead of the master the second process prints the array, counts all zeros 
and prints the result (verification step).

Exercise 8 – Integer Array I
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 Scan array for different numbers simultaneously:
 The master process creates an array as in Exercise 08 and sends this vector 

to all other processes. Choose the random integer number between 0 and 
#processes-1. 

 All worker processes have to determine the size of the incoming message 
and allocate the memory accordingly.

 Additionally, the master sends a number to search for to each worker. For 
simplicity, use process’ rank as search number.

 Each worker and the master (!) count how many times its data vector 
contains the respective search number.

 Each worker sends its result back to the master. Accept all incoming 
messages as in Exercise 06.

 Modify your Exercise 08 solution. 

Exercise 9 – Integer Array II
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 Scatter array and scan each part for one single number:
 The master process creates an array as before but scatters the array to all 

processes such that the master and each worker only work on a partition of 
the array. Assume, that the number of array elements is divisible by the 
number of processes. 

 The master sends the partial array length to all workers before.
 Each worker searches the same number. Again this search number has to be 

send to the workers by the master process.
 Each process counts the occurrence of the number and sends it back to the 

master as before.
 Modify your program from Exercise 09 and choose an appropriate send 

method for each information.

Exercise 10 – Integer Array III
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 Scatter array, scan each part and reduce results:
 Modify your program from Exercise 10 and use the reduce mechanism to 

sum up all results.

Exercise 11 – Integer Array IV
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 Calculation of Pi:

 According to 

 can be calculated numerically by using quadrature, e.g. with trapezium or 
midpoint rule (rectangle method); the latter reads:

 Divide the integration domain into intervals and distribute the work such that 
all processes get the same amount of work. 

 Use the reduce mechanism to obtain the final sum.
 Start with `calcPI-serial.c´ and compare results.

Exercise 12 – Numerical Integration

	 	 0.5
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 Parallelize the standard matrix vector multiplication :
 The master distributes the complete vector x and different parts (rows) of 

matrix A to workers. Assume that the number of rows is divisible by the 
process number. 

 Each process computes one part of the result vector b for a sub matrix of A; 
cf. first figure next slide.

 The master collects the calculated elements in b and prints the result.
 Use the specific memory layout of C matrices; cf. figure.
 Send height and width of matrix and vectors to workers, allocate memory 

dynamically.
 Parallelize example `matrixvectorMult-serial.c´.

Exercise 13 – Matrix Vector Multiplication
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 Parallelize standard matrix vector multiplication – continue:
 Parallelization strategy with four processes: 

 Memory layout of matrix A (C language):

Exercise 13 – Matrix Vector Multiplication

0  1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 0  2  3  4  5  6  7  8  9  0  1  3  4  5  6  7  8  9  0  1 2  4  5  6 …

Process 0

Process 1

Process 2

Process 3

0
1
2
3
4
5
6
7
8
9

0 1 2 3 4 5 6 7 8 9 
1 2 3 4 5 6 7 8 9 0
2 3 4 5 6 7 8 9 0 1
3 4 5 6 7 8 9 0 1 2
4 5 6 7 8 9 0 1 2 3
5 6 7 8 9 0 1 2 3 4
6 7 8 9 0 1 2 3 4 5
7 8 9 0 1 2 3 4 5 6

285
240
205
180
165
160
165
180

A x b
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 Find exactly 5 errors violating the syntax and/or MPI standard.

Exercise 14 – Clean  Buggy Code

/* This program does the same operation as an MPI_Bcast() but does it using MPI_Send() and MPI_Recv(). Find exactly 
5 errors! */

#include <mpi.h>
#include <stdio.h>

int main(int argc, char **argv) {
int nprocs;         /* the number of processes in the task */
int myrank;         /* my rank */
int i, int l = 0;
int tag    = 42;    /* tag used for all communication */
int tag2   = 99;    /* extra tag used for what ever you want */ 
int data   = 0;     /* initialize all the data buffers to 0 */
MPI_Status status;  /* status of MPI_Recv() operation */

MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &myrank);
MPI_Comm_size(MPI_COMM_WORLD, &nprocs);

if (myrank == 0) {  /* Initialize the data for rank 0 process only.  */
data = 399;
for (i = 1; i < nprocs; i++)

MPI_Send(&data, 1, MPI_BYTE, i, tag, MPI_COMM_WORLD);
} else {

MPI_Recv(data, l, MPI_INT, 0, tag2, MPI_COMM_WORLD, &status);
}
MPI_Barrier(MPI_COMM_WORLD);

if (data != 399) fprintf(stdout, "Whoa! The data is incorrect\n");
else             fprintf(stdout, "Whoa! Got the message ... \n");

return 0;
}
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 Count how often you may call MPI_Test (polling) in one second 
waiting for a message:
 Use two processes. One sends a message the other waits for the message 

in non-blocking mode.

Exercise 15 – Measure Test-Receive Speed
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 Rewrite your solution of Exercise 13 using self-defined datatypes:
 Define a MPI-datatype `row_type´ that represents a complete row in A.

 Send elements of this `row_type´ instead of doubles, i.e. use this type for 
scatter and gather operations.

Exercise 16 – Vector Datatype

0 1 2 3 4 5 6 7 8 9 
1 2 3 4 5 6 7 8 9 0
2 3 4 5 6 7 8 9 0 1
3 4 5 6 7 8 9 0 1 2
4 5 6 7 8 9 0 1 2 3
5 6 7 8 9 0 1 2 3 4
6 7 8 9 0 1 2 3 4 5
7 8 9 0 1 2 3 4 5 6

One element of type `row_type´!
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 Define Communicators:
 Define a communicator with exactly 20 processes and divide them into 

groups of 5 (the first communicator contains (old) rank 0..4, etc.)
 Start your program with 25 processes.

Exercise 17 - Communicator
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 The heat equation is a so called partial differential equation describing the 
distribution of heat or variation in temperature in a given region over time. 
It reads

 Here denotes some material constant (set 1.0 here) and , a 
function of one spatial variable and time variable , representing the 
temperature at a point at time . 

Exercise 18 – Heat Equation (1 / 10)
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 Example 1:
 Imagine a thin rod that is given an initial temperature distribution. 

 Now the ends of the rod are kept at a fixed (and different) temperature; e.g., 
suppose at the start of the experiment ( 0), both ends are immediately 
plunged into ice water or held against something cold (boundary conditions). 

 We are interested in how the temperatures along the rod vary with time, i.e. 

we look for , 	for 0.

Exercise 18 – Heat Equation (2 / 10)

T = 10 °C

T = 10 °C T = -1 °CT = -1°C

t=0
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 Example 2:
 , 	as 2D-function

Exercise 18 – Heat Equation (3 / 10)

T = 15 .. 25 °C T = 25 °CT = 15 °C

t=0

t=4

T = 15 .. 25 °C
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 Numerical Solution:
 On the computer we can only keep track of the temperature u at a discrete set 

of times and a discrete set of positions …

∆ , ∆

 … for j in {0,…,J} and n in {0,…,N} with some constants N and J.

Exercise 18 – Heat Equation (4 / 10)
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 Numerical Solution:
 Rewriting the partial differential equation in terms of finite difference

approximations to the derivatives, we get

∆
2
∆

 These are the simplest approximations. Thus if for a particular , we know the 
values of for all , we can solve the equation above to find for each j (see 
figure above):

∆
∆ 2

 In other words, this equation tells us how to find the temperature distribution 
at time step 1 given the temperature distribution at time step . At the 
endpoints 	 	0	and 	 	 	we ignore the equation above and apply the 
boundary conditions instead.

Exercise 18 – Heat Equation (5 / 10)
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 Code-Snippet:
 Serial Code

const double TempLeft = -1.0;
const double TempRight = -1.0;
const double TempMid = 10.0;

const int N = 1000; // time steps
const int J =  100; // space discretization
[…]
double dx = 1.0/J;
double dt = 0.5*dx*dx;
[…]
double* uk0 = malloc((J+1)*sizeof(double)); // take right point into account
double* uk1 = malloc((J+1)*sizeof(double)); // we have u[0],u[1],...,u[J]
double* ukt; // swap fields

InitFields(uk0,uk1,J+1, 0,TempLeft, J,TempRight, TempMid);
AppendFile("data0", uk1,0.0, 0,J+1);

for (int n=1; n<=N; ++n)  // all time steps
{

for (int j=1; j<J; ++j) // all locations, 1..J-1
{

uk1[j] = uk0[j] + dt/(dx*dx) * (uk0[j-1]-2*uk0[j]+uk0[j+1]);
}

ukt = uk0; uk0 = uk1; uk1 = ukt;
}

Exercise 18 – Heat Equation (6 / 10)
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 Parallelization:
 Obviously, the inner loop (j) can be easily parallelized to P processes (assume 

the number of cells is divisible without remainder). We set / .

 Example above: 21, 3, 7

 Chosen that partition scheme every process can compute all inner points 
individually! 

Exercise 18 – Heat Equation (7 / 10)
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 Parallelization:
 There is only one problem left, namely getting the endpoint-values, or local 

boundary points, of each partition.

 One solution to this problem is to introduce additional cells, so-called ghost 
cells, being copies of the boundary cells of the neighbour processes, cf. the 
following figure.

Exercise 18 – Heat Equation (8 / 10)
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 Parallelization:
 Then we have to change the loops as follows:

Exercise 18 – Heat Equation (9 / 10)

Loop over time (n) 
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Note: use global boundary 
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 Exercise:
 Extend the serial code such that the problem can be computed parallel.

 Use non-blocking communication.

Exercise 18 – Heat Equation (10 / 10)
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 Implement the classical “Hello World” C-program:

 Create a `hello.c´ file containing the source code above

 Extend it using the OpenMP-Library so that it runs with 4 threads

 Let each thread print out “Hello World from thread #threadid of 

#num_threads threads”

Exercise 1 – Hello World revisited (1 / 2)

#include <stdio.h>
#include <stdlib.h>

int main(int argc, char* argv[]) 
{

printf("Hello World\n");
return EXIT_SUCCESS;

}
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 Implement the classical “Hello World” C-program:
 In which order do you expect the threads to print out their Hello World 

message?

 What are the three different ways of forcing OpenMP to use 4 threads? In 

which order do they apply?

Exercise 1 – Hello World revisited (1 / 2)
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 Calculation of Pi:

 According to 

 can be calculated numerically by using quadrature, e.g. with trapezium or 
midpoint rule (rectangle method); the latter reads:

 Parallelize the given Sourcecode with OpenMP. Look out for the 
computationally most intensive part on your own.

Exercise 2 – Numerical Integration revisited

	 	 0.5
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 Count the occurrence of Numbers in an Array
 Parallelize the given Sourcecode with OpenMP. Look out for the 

computationally most intensive part on your own

 Is it possible to parallelize the output of the given numbers? If you think it’s 

possible, do it using OpenMP. Otherwise state why you think it’s not possible.

Exercise 3 – Counting Numbers
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 Find the maximum over all numbers within an Array
 Parallelize the given sourcecode using OpenMP. 

 Hint: Think about different ways of doing it.

 Explain why  using a critical region for parallelizing the program most likely is 

not a good idea.

Execise 4 – Finding the Maximum
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 The following declarations and definitions occur in all exercises 
before the Parallel Region:

 int i;
double A[N] = { ... }, B[N] = { ... }, C[N], D[N];
const double c = ...;
const double x = ...;
double y;

 Insert missing OpenMP directives to parallelize this loop:

 for (i = 0; i < N; i++)
{

y = sqrt(A[i]);
D[i] = y + A[i] / (x * x);

}

Exercise 5 – OpenMP Puzzles (1 / 3)
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 Insert missing OpenMP directives to make both loops run in parallel:

 #pragma omp parallel
{

for (i = ; i < N; i += )
{
D[i] = x * A[i] + x * B[i];

}

#pragma omp for
for (i = 0; i < N; i++)
{
C[i] = c * D[i];

}

} // end omp parallel

Exercise 5 – OpenMP Puzzles (2 / 3)
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 Can you parallelize this loop – if yes how, if not why?

 #pragma omp parallel for
for (int i = 1; i < N; i++)
{

A[i] = B[i] – A[i – 1];
}

Exercise 5 – OpenMP Puzzles (3 / 3)
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 Compute a Fibonacci-sequence
 Parallelize the given Sourcecode with OpenMP. Think of the special case of 

parallelizing a recursive algorithm.

Exercise 6 – Fibonacci
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 Write a program that searches for primes. It should obey the 
following restrictions:
 The user specifies a maximum value . All 	 ∈ 	 , 2 shall be checked

if they are prime.

 The program should implement a master-worker-pattern (MPI) that works the 

following way:

 The master sends all numbers to be checked to the workers, collects the 

results of their computations and prints these results altogether at the end 

of the program.

Exercise 1 – Primesearch (1 / 2)
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 Write a program that searches for primes. It should obey the 
following restrictions:
 The worker should check if a number that was sent by the master is prime or 

not. This should be done in a multithreaded way (OpenMP). The user should 

be able to pass the number of threads to be used to the program. At the end 

of the computation the worker sends back to the master if the given number is 

prime or not.

 Think of an efficient way for the communication between the master and the 

workers.

Exercise 1 – Primesearch (2 / 2)


